
A Related Works

In this section, we discuss the related studies in OOD detection.

OOD Detection Methods. Existing works in OOD detection can be mainly categorized into
three categories, namely, the post-hoc methods, the representation-based methods, and the outlier
exposure. For the post-hoc methods, they believe a well-trained ID classifier can already lead
to effective OOD detection (Hendrycks and Gimpel, 2017), given proper scoring functions to
indicate ID and OOD cases. Existing scoring functions are built upon the classifiers, taking logit
outputs (Hendrycks and Gimpel, 2017; Liang et al., 2018; Liu et al., 2020; Sun et al., 2021; Wang
et al., 2021a; Lakshminarayanan et al., 2017; Wang et al., 2021a; Huang and Li, 2021), embedding
features (Lee et al., 2018a; Sastry and Oore, 2020; Wang et al., 2022a; Lin et al., 2021; Sun et al.,
2022; Morteza and Li, 2022; Luo et al., 2023), or gradient information (Huang et al., 2021; Liang
et al., 2018; Igoe et al., 2022) as its inputs and returning a score value to indicate the confidence for
an ID case. Recent works focus on adaptation strategies for specific tasks (Huang et al., 2021; Zhu
et al., 2023a) and non-parametric approaches (Sun et al., 2022), which may motivate future works.

Other works believe that training procedures are indispensable in OOD detection. For representation-
based methods, researchers assume that a good ID representation is all we need for effective OOD
detection. Therein, researchers study contrastive learning methods (Sehwag et al., 2021; Wang
et al., 2022b), data augmentation (Tack et al., 2020; Zheng et al., 2023), constraints on embedding
features (Du et al., 2022b; Ming et al., 2023; Zaeemzadeh et al., 2021) or model output (Wei et al.,
2022). However, some of the adopted scoring functions in representation-based methods are complex.
It can make us overestimate the true effects of representation learning, which may require further
studies. For outlier exposure, related methods directly make the model learn from OOD data with
low OOD score predictions (Hendrycks et al., 2019; Liu et al., 2020; Huang et al., 2023a). Related
works studies sampling strategies (Zhu et al., 2023b; Ming et al., 2022; Chen et al., 2021), adversarial
robust learning (Li and Vasconcelos, 2020; Lee et al., 2018a; Hein et al., 2019), meta learning (Jeong
and Kim, 2020), and regularization strategies (Van Amersfoort et al., 2020). Other works consider the
situations where OOD data are inaccessible, studying various outlier synthesis strategies (Lee et al.,
2018b; Vernekar et al., 2019; Du et al., 2022a; Tao et al., 2023). Although outlier exposure typically
reveals promising results, the difference between auxiliary and real OOD data largely hinders its
real-world detection power, similar to conclusions in domain adaptation (Luo et al., 2023, 2020).

OOD Detection Theory. Zhang et al. (2021) gives an explanation of why there exist OOD data that
have higher probabilities or densities than the data from the ID distribution in the deep generative
models. Zhang et al. (2021) understands OOD detection via goodness-of-fit tests and points out
that OOD detection should be defined based on the data distribution’s typical set if we hope OOD
detection can be successful. Morteza and Li (2022) develops a novel unified framework that helps
researchers to understand the theoretical connections among some representative OOD detection
methods. Fang et al. (2021, 2022) develop the probably approximately correct (PAC) learning theory
for OOD detection and gives a series of sufficient and necessary conditions for the PAC learnability of
OOD detection. Fang et al. (2022) has proven that although OOD detection cannot be PAC learnable
in the distribution-free case, OOD detection can be successful in many practical scenarios. Note
that Zhang et al. (2021), Morteza and Li (2022), and Fang et al. (2022) all consider the case that the
auxiliary OOD data are unavailable. Therefore, to ensure the leanability of OOD detection, some
strong conditions are necessary (Zhang et al., 2021; Fang et al., 2022). To explore the outlier exposure
case in OOD detection, Bitterwolf et al. (2022) shows that several representative OOD detection
methods that optimize an objective that includes predictions on auxiliary OOD data are equivalent
to the binary discriminator. Compared to Zhang et al. (2021); Morteza and Li (2022); Fang et al.
(2022), our paper mainly focuses on the case that the auxiliary OOD data are available. Using the
auxiliary OOD data, we can weaken the strong conditions proposed by Fang et al. (2022) and provide
more reasonable and practical learning bounds for OOD detection. Compared to Bitterwolf et al.
(2022), our theory mainly focuses on the learnability of OOD detection in the outlier exposure case
and provides theoretical support to our practical method.
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B Notations

In this section, we summarize the important notations in Table 3.

Table 3: Main notations and their descriptions.

Notation Description

Spaces
X and Y the feature space and the ID label space {1, . . . , C}

W the parameter space
D the distribution space
E the embedding space

Distributions
XI, XA, XO ID feature, auxiliary OOD feature, and real OOD feature
YI and YO ID label and OOD label random variable

DXIYI and DXOYO ID joint distribution and OOD joint distribution
DXA the auxiliary OOD distribution
δ the dirac measure

Data and Models
S and T ID training data and auxiliary OOD training data
n and m the number of ID data and the number of auxiliary OOD data
xI and xA ID data and auxiliary OOD data

yI ID label
fw the model: X → RC , parameterized by w ∈ W

e and h the feature extractor and the classifier
s(·; f) the scoring function: X → R
gλ(·) the OOD detector: X → {ID, OOD}, with threshold λ

Distances
c(·, ·) the cost function: X × X → R+

d(·, ·) the distance between two distributions: D×D → R+

Wc the Wasserstein-1 distance: D×D → R+

ρ the radius of the Wasserstein ball
∥ · ∥p lp norm

Loss and Risk
ℓ and ℓOE ID loss function and OOD loss function

RI(w) and R̂I(w) the expected risk and the empirical risk corresponding to DXIYI

RA(w) and R̂A(w) the expected risk and the empirical risk corresponding to DXA

RO(w) the expected risk corresponding to DXO

RD(w) the real detection risk corresponding to D
ϕγ(w;x) the surrogate function

RO(w; ρ) and R̂O(w; ρ) the expected DAL risk and the empirical one corresponding to DXA

RD(w; ρ) and R̂D(w; ρ) the expected DAL risk and the empirical one corresponding to D
Hypothesis Space

F and FOE the model classes with respect to ℓ and ℓOE

N (·, ϵ, L∞) the covering number
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C Proofs of Theorems

We provide the detailed proofs for our theoretical results in Sections 4.1.

C.1 Covering Number

We use the covering number for the model classes in our derivation. Here, we give the formal
definition.

Definition 2 (ϵ-covering (Vershynin, 2018)). Let (V, ∥ · ∥) be a normed space, Θ ⊂ V , and B(·, ϵ)
the ball of radius ϵ. Then {V1, . . . , VN} is an ϵ-covering of Θ if Θ ⊂

⋃N
i=1 B(Vi, ϵ), or equivalently,

∀θ ∈ Θ, ∃i such that ∥θ − Vi∥ ≤ ϵ.

Upon our definition of ϵ-covering, the covering number is the minimal number of ϵ-balls one needs
to cover Θ.

Definition 3 (Covering Number (Vershynin, 2018)).

N (Θ, ∥ · ∥, ϵ) = min{n : ∃ ϵ-covering over Θ of size n}.

C.2 Proof of Lemma 1

Proof of Lemma 1. Because of DXA ∈ D, according to the definite of infimum, it is clear that

inf
DX′∈D

d(DX′ , DXO
) ≤ d(DXA

, DXO
).

To prove the second result, we consider a special distribution D′, which is defined as follows: for
some u ∈ [0, 1],

D′ = (1− u)DXO + uDXA .

Because c(·, ·) is a continuous metric, Kantorovich–Rubinstein duality (Villani, 2021) implies that

Wc(D
′, DXO

) = sup
∥f∥Lip≤1

∫
X
f(x)dD′(x)−

∫
X
f(x)dDXO

(x)

=u sup
∥f∥Lip≤1

∫
X
f(x)dDXA(x)−

∫
X
f(x)dDXO(x)

=uWc(DXA
, DXO

)

Similarly, we can obtain that

Wc(D
′, DXA

) = (1− u)Wc(DXA
, DXO

)

Case 1. If Wc(DXA
, DXO

) ≤ ρ, then it is clear that

inf
DX′∈D

Wc(DX′ , DXO
) ≤ max{Wc(DXA

, DXO
)− ρ, 0}.

Case 2. If Wc(DXA
, DXO

) > ρ, then we set u = 1− ρ/Wc(DXA
, DXO

). Therefore,

Wc(D
′, DXA) = ρ, Wc(D

′, DXO) = Wc(DXA , DXO)− ρ,

which implies that

inf
DX′∈D

Wc(DX′ , DXO
) ≤Wc(D

′, DXO
) = Wc(DXA

, DXO
)−ρ ≤ max{Wc(DXA

, DXO
)−ρ, 0}.

We have completed this proof by combining Cases 1 and 2.

