A Appendix

A.1 Evolution of Invariant Neurons
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Figure 6: The percentage of ‘invariant’ neurons as the number of training rounds vary

In this section, we provide an example that some neurons in the server are trained quickly and vary
only below a threshold in later iterations. Figure 6 shows the percentages of invariant neurons as
the number of training epochs increases. Even after only 30% of the training rounds are completed,
15%-30% of the neurons become invariant across CIFAR10, FEMNIST, and Shakespeare datasets For
this example, we choose thresholds of 180%, 10%, and 500%, respectively, for these three datasets
and compute their invariant neurons. Sending invariant neurons over to the straggler provides no
utility; therefore, these neurons can be dropped. Our work FLuID builds upon this insight.

A.2 Choosing Suitable Threshold

Each model has different characteristics in terms of the magnitude of neuron updates. Therefore,
choosing different threshold values results in a different number of neurons classified as invariant. We
expanded on our initial findings and studied the effect of threshold value on the number of invariant
neurons during training. As expected, a higher threshold value leads to a higher percentage of
invariant neurons. Table 3 presents the percentage of invariant neurons observed at different threshold
values, and the overall training accuracy of the FEMNIST model, using a sub-model size of 0.75 for
the stragglers.

Table 3: Threshold vs accuracy results

Threshold value (%) Percentage of Invariant Neurons (%) Accuracy (%)

1 3 80.1
3 6 80.3
5 13 80.5
7 18 80.7
8 22 80.7
10 31 80.5

We observe that to obtain the desired accuracy and mitigate performance bottlenecks of stragglers, it
is critical to choose the threshold that has the closest number of invariant neurons as the number of
neurons to be dropped for the sub-model. The FLuID framework can automatically tune the threshold
for the desired model based on the straggler performance, as described in Section 5.

A.3 Impact of Sub-Model Size on Training Time

In this section, we present evidence that there is a linear relationship between client training time
and sub-model size. We evaluated the training time of 5 Android-based mobile phones from 2018 to
2020 outlined in Table 1. The training time is expressed in the percentage of the training time for the
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Figure 7: Linear relationship between training time and model size across all three datasets

full model size (r = 1.0). Across CIFAR10, FEMNIST, and Shakespeare, the training time of all
five mobile clients decreases linearly as the sub-model size decreases and falls within 10% of the
sub-model size. Using this insight, FLuID selects a sub-model size r as the available sub-model, the
size that’s closest to the inverse of Speedup.

A.4 Additional Experiments