C.3 Proof of Theorem 1

Proof of Theorem 1. One can find a similar proof from Blanchet et al. (2019); Blanchet and
KarthyekRajhaaA. (2016); Sinha et al. (2018). We omit it here.
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C.4 Proof of Theorem 2

Proof of Theorem 2. We first recall the notations as follows:

RI(w) = E(x,y)∼DXIYI
ℓ(fw;x, y),

R̂I(w) =
1

n

n∑
i=1

ℓ(fw;xi
I, y

i
I),

RO(w; ρ) = sup
Wc(DX′ ,DXA

)≤ρ

Ex∼DX′ ℓOE(fw;x),

R̂O(w; ρ) = sup
Wc(DX′ ,D̂XA

)≤ρ

Ex∼DX′ ℓOE(fw;x).

Let w∗ be the solution of minw∈W RD(w; ρ). Then

RD(ŵ; ρ)−RD(w∗; ρ)

≤RD(ŵ; ρ)− R̂D(ŵ; ρ) + R̂D(ŵ; ρ)−RD(w∗; ρ) + R̂D(w∗; ρ)− R̂D(w∗; ρ)

≤[RI(ŵ)−RI(w
∗)] + α[RO(ŵ; ρ)−RO(w

∗; ρ)]− [R̂I(ŵ)− R̂I(w
∗)]− α[R̂O(ŵ; ρ)− R̂O(w

∗; ρ)]

=[RI(ŵ)− R̂I(ŵ)] + α[RO(ŵ; ρ)− R̂O(ŵ; ρ)]− [RI(w
∗)− R̂I(w

∗)]− α[RO(w
∗; ρ)− R̂O(w

∗; ρ)].
(12)

By Lemmas 4 and 9, we have that with the probability at least 1− 2e−t > 0, for any ρ > 0,

[RI(ŵ)− R̂I(ŵ)] + α[RO(ŵ; ρ)− R̂O(ŵ; ρ)]

≤b0Mℓ√
n

∫ 1

0

√
logN (F ,Mℓϵ, L∞)dϵ

+αb1

√
M3

ℓOE

ρ2m

∫ 1

0

√
logN (FOE,MℓOE

ϵ, L∞)dϵ+ αb2MℓOE

√
2t

m
+Mℓ

√
2t

n
.

(13)

By Lemmas 8 and 10, we have that with the probability at least 1− 2e−t > 0, for any ρ > 0,

[RI(w
∗)− R̂I(w

∗)] + α[RO(w
∗; ρ)− R̂O(w

∗; ρ)] ≤Mℓ

√
2t

n
+ 2αMℓOE

√
2t

m
. (14)

Combining Eqs. (12), (13) and (14), we have that with the probability at least 1− 4e−t > 0, for any
ρ > 0,

RD(ŵ; ρ)−RD(w∗; ρ)

≤b0Mℓ√
n

∫ 1

0

√
logN (F ,Mℓϵ, L∞)dϵ

+αb1

√
M3

ℓOE

ρ2m

∫ 1

0

√
logN (FOE,MℓOE

ϵ, L∞)dϵ+ 2Mℓ

√
2t

n
+ b2αMℓOE

√
2t

m
,

where b0, b1 and b2 are uniform constants.

Remark 4. One can prove that the cross-entropy and the exponential losses are bounded and lipschitz
w.r.t. w for deep models with softmax outputs (Golowich et al., 2018), if

• activation functions are 1-Lipschitz;

• inputs are from bounded feature space X ;

• the parameter spaceW is bounded (e.g., with regularization).

More specifically, when the F-norm bounds parameters, the softmax output is continuous and never
attains infinity. If we further assume that inputs are from a bounded feature space, then the model is
a continuous function over the bounded space, implying that model outputs have upper and lower
bounds. Thus, the cross-entropy and the exponential loss can be bounded in practice, and our
assumptions are practical.
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C.5 Corollary 1

Corollary 1. Given the same conditions in Theorem 2, if

• ℓOE(fw;x) is LOE-Lipschitz w.r.t. norm ∥ · ∥, i.e.,

|ℓOE(fw;x)− ℓOE(fw′ ;x)| ≤ LOE∥w −w′∥,

• ℓOE(fw;x) is Lc-Lipschitz w.r.t. c(·, ·), i.e.,

|ℓOE(fw;x)− ℓOE(fw;x′)| ≤ Lcc(x,x
′),

• ℓ(fw;x, y) is L-Lipschitz w.r.t. norm ∥ · ∥, i.e.,

|ℓ(fw;x, y)− ℓ(fw′ ;x, y)| ≤ L∥w −w′∥,

• the parameter spaceW ⊂ Rd′
satisfies that

diam(W) = sup
w,w′∈W

∥w −w′∥ < +∞.

Let ŵ be the optimal solution of Eq. (8), i.e.,

ŵ ∈ argmin
w∈W

R̂D(w; ρ).

With the probability at least 1− 4e−t > 0, for any ρ > 0,

RD(ŵ; ρ)− min
w∈W

RD(w; ρ) ≤ ϵ̃(n,m; t),

where

ϵ̃(n,m; t) =b0

√
Mℓdiam(W)Ld′

n

+αb1 min{Lc,
MℓOE

ρ
}
√

diam(W)LOEd′

m

+2Mℓ

√
2t

n
+ αb2MℓOE

√
2t

m
,

here b0, b1 and b2 are uniform constants.

Proof of Corollary 1. By Lemmas 7 and 11, we have that with the probability at least 1− 2e−t > 0,
for any ρ > 0,

[RI(ŵ)− R̂I(ŵ)] + α[RO(ŵ; ρ)− R̂O(ŵ; ρ)]

≤
[
b0

√
Mℓdiam(W)Ld′

n
+Mℓ

√
2t

n

]
+ αb1 min{Lc,

MℓOE

ρ
}
√

diam(W)LOEd′

m
+ αb2MℓOE

√
t

m
(15)

By Lemmas 8 and 10, we have that with the probability at least 1− 2e−t > 0, for any ρ > 0,

[RI(w
∗)− R̂I(w

∗)] + α[RO(w
∗; ρ)− R̂O(w

∗; ρ)] ≤Mℓ

√
2t

n
+ 2αMℓOE

√
2t

m
. (16)

Using Eqs. (15), (16) and Eq. (12), we know that with the probability at least 1− 4e−t > 0, for any
ρ > 0,

RD(ŵ; ρ)− min
w∈W

RD(w; ρ)

≤b0

√
Mℓdiam(W)Ld′

n
+ αb1 min{Lc,

MℓOE

ρ
}
√

diam(W)LOEd′

m
+ 2Mℓ

√
2t

n
+ αb2MℓOE

√
2t

m
,

where b0, b1 and b2 are uniform constants.
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C.6 Proof of Theorem 3

Proof of Theorem 3. Consider
RD(ŵ)−RD(ŵ; ρ).

It is clear that
RD(ŵ)−RD(ŵ; ρ) = α[RO(ŵ)−RO(ŵ; ρ)].

Let D′ = (1− u)DXO
+ uDXA

and

ρO = Wc(DXO
, DXA

).

Because c(·, ·) is a continuous metric, Kantorovich–Rubinstein duality Villani (2021) implies that

Wc(D
′, DXA)

= sup
∥f∥Lip≤1

∫
X
f(x)dD′(x)−

∫
X
f(x)dDXA(x)

=(1− u) sup
∥f∥Lip≤1

∫
X
f(x)dDXO

(x)−
∫
X
f(x)dDXA

(x)

=(1− u)Wc(DXO , DXA)

=(1− u)ρO

Let
u = 1− ρ

ρO
.

Case 1. If ρ ≥ ρO, then
RD(ŵ) ≤ RD(ŵ; ρ)

Case 2. If ρ < ρO, then by Lemma 6

RO(ŵ)−RO(ŵ; ρ) ≤ RO(ŵ)− Ex∼D′ℓOE(fw;x) ≤ Lc(ρO − ρ),

By Cases 1 and 2, we have shown that

RD(ŵ)−RD(ŵ; ρ) ≤ αLc max{Wc(DXo , DXA)− ρ, 0}.

Then by Theorem 2, we complete this proof.
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D Necessary Lemmas

Lemma 2. Assume that

• |ℓOE(fw;x)| ≤MℓOE
,

• c : X × X → R+ is a continuous metric,

then

• |ϕγ(w;x)| ≤MℓOE
,

• for some w0 ∈ W and ϵ > 0, when γϵ (γϵ ≥ 0) satisfies the following condition:

γϵρ+ Ex∼Dϕγϵ
(w0;x) ≤ inf

γ≥0
[γρ+ Ex∼Dϕγ(w0;x)] + ϵ,

then
γϵ ≤

2MℓOE
+ ϵ

ρ
.

Proof of Lemma 2. First, we prove: |ϕγ(w;x)| ≤MℓOE .

Because ϕγ(w;x) = supx′∈X {ℓOE(fw;x′)− γc(x′,x)} and c(x,x′) ≥ 0, it is clear that

ϕγ(w;x) ≤ sup
x′∈X

ℓOE(fw;x′) ≤MℓOE
.

In addition, because c(x,x) = 0, then

ϕγ(w;x) ≥ ℓOE(w;x) ≥ −MℓOE
.

Above inequalities have indicated that

|ϕγ(w;x)| ≤MℓOE .

Second, we prove that

γϵ ≤
2MℓOE

+ ϵ

ρ
.

By the dual theorem in Blanchet et al. (2019); Blanchet and KarthyekRajhaaA. (2016); Sinha et al.
(2018), we can obtain that

inf
γ≥0

[γρ+ Ex∼Dϕγ(w0;x)] = sup
Wc(D′,D)≤ρ

Ex∼D′ℓOE(fw0 ;x) ≤MℓOE ,

which implies that
γϵρ ≤MℓOE

+ ϵ− Ex∼Dϕγ(w0;x) ≤ 2MℓOE
+ ϵ.

Therefore,

γϵ ≤
2MℓOE

+ ϵ

ρ
.

Lemma 3 (Theorem 3 in Sinha et al. (2018)). Given the same assumptions in Theorem 2, then with
the probability at least 1− e−t > 0, for any γ ≥ 0, ρ ≥ 0 and w ∈ W ,

sup
Wc(DX′ ,DXA

)≤ρ

Ex∼DX′ ℓOE(fw;x)

≤γρ+ 1

m

m∑
i=1

ϕγ(w;xi
A) + b2MℓOE

√
t

m
+ γb1

√
MℓOE

m

∫ 1

0

√
logN (FOE,MℓOE

ϵ, L∞)dϵ,

where b1 and b2 are uniform constants.

Proof of Lemma 3. This lemma is following Theorem 3 in Sinha et al. (2018).
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Lemma 4. Given the same assumptions in Theorem 2, then with the probability at least 1− e−t > 0,
for any ρ > 0 and w ∈ W , we have

sup
Wc(DX′ ,DXA

)≤ρ

Ex∼DOℓOE(fw;x)

≤ sup
Wc(DX′ ,D̂XA

)≤ρ

Ex∼DO
ℓOE(fw;x) + b2MℓOE

√
t

m
+ b1

√
M3

ℓOE

ρ2m

∫ 1

0

√
logN (FOE,MℓOE

ϵ, L∞)dϵ,

where b1 and b2 are uniform constants.

Proof of Lemma 4. By Lemma 3, we know that with the probability at least 1 − e−t > 0, for any
3MℓOE

ρ ≥ γ ≥ 0, ρ ≥ 0 and w ∈ W , we have

sup
Wc(DX′ ,DXA

)≤ρ

Ex∼DX′ ℓOE(fw;x)

≤γρ+ 1

m

m∑
i=1

ϕγ(w;xi
A) + b2MℓOE

√
t

m
+ b1

√
M3

ℓOE

ρ2m

∫ 1

0

√
logN (FOE,MℓOE

ϵ, L∞)dϵ,

where b1 and b2 are uniform constants.

The above bound and Lemma 2 imply that with the probability at least 1− e−t > 0, for any ρ ≥ 0
and w ∈ W , we have

sup
Wc(DX′ ,DXA

)≤ρ

Ex∼DX′ ℓOE(fw;x)

≤ inf
γ≥0

(
γρ+

1

m

m∑
i=1

ϕγ(w;xi
A)

)
+ b2MℓOE

√
t

m
+ b1

√
M3

ℓOE

ρ2m

∫ 1

0

√
logN (FOE,MℓOEϵ, L

∞)dϵ.

Combining the above inequality with the following equation:

inf
γ≥0

(
γρ+

1

m

m∑
i=1

ϕγ(w;xi
A)

)
= sup

Wc(DX′ ,D̂XA
)≤ρ

Ex∼DX′ ℓOE(fw;x),

we complete this proof.

Lemma 5. Given the same assumptions in Lemma 4, if ℓOE(fw;x) is a LOE-Lipschitz function
w.r.t. norm ∥ · ∥ for all x ∈ X and the parameter space W ⊂ Rd′

satisfies that diam(W) =
supw,w′∈W ∥w −w′∥ < +∞, then with the probability at least 1 − e−t > 0, for any ρ > 0 and
w ∈ W ,

sup
Wc(DX′ ,DXA

)≤ρ

Ex∼DO
ℓOE(fw;x)

≤ sup
Wc(DX′ ,D̂XA

)≤ρ

Ex∼DO
ℓOE(fw;x) + b2MℓOE

√
t

m
+ b1MℓOE

√
diam(W)LOEd′

ρ2m
,

where b1 and b2 are uniform constants.

Proof. The proof is similar to Corollary 1 in Sinha et al. (2018). Note that

FOE = {ℓOE(fw;x) : w ∈ W},

and ℓOE(fw;x) is LOE-Lipschitz w.r.t. norm ∥ · ∥, therefore,

N (FOE,MℓOEϵ, L
∞) ≤N (W,MℓOEϵ/LOE, ∥ · ∥) ≤ (1 +

diam(W)LOE

MℓOEϵ
)d

′
,
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which implies that ∫ 1

0

√
log(N (FOE,MℓOE

ϵ, L∞)dϵ

≤
√
d′
∫ 1

0

√
log(1 +

diam(W)LOE

MℓOE
ϵ

)dϵ

≤
√
d′
∫ 1

0

√
diam(W)LOE

MℓOE
ϵ

dϵ = 2

√
diam(W)LOEd′

MℓOE

.

By Lemma 4, we obtain that there exist two uniform constants such that with the probability at least
1− e−t > 0,

sup
Wc(DX′ ,DXA

)≤ρ

Ex∼DO
ℓOE(fw;x)

≤ sup
Wc(DX′ ,D̂XA

)≤ρ

Ex∼DO
ℓOE(fw;x) + b2MℓOE

√
t

m
+ b1MℓOE

√
diam(W)LOEd′

ρ2m
,

where b1 and b2 are uniform constants.

Lemma 6. Given the same assumptions in Theorem 2, and for any w ∈ W and any x,x′ ∈ X ,
|ℓOE(fw;x)− ℓOE(fw;x′)| ≤ Lcc(x,x

′),

then for any δ ≥ 0,
sup

Wc(DX′ ,DXA
)≤ρ+δ

Ex∼DX′ ℓOE(fw;x)− sup
Wc(DX′ ,DXA

)≤ρ

Ex∼DX′ ℓOE(fw;x) ≤ Lcδ.

Proof of Lemma 6. For each ϵ > 0, we set Dδ,ϵ
X′ satisfies that

sup
Wc(DX′ ,DXA

)≤ρ+δ

Ex∼DX′ ℓOE(fw;x) ≤ Ex∼Dδ,ϵ

X′
ℓOE(fw;x) + ϵ,

and
Wc(D

δ,ϵ
X′ , DXA

) ≤ ρ+ δ.

Case 1. If
Wc(D

δ,ϵ
X′ , DXA) ≤ ρ,

then
sup

Wc(DX′ ,DXA
)≤ρ+δ

Ex∼DX′ ℓOE(fw;x)− sup
Wc(DX′ ,DXA

)≤ρ

Ex∼DX′ ℓOE(fw;x) ≤ ϵ.

Case 2. If
Wc(D

δ,ϵ
X′ , DXA) > ρ,

then we consider a special distribution D′
X′ , which is defined as follows: for some u ∈ [0, 1],

D′
X′ = (1− u)Dδ,ϵ

X′ + uDXA
.

It is clear that
Wc(D

′
X′ , DXA

) ≤ (1− u)Wc(D
δ,ϵ
X′ , DXA

) ≤ (1− u)(ρ+ δ).

hence, if we set u = δ/(ρ+ δ),
Wc(D

′
X′ , DXA

) ≤ ρ.

Because c(·, ·) is a metric, Kantorovich–Rubinstein duality Villani (2021) implies that

Wc(D
′
X′ , D

δ,ϵ
X′)

= sup
∥f∥Lip≤1

∫
X
f(x)dD′

X′(x)−
∫
X
f(x)dDδ,ϵ

X′(x)

=u sup
∥f∥Lip≤1

∫
X
f(x)dDXA

(x)−
∫
X
f(x)dDδ,ϵ

X′(x)

=uWc(DXA , D
δ,ϵ
X′)

=δ

22



By Kantorovich–Rubinstein duality (Villani, 2021), we also obtain that

sup
Wc(DX′ ,DXA

)≤ρ+δ

Ex∼DX′ ℓOE(fw;x)− sup
Wc(DX′ ,DXA

)≤ρ

Ex∼DX′ ℓOE(fw;x)

≤Ex∼Dδ,ϵ

X′
ℓOE(fw;x)− Ex∼D′

X′
ℓOE(fw;x) + ϵ ≤ Lcδ + ϵ,

which implies that

sup
Wc(DX′ ,DXA

)≤ρ+δ

Ex∼DX′ ℓOE(fw;x)− sup
Wc(DX′ ,DXA

)≤ρ

Ex∼DX′ ℓOE(fw;x) ≤ Lcδ.

By Cases 1 and 2, we prove this lemma.

Lemma 7. Given the same assumptions in Theorem 2, if

• ℓOE(·;x) is LOE-Lipschitz w.r.t. norm ∥ · ∥ for all x ∈ X ;

• the parameter spaceW ⊂ Rd′
satisfies that

diam(W) = sup
w,w′∈W

∥w −w′∥ < +∞;

• for each w ∈ W and any x,x′ ∈ X ,

|ℓOE(fw;x)− ℓOE(fw;x′)| ≤ Lcc(x,x
′),

then with the probability at least 1− e−t > 0, for any ρ > 0 and w ∈ W ,

sup
Wc(DX′ ,DXA

)≤ρ

Ex∼DX′ ℓOE(fw;x)

≤ sup
Wc(DX′ ,D̂XA

)≤ρ

Ex∼DX′ ℓOE(fw;x) + b2MℓOE

√
t

m
+ b1 min{Lc,

MℓOE

ρ
}
√

diam(W)LOEd′

m
,

(17)

where b1 and b2 are uniform constants.

Proof. By Lemma 3 and the similar proving process in Lemma 5, we obtain that with the probability
at least 1− e−t > 0, for any γ ≥ 0, ρ ≥ 0 and w ∈ W , we have

sup
Wc(DX′ ,DXA

)≤ρ

Ex∼DX′ ℓOE(fw;x)

≤γρ+ 1

m

m∑
i=1

ϕγ(w;xi
A) + b2MℓOE

√
t

m
+ γb1

√
diam(W)LOEd′

m
,

(18)

where b1 and b2 are uniform constants.

Let

ρm = ρ+ b1

√
diam(W)LOEd′

m
,

and

∆m = sup
Wc(DX′ ,D̂XA

)≤ρm

Ex∼DX′ ℓOE(fw;x)− sup
Wc(DX′ ,D̂XA

)≤ρ

Ex∼DX′ ℓOE(fw;x).

Note that

inf
γ≥0

γρm +
1

m

m∑
i=1

ϕγ(w;xi
A) = sup

Wc(DX′ ,D̂XA
)≤ρm

Ex∼DX′ ℓOE(fw;x),

and by Lemma 6,

∆m ≤ Lc(ρm − ρ) = b1Lc

√
diam(W)LOEd′

m
,
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hence, by Eq. (18), we know that with the probability at least 1 − e−t > 0, for any ρ ≥ 0 and
w ∈ W ,

sup
Wc(DX′ ,DXA

)≤ρ

Ex∼DX′ ℓOE(fw;x)

≤ sup
Wc(DX′ ,D̂XA

)≤ρ

Ex∼DX′ ℓOE(fw;x) + b1Lc

√
diam(W)LOEd′

m
+ b2MℓOE

√
t

m
,

(19)

where b1 and b2 are uniform constants.

Combining Lemma 3 with Eq. (19), we know that with the probability at least 1− e−t > 0, for any
ρ > 0 and w ∈ W ,

sup
Wc(DX′ ,DXA

)≤ρ

Ex∼DX′ ℓOE(fw;x)

≤ sup
Wc(DX′ ,D̂XA

)≤ρ

Ex∼DX′ ℓOE(fw;x) + b2MℓOE

√
t

m
+ b1 min{Lc,

MℓOE

ρ
}
√

diam(W)LOEd′

m
,

where b1 and b2 are uniform constants.

Lemma 8. Given the same assumptions in Lemma 4, for a fixed w0 ∈ W , then with the probability
at least 1− e−t > 0, for any ρ ≥ 0

sup
Wc(DX′ ,D̂XA

)≤ρ

Ex∼DX′ ℓOE(fw0 ;x) ≤ sup
Wc(DX′ ,DXA

)≤ρ

Ex∼DX′ ℓOE(fw0 ;x) + 2MℓOE

√
2t

m
.

Proof of Lemma 8. By Sinha et al. (2018), it is clear that

sup
Wc(DX′ ,DXA

)≤ρ

Ex∼DX′ ℓOE(fw0
;x) = inf

γ≥0
[γρ+ Ex∼DXA

ϕγ(w0;x)]

Therefore, for each ϵ > 0, there exists a constant γϵ ≥ 0 such that

γϵρ+ Ex∼DXA
ϕγϵ

(w0;x) ≤ sup
Wc(DX′ ,DXA

)≤ρ

Ex∼DX′ ℓOE(fw0
;x) + ϵ.

Combining the above inequality, Lemma 2 and McDiarmid’s Inequality, then with the probability at
least

1− exp (
−ϵ20m
2M2

ℓOE

) > 0,

we have

Ex∼D̂XA
ϕγϵ

(w0;x) ≤ Ex∼DXA
ϕγϵ

(w0;x) + ϵ0.

If we set t = ϵ20m/2M2
ℓOE

, then

ϵ0 = MℓOE

√
2t

m
.

Hence, with the probability at least 1− e−t > 0, we have

γϵρ+ Ex∼D̂XA
ϕγϵ

(w0;x) ≤ sup
Wc(DX′ ,DXA

)≤ρ

Ex∼DX′ ℓOE(fw0
;x) + ϵ+MℓOE

√
2t

m
,

which implies that with the probability at least 1− e−t > 0,

sup
Wc(DX′ ,D̂XA

)≤ρ

Ex∼DX′ ℓOE(fw0
;x) ≤ sup

Wc(DX′ ,DXA
)≤ρ

Ex∼DX′ ℓOE(fw0
;x) + ϵ+MℓOE

√
2t

m
,

because
γϵρ+ Ex∼D̂XA

ϕγϵ
(w0;x) ≥ sup

Wc(DX′ ,D̂XA
)≤ρ

Ex∼DX′ ℓOE(fw0
;x).

By setting ϵ = MℓOE

√
2t/m, we complete this proof.
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Lemma 9. If 0 ≤ ℓ(fw;x, y) ≤Mℓ, then with the probability at least 1− e−t > 0, we have that for
any w ∈ W ,

E(x,y)∼DXIYI
ℓ(fw;x, y)− 1

n

n∑
i=1

ℓ(fw;xi
I, y

i
I) ≤

b0Mℓ√
n

∫ 1

0

√
logN (F ,Mℓϵ, L∞)dϵ+Mℓ

√
2t

n
,

where b0 is a uniform constant.

Proof of Lemma 9. Let

Xℓ(fw;·) = E(x,y)∼DXIYI
ℓ(fw;x, y)− 1

n

n∑
i=1

ℓ(fw;xi
I, y

i
I).

Then, it is clear that
ES∼Dn

XIYI
Xℓ(fw;·) = 0.

By Proposition 2.6.1 and Lemma 2.6.8 in Vershynin (2018),

∥Xℓ(fw;·) −Xℓ(fw′ ;·)∥Φ2 ≤
c0√
n
∥ℓ(fw; ·)− ℓ(fw′ ; ·)∥L∞ ,

where ∥ · ∥Φ2
is the sub-gaussian norm and c0 is a uniform constant. Therefore, by Dudley’s entropy

integral (Vershynin, 2018), we have

ES∼Dn
XIYI

sup
w∈W

Xℓ(fw;·) ≤
b0√
n

∫ +∞

0

√
logN (F , ϵ, L∞)dϵ,

where b0 is a uniform constant and

F = {ℓ(fw;x, y) : w ∈ W}.
Note that

ES∼Dn
XIYI

sup
w∈W

Xℓ(fw;·) ≤
b0√
n

∫ +∞

0

√
logN (F , ϵ, L∞)dϵ

=
b0√
n

∫ Mℓ

0

√
logN (F , ϵ, L∞)dϵ

=
b0√
n
Mℓ

∫ 1

0

√
logN (F ,Mℓϵ, L∞)dϵ.

Then, similar to the proof of Lemma 8, we use McDiarmid’s Inequality, then with the probability at
least 1− e−t > 0, for any w ∈ W ,

Xℓ(fw;·) ≤
b0√
n
Mℓ

∫ 1

0

√
logN (F ,Mℓϵ, L∞)dϵ+Mℓ

√
2t

n
.

Lemma 10. If 0 ≤ ℓ(fw;x, y) ≤ Mℓ, then for a fixed w0 ∈ W , with the probability at least
1− e−t > 0,

1

n

n∑
i=1

ℓ(fw0
;xi

I, y
i
I)− E(x,y)∼DXIYI

ℓ(fw0
;x, y) ≤Mℓ

√
2t

n
.

Proof of Lemma 10. Similar to the proof of Lemma 8, McDiarmid’s Inequality implies this result.

Lemma 11. If

• 0 ≤ ℓ(fw;x, y) ≤Mℓ,

• ℓ(fw;x, y) is L-Lipschitz w.r.t. norm ∥ · ∥, i.e., for any (x, y) ∈ X × Y , and w,w′ ∈ W ,

|ℓ(fw;x, y)− ℓ(fw′ ;x, y)| ≤ L∥w −w′∥,
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• the parameter spaceW ⊂ Rd′
satisfies that

diam(W) = sup
w,w′∈W

∥w −w′∥ < +∞,

then with the probability at least 1− e−t > 0, we have that for any w ∈ W ,

E(x,y)∼DXIYI
ℓ(w;x, y)− 1

n

n∑
i=1

ℓ(w;xi
I, y

i
I) ≤ b0

√
Mℓdiam(W)Ld′

n
+Mℓ

√
2t

n
,

where b0 is a uniform constant.

Proof of Lemma 11. The proof is similar to Corollary 1 in Sinha et al. (2018) and Lemma 5. Note
that

F = {ℓ(fw;x, y) : w ∈ W},
and ℓ(fw;x, y) is L-Lipschitz w.r.t. norm ∥ · ∥, therefore,

N (F ,Mℓϵ, L
∞) ≤N (W,Mℓϵ/L, ∥ · ∥) ≤ (1 +

diam(W)L

Mℓϵ
)d

′
,

which implies that∫ 1

0

√
log(N (F ,Mℓϵ, L∞)dϵ ≤

√
d′
∫ 1

0

√
log(1 +

diam(W)L

Mℓϵ
)dϵ

≤
√
d′
∫ 1

0

√
diam(W)L

Mℓϵ
dϵ = 2

√
diam(W)Ld′

Mℓ
.

By Lemma 9, we obtain this result.
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E Further Discussions

As discussed in Section 4.2, we realize the dual optimization objective following Eq. (9), searching
for the worst OOD data in a finite-dimensional space to ease the computation. Furthermore, directly
searching in the input space is typically hard for optimization (Madry et al., 2018; Wang et al., 2021b),
where the results can easily stuck at sub-optimal solutions and the computation is time-consuming.
Therefore, we suggest perturbing the worst OOD data in the embedding space. Denote the embedding
features of an input by e(x), we consider the bi-level optimization problem:

inf
γ≥0

{
γρ+

1

m

m∑
i=1

ϕγ(w; e(xi
A))

}
,

where ϕγ(w; e(xi
A)) = sup

pi∈E

{
ℓOE(h(e(x

i
A) + pi); e(xi

A))− γ∥pi∥1
}
.

Such an bi-level problem can be solved by alternative optimization (Huang et al., 2023b; Liu et al.,
2021): we first find the proper value of pi that approaches to the true value of ϕγ(w; e(xi

A)), and
then we update the value of γ that leads to the smallest value of γρ+ 1

m

∑m
i=1 ϕγ(w; e(xi

A)). The
gradient descent/ascent can be adopted for optimization. Specifically, for the perturbation pi, each
optimization step is

ϕγ(w; e(xi
A))← ℓOE

(
h(e(xi

A) + pi); e(xi
A)

)
− γ

∥∥pi
∥∥
1
,

pi ← pi + ps∇piϕγ(w; e(xi
A)),

where ps is the learning rate. For γ, the optimization step follows:

γ ← γ − β{ρ− 1

m

m∑
i=1

∥∥pi
∥∥
1
},

with β the learning rate. Furthermore, to avoid the extreme value and/or the negative value of γ, we
should conduct value clipping for γ, which is given by

γ ← min(max(γ, γmax), 0),

where we constrain the minimum of γ to be 0 and the maximum of γ to be γmax.

E.1 Understanding Theoretical Results

Theorem 2 justifies that when the model complexity and the sample size are large enough, the
empirical solution given by our DAL risk will converge to its optimal value, i.e., minw RD(w; ρ).
Therefore, the difference between the expected and the empirical error is bounded w.r.t. the DAL
risk. Theorem 3 goes one step further, studying the detection risk w.r.t. (unseen) real OOD data.
It states that the open-world performance of our DAL depends on both the approximate risk and
the estimation error. The former models the best performance (i.e., Bayes optimal) that our DAL
can achieve, and the latter depends on the OOD distribution gap, the radius, and the excess error
introduced in Theorem 2. In summary, Theorem 2 considers the convergence for DAL itself, while
Theorem 3 justifies that DAL can mitigate the OOD distribution discrepancy in the open world.

E.2 Comparison with DOE

A parallel work, named DOE (Wang et al., 2023), also focuses on mitigating the OOD distribution
discrepancy issue. Overall, they state that model perturbation can lead to input transformation, and
thus learning from the perturbed model can make the predictor learn from diverse distributions with
respect to auxiliary OOD cases. Moreover, to make the transformed data benefit the model most,
DOE searches for the associated perturbation that leads to the worst OOD regret.

Similar to DOE, we also learn from the worst OOD cases to mitigate the distribution discrepancy,
but DAL further enjoys the following two strengths. 1) From the theoretical perspective, our clear
definition of the candidate OOD distribution space, i.e., the Wasserstein ball, allows us to investigate
the impact of DAL for open-world OOD detection (cf., Theorem 3). In contrast, DOE only constrains
the magnitude of the perturbation strength, making it limited to proving convergence w.r.t. their
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Table 4: ID accuracy on the CIFAR benchmarks for those methods that require model training.

Method ERM CSI VOS OE Energy-OE ATOM DOE POEM DAL

CIFAR-10 94.28 94.33 94.58 95.22 94.84 95.12 94.28 93.32 95.01
CIFAR-100 73.98 74.30 75.50 75.90 71.61 74.04 74.51 74.85 76.13

proposed learning objective (cf., Theorem 2 in Wang et al. (2023)). 2) From the algorithmic
perspective, we directly search for the worst OOD data in the embedding space, more effective
than DAL, which requires searching the model perturbation for the whole model. As a result, our
theoretically-driven framework, i,e, DAL, yields superior performance over DOE in Table 1 while
requiring less computation cost (DAL take only half the training time compared with DOE per epoch).

E.3 Discussing about Limitations

In theory, our main drawback lies in the trade-off between estimation and approximation errors (cf.,
Theorem 3), where we may not get a very tight bound for the real OOD risk. In algorithm, the worst
OOD data are constrained in the ball around the auxiliary OOD data (cf., Algorithm 1), of which
the coverage may not include real OOD data. Moreover, we conduct distribution augmentation in
the embedding space, where our Theorem 3 can only be applied. Other data generation approaches,
which can lead to more complex forms of distribution augmentation in the input space, are also of
interest. Our future studies will focus on advanced learning schemes that address the above issues,
e.g., modeling the data generation process through the causality perspective (Zhang et al., 2022).

F Further Evaluations

We provide more information about evaluation setups and conduct additional experiments on DAL.

F.1 Hardware Configurations

All experiments are realized by Pytorch 1.81 with CUDA 11.1, using machines equipped with
GeForce RTX 3090 GPUs and AMD Threadripper 3960X Processors.

F.2 ID Accuracy

We report the ID accuracy for those methods that require model training on the CIFAR benchmarks,
of which the results are summarized in Table 4. We also list the results for the model conventionally
trained on ID data with empirical risk minimization (ERM). Overall, most of the considered methods
can preserve relatively high ID accuracy. Moreover, those methods that regularize predictors by
auxiliary OOD data, such as OE and DAL, can even show further improvements. It indicates that
learning with auxiliary data can achieve high detection performance and maintain good ID accuracy.

F.3 Other Scoring Functions

We further claim that many advanced scoring strategies other than MSP can also benefit from DAL.
In Table 5, we compare the OOD detection performance before (w/o train) and after (w/ DAL)
DAL training across a set of representative scoring strategies, including MSP, Fee Energy, ASH,
Mahalanobis, and KNN. We also compare the results after OE training (w/ OE). As we can see,
both OE and DAL can lead to much better results than before training, and DAL can further boost
detection performance over OE. It indicates that the benefits of our proposal are not limited to the
specific scoring function of MSP. However, Mahalanobis fails (FPR95 more than 95) on CIFAR-100
after OE and DAL training, which may require further exploration.

F.4 Mean and Standard Deviation

This section validates the experiments on CIFAR benchmarks with five individual trials (random
seeds), comparing between our DAL and OE. Besides the individual results, we also summarize the
mean performance and standard deviation across the trails for both CIFAR-10 and CIFAR-100. We
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Table 5: Comparison on the CIFAR benchmarks with different scoring strategies.

MSP Free Energy ASH Mahalanobis KNN
FPR AUROC FPR AUROC FPR AUROC FPR AUROC FPR AUROC

CIFAR-10

w/o train 50.15 91.02 33.21 91.01 32.98 91.85 46.64 88.59 33.38 93.76
w/ OE 4.67 98.88 3.40 98.98 3.35 98.99 15.80 94.32 5.50 98.71

w/ DAL 2.68 99.01 2.59 98.99 2.50 98.70 12.75 95.55 5.04 97.58

CIFAR-100

w/o train 78.61 75.95 69.84 75.20 59.31 84.46 72.37 82.70 59.31 84.46
w/ OE 43.14 90.27 36.98 92.66 33.82 93.36 - - 53.14 83.50

w/ DAL 29.68 93.92 29.63 93.83 29.73 94.05 - - 50.46 84.75

Table 6: Comparison of DAL and outlier exposure on CIFAR-10 with 5 individual trails. ↓ (or ↑)
indicates smaller (or larger) values are preferred; and a bold font indicates the best results in the
corresponding column.

Trails SVHN LSUN iSUN Textures Places365 Average
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

OE

#1 1.50 99.23 1.10 99.33 1.70 99.18 4.00 98.64 11.30 97.09 3.92 98.69
#2 1.25 99.15 1.05 99.49 2.20 98.88 4.15 98.59 11.60 97.08 4.05 98.63
#3 1.25 99.38 1.05 99.42 1.75 99.01 4.00 98.82 11.10 97.04 3.83 98.73
#4 1.70 99.13 1.05 99.52 2.10 99.12 4.20 98.55 11.65 97.08 4.14 98.68
#5 1.35 99.17 1.30 99.49 1.40 99.26 4.60 99.00 11.75 97.03 1.08 98.79

mean
± std

1.41
± 0.17

99.21
± 0.10

1.10
± 0.02

99.45
± 0.07

1.83
± 0.28

99.09
± 0.15

4.19
± 0.22

98.72
± 0.18

11.48
± 0.24

97.06
± 0.03

3.40
± 1.16

98.70
± 0.05

DAL

#1 0.80 99.84 0.40 99.59 0.95 99.29 2.65 98.85 7.75 97.37 2.51 98.86
#2 0.90 99.24 0.60 99.57 1.20 99.26 2.65 98.84 8.15 97.43 2.70 98.87
#3 0.90 99.16 0.65 99.52 1.15 99.14 2.40 98.75 8.20 97.35 2.66 98.78
#4 0.80 99.37 0.55 99.63 0.95 99.34 2.85 98.89 7.95 97.39 2.62 98.93
#5 1.25 99.39 0.40 99.61 0.85 99.39 2.75 98.90 7.70 97.46 2.59 98.95

mean
± std

0.93
± 0.17

99.40
± 0.24

0.52
± 0.10

99.58
± 0.04

1.02
± 0.13

99.28
± 0.08

2.65
± 0.15

98.84
± 0.05

7.95
± 0.20

97.40
± 0.04

2.61
± 0.06

98.87
± 0.06

summarize the experimental results in Tables 6-7. As we can see, our DAL can not only lead to
improved performance in OOD detection, but our performance is also very stable across different
choices of ID datasets and real OOD datasets.

F.5 Effects of Hyper-parameters

We further test the impacts of other hyper-parameters on the performance in OOD detection, where
we consider γmax, β, num_search, and ps on CIFAR benchmarks.

Impacts of γ. The exact values of γ are dynamically determined by γmax, ρ, β, and the current model
fw. To evaluation the effects of γ, we conduct experiments on CIFAR benchmarks with different γmax,
ρ, and β, of which the results are summarized in Table 8-9. Overall, our method is pretty robust to
different choices of hyper-parameters, in that the results for most of the hyper-parameter setups can
lead to promising improvement over the original outlier exposure. Specifically, for γmax, most of
its different choices can lead to effective OOD detection with the proper choices of ρ and β, but its
values should not be too small (e.g., γmax = 0.1). The reason is that if the value of γ is too small, the
distance between the worst-cases OOD features, i.e., gw(x) + p, and the original OOD features, i.e.,
gw(x), can be very long, occupying the regions that should belong to ID data. It will make the model
confused between ID and OOD cases and thus lead to unsatisfactory results. A similar conclusion
can also be applied for β: when its value is too large (such as β = 5), values of gw(x) + p can also
be arbitrarily large, making the current model hardly learn to discern ID and OOD patterns.

Impacts of num_search and ps. We also provides the results on CIFAR benchmarks with different
num_search and ps, and the results can be found in Tables 10-11. As we can see, even with some
extreme values, such as num_search = 500 and ps = 100, the resultant models still enjoy the
improvements over outlier exposure, indicating that our method is pretty robust to these hyper-
parameters. The reason is that our proper selection of ρ will constrain the resultant perturbation to be
beneficial, avoiding the worst OOD distribution to not intrude the region that belongs to ID data.
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Table 7: Comparison of DAL and outlier exposure on CIFAR-100 with 5 individual trails. ↓ (or ↑)
indicates smaller (or larger) values are preferred, and a bold font indicates the best results in the
corresponding column.

Trails SVHN LSUN iSUN Textures Places365 Average
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

OE

#1 44.45 91.76 15.75 97.26 45.95 88.80 47.35 89.80 54.10 87.90 41.52 91.10
#2 42.75 91.93 15.85 97.22 46.85 88.91 46.75 89.78 53.05 88.04 41.05 91.18
#3 43.75 91.88 15.95 97.34 52.25 87.62 47.15 89.49 54.10 88.03 42.64 90.87
#4 41.30 92.23 16.15 97.27 46.90 88.76 47.00 89.73 54.40 87.91 41.15 91.18
#5 42.55 91.92 16.20 97.22 44.70 89.66 47.35 89.47 54.35 87.82 41.03 91.22

mean
± std

42.96
± 1.07

91.94
± 0.15

15.97
± 0.17

97.26
± 0.04

47.33
± 2.58

88.75
± 0.65

47.12
± 0.23

89.65
± 0.14

54.00
± 0.49

87.94
± 0.08

41.47
± 0.61

91.10
± 0.13

DAL

#1 19.35 96.21 16.05 96.78 26.05 94.23 37.60 91.57 49.35 88.81 29.68 93.52
#2 22.65 95.55 16.30 96.73 26.35 94.23 36.20 91.91 48.50 88.74 30.00 93.43
#3 20.15 96.15 16.20 96.91 29.85 93.55 37.85 91.60 47.90 88.95 30.39 93.43
#4 14.50 96.72 16.75 96.58 33.75 92.68 37.60 91.63 49.70 88.80 30.46 93.28
#5 22.70 95.90 15.20 96.91 27.15 94.58 37.00 91.82 49.65 88.73 30.34 93.59

mean
± std

19.87
± 2.99

96.11
± 0.39

16.10
± 0.51

96.78
± 0.12

28.63
± 2.89

93.85
± 0.68

37.25
± 0.60

91.70
± 0.13

49.01
± 0.71

88.80
± 0.08

30.17
± 0.29

93.45
± 0.10

Table 8: Detection Performance on CIFAR-10 dataset with different choices of β, ρ, and γmax, where
we report the FPR95 / AUROC for each individual trail setup.

γmax=50

ρ
1e-2 1e-1 1 10 100

β

1e-3 2.95 / 99.07 2.80 / 99.07 2.96 / 99.02 2.80 / 98.31 91.85 / 64.43
5e-3 2.95 / 99.01 3.05 / 99.00 2.97 / 99.04 2.69 / 98.16 92.79 / 55.39
1e-2 2.79 / 98.95 2.68 / 99.05 2.84 / 98.88 2.71 / 98.67 96.48 / 44.97
5e-2 3.08 / 98.98 3.03 / 98.98 2.85 / 98.98 2.88 / 98.79 95.58 / 45.79
1e-1 2.79 / 98.96 2.98 / 98.99 2.75 / 99.02 10.22 / 96.37 88.96 / 72.68
5e-1 2.82 / 99.00 2.95 / 99.01 2.81 / 99.05 4.34 / 96.58 95.51 / 46.60

1 2.94 / 98.93 2.88 / 99.02 3.19 / 99.00 52.76 / 94.36 95.05 / 53.89
5 2.98 / 98.91 2.77 / 98.96 3.00 / 99.06 94.44 / 62.90 95.57 / 52.51

γmax=5

ρ
1e-2 1e-1 1 10 100

β

1e-3 3.05 / 99.04 2.84 / 98.98 2.81 / 98.99 2.79 / 98.20 93.77 / 64.09
5e-3 2.82 / 99.02 2.85 / 99.20 2.97 / 99.00 2.76 / 98.37 93.50 / 63.44
1e-2 2.82 / 98.99 2.95 / 98.92 2.93 / 99.03 2.68 / 98.48 94.42 / 52.51
5e-2 2.99 / 98.98 2.81 / 98.99 2.87 / 98.91 5.21 / 95.95 87.32 / 71.25
1e-1 2.91 / 98.95 2.70 / 99.06 2.90 / 99.03 3.84 / 96.46 95.17 / 57.61
5e-1 3.03 / 99.01 3.06 / 99.00 2.75 / 99.02 88.76 / 69.56 94.68 / 41.66

1 2.67 / 99.00 2.86 / 99.03 2.94 / 99.00 97.40 /45.45 95.03 / 48.58
5 2.87 / 98.93 2.82 / 98.97 63.22 / 87.13 98.97 / 58.50 95.49 / 50.51

γmax=0.5

ρ
1e-2 1e-1 1 10 100

β

1e-3 2.90 / 98.99 2.74 / 98.89 2.74 / 98.87 2.56 / 98.20 94.75 / 65.65
5e-3 2.64 / 98.94 2.79 / 98.89 2.53 / 98.81 2.54 / 98.32 97.22 / 41.88
1e-2 2.65 / 98.93 2.74 / 98.94 2.78 / 98.85 2.70 / 98.50 94.86 / 56.57
5e-2 2.68 / 98.98 2.73 / 98.95 2.89 / 98.80 3.50 / 96.78 92.13 / 65.63
1e-1 2.68 / 98.94 2.63 / 98.91 2.89 / 98.86 11.31 / 96.11 91.44 / 70.20
5e-1 3.07 / 98.89 2.74 / 98.89 2.50 / 98.68 18.10 / 95.47 93.15 / 59.78

1 2.82 / 98.85 2.61 / 98.89 2.76 / 98.81 12.58 / 95.80 94.61 / 61.49
5 2.61 / 98.84 2.73 / 98.92 2.74 / 98.73 83.18 / 90.90 94.14 / 60.82

γmax=10

ρ
1e-2 1e-1 1 10 100

β

1e-3 3.06 / 99.05 2.82 / 99.06 2.84 / 98.97 2.41 / 97.95 94.65 / 46.60
5e-3 2.85 / 99.00 2.80 / 99.09 2.93 / 99.04 2.56 / 98.21 94.69 / 57.61
1e-2 2.91 / 98.98 2.98 / 99.04 2.56 / 99.02 2.58 / 98.28 95.48 / 50.70
5e-2 2.94 / 99.01 2.91 / 99.06 2.71 / 99.03 2.81 / 98.53 97.80 / 43.86
1e-1 3.02 / 99.04 2.77 / 99.04 2.87 / 99.02 14.11 / 95.47 96.00 / 55.75
5e-1 2.90 / 98.98 2.89 / 99.04 2.73 / 99.06 67.48 / 90.50 94.64 / 56.57

1 2.81 / 98.96 2.89 / 99.04 2.82 / 99.04 90.97 / 70.65 87.12 / 56.72
5 2.73 / 98.98 2.90 / 99.03 14.04 / 95.64 93.01 / 45.50 88.61 / 69.65

γmax=1

ρ
1e-2 1e-1 1 10 100

β

1e-3 2.74 / 98.92 2.62 / 98.95 2.64 / 98.93 2.70 / 98.93 92.36 / 57.40
5e-3 2.64 / 99.00 2.78 / 98.98 2.86 / 98.82 2.68 / 98.16 94.72 / 58.59
1e-2 2.69 / 99.02 2.69 / 99.01 2.65 / 98.97 2.79 / 98.19 93.39 / 57.55
5e-2 2.67 / 98.94 2.75 / 98.93 2.71 / 98.97 2.74 / 98.64 94.60 / 52.14
1e-1 2.90 / 98.99 2.71 / 99.07 2.77 / 98.96 22.93 / 94.15 92.55 / 67.68
5e-1 2.66 / 98.99 2.64 / 98.99 2.90 / 98.87 79.75 / 89.56 93.76 / 55.94

1 2.78 / 99.01 2.98 / 98.94 2.56 / 98.96 52.66 / 90.50 92.57 / 90.03
5 2.68 / 99.03 2.68 / 98.96 2.69 / 98.96 25.31 / 94.53 97.42 / 43.10

γmax=0.1

ρ
1e-2 1e-1 1 10 100

β

1e-3 2.75 / 98.59 53.32 / 94.12 82.19 / 92.03 2.52 / 98.41 95.24 / 51.41
5e-3 2.83 / 98.55 2.46 / 98.55 91.80 / 59.84 90.23 / 70.99 95.65 / 69.73
1e-2 2.47 / 98.48 2.56 / 98.55 87.64 / 88.24 97.56 / 71.35 88.87 / 77.29
5e-2 91.10 / 91.70 2.46 / 98.53 87.24 / 90.28 90.04 / 81.11 96.49 / 44.84
1e-1 87.87 / 91.66 3.00 / 95.54 86.08 / 71.34 89.70 / 72.59 73.47 / 79.13
5e-1 90.51 / 84.74 92.42 / 92.06 91.78 / 90.73 89.48 / 81.07 94.27 / 59.21

1 93.82 / 89.51 92.29 / 90.44 96.46 / 83.90 79.04 / 86.78 94.06 / 50.42
5 80.22 / 91.03 87.43 / 89.21 91.98 / 59.04 91.55 / 63.98 94.18 / 61.55
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Table 9: Detection Performance on CIFAR-100 dataset with different choices of β, ρ, and γmax, where
we report the FPR95 / AUROC for each individual trail setup.

γmax=50

ρ
1e-2 1e-1 1 10 100

β

1e-3 31.72 / 93.37 30.84 / 93.51 31.50 / 93.27 31.08 / 92.47 87.70 / 86.84
5e-3 33.36 / 92.70 30.23 / 93.61 31.27 / 93.32 29.98 / 92.94 96.98 / 36.34
1e-2 31.73 / 93.32 35.42 / 92.42 30.86 / 93.61 31.22 / 92.34 87.17 / 86.80
5e-2 33.69 / 92.66 32.50 / 93.18 31.29 / 93.40 30.92 / 92.68 87.23 / 86.57
1e-1 32.21 / 93.18 32.42 / 93.31 33.77 / 92.98 29.48 / 93.04 87.14 / 87.27
5e-1 33.44 / 92.93 36.19 / 92.71 33.55 / 92.85 34.83 / 91.70 86.91 / 87.22

1 33.01 / 93.16 33.80 / 92.64 28.99 / 93.87 36.22 / 91.41 92.34 / 52.72
5 34.62 / 92.55 32.90 / 93.15 36.00 / 92.14 95.59 / 89.09 93.69 / 96.87

γmax=5

ρ
1e-2 1e-1 1 10 100

β

1e-3 33.58 / 92.84 34.61 / 92.35 32.90 / 92.91 30.55 / 92.66 95.80 / 54.59
5e-3 33.80 / 92.87 34.98 / 92.61 31.87 / 93.39 27.36 / 93.18 89.37 / 51.52
1e-2 36.96 / 92.48 34.87 / 93.01 30.87 / 93.01 30.57 / 92.82 85.67 / 88.23
5e-2 36.00 / 92.49 32.10 / 93.24 31.31 / 93.55 30.70 / 92.95 85.80 / 86.38
1e-1 33.64 / 92.75 31.82 / 93.09 32.55 / 92.97 32.42 / 92.22 91.16 / 84.87
5e-1 34.03 / 92.69 33.03 / 93.09 32.99 / 93.19 81.64 / 89.24 89.67 / 87.08

1 34.85 / 92.61 32.73 / 93.31 29.53 / 93.74 63.16 / 90.50 87.71 / 87.06
5 34.59 / 92.69 33.14 / 93.16 72.10 / 90.79 40.65 / 91.30 89.45 / 86.70

γmax=0.5

ρ
1e-2 1e-1 1 10 100

β

1e-3 33.10 / 92.59 32.25 / 92.84 30.40 / 92.97 31.70 / 92.39 87.47 / 86.53
5e-3 34.15 / 92.33 31.80 / 92.33 31.97 / 92.49 31.75 / 92.48 90.14 / 86.43
1e-2 34.35 / 92.28 33.90 / 92.29 29.72 / 93.29 29.66 / 92.75 88.49 / 86.76
5e-2 32.61 / 93.04 33.19 / 92.41 33.73 / 92.23 30.28 / 92.99 84.51 / 88.00
1e-1 33.23 / 92.48 35.78 / 91.90 33.89 / 91.97 75.36 / 90.70 96.66 / 57.33
5e-1 32.48 / 92.33 30.56 / 93.19 32.74 / 92.37 84.06 / 88.13 91.47 / 46.58

1 33.90 / 92.25 32.89 / 92.52 31.26 / 92.89 62.99 / 90.64 88.53 / 87.17
5 32.62 / 92.33 32.60 / 92.48 30.04 / 92.94 71.77 / 90.34 96.58 / 49.03

γmax=10

ρ
1e-2 1e-1 1 10 100

β

1e-3 33.07 / 92.92 33.93 / 92.85 35.09 / 92.44 30.39 / 92.59 94.25 / 48.00
5e-3 34.03 / 92.81 33.64 / 92.88 30.43 / 93.66 33.75 / 92.00 96.58 / 48.51
1e-2 35.80 / 92.46 33.40 / 93.16 34.52 / 92.90 32.02 / 91.76 88.11 / 86.65
5e-2 33.38 / 93.19 32.95 / 93.29 29.74 / 93.63 29.13 / 92.71 95.18 / 50.19
1e-1 31.77 / 93.33 31.94 / 93.31 35.34 / 92.78 27.80 / 93.02 95.48 / 56.81
5e-1 34.12 / 92.71 35.26 / 92.86 31.71 / 93.23 79.79 / 89.56 89.26 / 86.60

1 32.90 / 93.05 34.13 / 92.86 31.64 / 93.05 47.37 / 91.31 96.10 / 46.88
5 32.65 / 93.13 34.41 / 92.86 33.02 / 91.80 57.19 / 90.72 89.12 / 87.75

γmax=1

ρ
1e-2 1e-1 1 10 100

β

1e-3 37.24 / 91.87 30.42 / 93.44 33.45 / 92.88 30.17 / 92.77 95.60 / 57.62
5e-3 32.75 / 92.88 32.24 / 93.05 32.13 / 92.79 31.37 / 92.68 95.96 / 48.31
1e-2 36.66 / 91.81 30.40 / 93.45 29.47 / 93.54 31.14 / 92.37 88.33 / 86.39
5e-2 31.00 / 93.39 30.88 / 93.46 30.33 / 92.97 31.43 / 92.50 87.83 / 88.46
1e-1 31.18 / 93.42 33.03 / 93.08 31.98 / 93.17 52.46 / 90.95 95.97 / 53.86
5e-1 35.14 / 92.79 29.55 / 93.34 29.19 / 93.34 82.19 / 89.22 89.30 / 85.40

1 36.93 / 92.33 34.03 / 93.00 35.45 / 91.74 77.26 / 90.46 97.33 / 48.51
5 31.00 / 93.37 30.48 / 93.37 31.17 / 93.21 83.14 / 89.83 97.43 / 50.74

γmax=0.1

ρ
1e-2 1e-1 1 10 100

β

1e-3 93.84 / 50.41 99.39 / 51.61 76.69 / 89.44 75.19 / 89.36 97.09 / 44.87
5e-3 81.55 / 87.48 80.81 / 88.63 75.63 / 90.32 96.69 / 43.59 96.15 / 50.92
1e-2 95.32 / 51.45 91.92 / 55.05 75.40 / 89.75 96.55 / 45.81 95.24 / 48.11
5e-2 42.65 / 90.84 93.80 / 45.56 99.58 / 50.06 97.08 / 45.02 83.93 / 87.53
1e-1 95.32 / 51.45 91.92 / 55.05 75.40 / 89.75 96.55 / 45.81 95.24 / 48.11
5e-1 90.51 / 84.74 92.42 / 92.06 91.78 / 90.73 89.48 / 81.07 94.27 / 59.21

1 81.14 / 90.18 82.34 / 89.98 80.38 / 90.42 88.00 / 53.88 95.43 / 46.75
5 96.57 / 45.61 98.16 / 47.34 100.0 / 49.86 94.89 / 51.80 92.12 / 87.10

Table 10: The hyper-parameter effects of
num_search on the CIFAR benchmarks.

0 1 2 5 10 20 50 100 200

CIFAR-10

FPR95 3.33 2.90 2.41 2.61 2.62 2.46 2.74 2.86 3.00
AUROC 98.59 99.10 98.96 98.91 98.92 98.56 98.95 99.07 98.80

CIFAR-100

FPR95 36.47 34.12 33.55 33.30 30.38 31.27 32.01 33.07 31.73
AUROC 91.75 92.60 92.98 93.14 93.62 93.36 93.18 92.91 93.22

Table 11: The hyper-parameter effects of ps on
the CIFAR benchmarks.

1e−2 5e−2 1e−1 5e−1 1 5 10 50 100

CIFAR-10

FPR95 2.97 2.76 2.80 2.49 2.57 2.92 3.01 3.04 2.92
AUROC 99.00 99.02 98.95 98.94 98.82 98.90 98.97 98.81 98.30

CIFAR-100

FPR95 35.74 35.75 32.64 29.00 31.03 33.63 32.93 37.61 95.07
AUROC 92.82 92.45 93.14 93.95 93.18 92.74 92.74 93.09 91.17
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F.6 Aligning Training Epochs

Table 12: Comparison between OE and DAL
with 50 epochs training.

CIFAR-10 CIFAR-100
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

OE 3.07 98.97 37.35 92.00
DAL 2.68 99.01 29.68 93.92

In our experiments, we follow the suggested hyper-
parameters for the baselines, running OE with 10
epochs on the CIFAR benchmarks. However, our
DAL, due to distribution augmentation, is run for 50
epochs to fully fit the augmented distribution. To
demonstrate that our improvement is not dominated
by longer training time, we also list the results of
OE with 50 epochs training, summarizing the results
on the CIFAR benchmarks in Table 12. As we can
see, although OE can produce better results with 50
epochs of training, our DAL can still demonstrate its superiority in OOD detection. For example, on
CIFAR-100, our DAL improves OE by 7.67 w.r.t. FPR95 and 1.92 w.r.t. AUROC.

F.7 Other Norms

Table 13: Using ℓ1 and ℓ2 norms.

ℓ1 norm ℓ2 norm
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

CIFAR-10 2.68 99.01 2.81 98.98
CIFAR-100 29.68 93.92 30.20 93.95

We can also use the l2 norm and the asso-
ciated Wasserstein-2 distance. Therefore,
we conduct the related experiments on the
CIFAR benchmarks in comparing between
l1 and l2 norms, and the results are summa-
rized in Table 13. As we can see, we do
not observe an obvious difference between
using ℓ1 and ℓ2 norms, so it is proper to use
the ℓ1 norm and the Wasserstein-1 distance
in our DAL by default.

F.8 Linear Probing

Table 14: Comparison between fully fine-
tuning and linear probing.

FPR95 ↓ linear probe fine tune

OE 50.09 43.14
DAL 43.37 29.68

In many applications, the costs of re-training and re-
deployment can be prohibitively high, where we should
assume a fixed feature extractor e and allow only the
classifier h (i.e., the fully connected layer) to be tuned.
DAL is also adaptable for such a restricted setting, with
improved detection performance over the OE counter-
part. Table 14 summarizes the results on CIFAR-100,
comparing OE and DAL under the settings of full train-
ing (fine tuning) and training with only the classifier
(linear probe). As we can see, for the linear probe setup, DAL can still improve the OE counterpart,
while the performance gain is largely limited compared to that of the full training.

F.9 False Negative Rate

Table 15: Experiments measured by FNR95.

FNR95 ↓ CIFAR-10 CIFAR-100 CIFAR-10 vs.
CIFAR-100

MSP 33.02 64.83 43.01
OE 5.04 41.31 26.38

DAL 3.89 26.87 22.81

We further consider the metric of false negative rate
(FNR95) for ID data when the true positive rate of
ID data is at 95%. We summarize the results on the
CIFAR benchmarks in Table 15, where we consider
the common OOD detection setups as in Table 1 and
the challenging CIFAR-10 vs. CIFAR-100 setup as
in Table 2. As we can see, the FNR decreases for
all three considered cases, further demonstrating the
effectiveness of our method.
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Table 16: Comparison between our method and advanced methods on ImageNet. ↓ (or ↑) indicates
smaller (or larger) values are preferred, and a bold font indicates the best results in the column.

Method Textures Places365 iNaturalist SUN Average
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

Using ID data only
MSP 66.58 80.03 74.15 78.97 72.72 77.19 78.70 75.15 73.04 77.84

Free Energy 52.84 86.36 70.64 81.67 73.98 75.97 76.92 78.08 68.60 80.52
ASH 15.93 96.00 63.08 82.43 52.05 83.67 71.68 77.71 50.68 85.35

Mahalanobis 40.52 91.41 97.10 53.11 96.15 53.62 96.95 52.74 82.68 62.72
KNN 26.54 93.49 78.64 76.82 75.78 69.51 74.30 78.85 63.82 79.66
VOS 94.83 57.69 98.72 38.50 87.75 65.65 70.20 83.62 87.87 61.36

Using ID data and auxiliary OOD data
OE 57.34 82.97 7.92 98.04 73.87 76.94 52.60 77.31 52.60 83.81

Energy-OE 42.46 88.27 1.88 99.49 73.81 78.34 69.45 79.54 46.90 86.41
ATOM 60.20 90.60 7.07 98.25 74.30 77.00 55.87 75.80 49.36 85.41
DOE 35.11 92.15 0.72 99.79 72.55 78.00 59.06 85.67 41.86 88.90

POEM 40.80 89.78 0.26 99.70 73.23 68.83 65.45 82.08 44.93 85.10
DAL 55.49 85.29 5.83 99.09 74.23 76.70 50.76 79.21 46.57 85.08

DAL-ASH 14.10 97.00 0.23 99.85 67.38 78.20 45.14 85.90 31.71 90.24
DAL-Energy 33.83 90.44 0.47 99.82 74.37 67.68 49.12 80.28 39.45 84.55

F.10 ImageNet Evaluations

We also conduct experiments on the ImageNet benchmarks, demonstrating the effectiveness of our
DAL when facing this very challenging OOD detection task.

OOD Datasets. We adopt a subset of ImageNet-21K-P dataset (Ridnik et al., 2021) as the auxiliary
OOD data, which is cleansed to avoid those classes that coincide with ID cases. Furthermore,
iNaturalist (Horn et al., 2018), SUN (Xu et al., 2015), Places365, and Textures are adopted as the real
OOD datasets, where we eliminate those data whose labels coincide with ID cases.

Hyper-parameter Selection. The hyper-parameters are also tuned on the validation data. We
adopt the random search that follows the following three steps. Step 1: we randomly select a
hyper-parameter (e.g., β) and fix the values of all other hyper-parameters to be their current optimal
values. Step 2: we choose the best β from the candidate set. Step 3: do Steps 1-2 again. We repeat
Steps 1 and 2 for 50 times in our experiments. For the backbone model, we use ResNet-50 with the
pre-trained parameters published by the PyTorch official repository.

Hyper-parameters Setups. Our DAL is run for 5 epochs. The batch size is 64 for both the ID and
the OOD cases. We have the initial learning rate 1e−4, γmax = 10, β = 0.5, ρ = 0.1, and ps = 0.1.
Furthermore, we employ cosine decay (Loshchilov and Hutter, 2017) for the learning rate.

ImageNet evaluations. Due to the large semantic space and complex image patterns, OOD detection
on the ImageNet dataset is a challenging task (Huang and Li, 2021). However, similar to the
CIFAR benchmarks, DAL can also reveal the best detection performance over all the considered
baseline methods. Moreover, it is well-known that MSP scoring can easily fail on the ImageNet
benchmark (Hendrycks et al., 2022), so we also report the results after DAL training using ASH
(DAL-ASH) and Free Energy (DAL-Energy), which can further improve the detection performance.
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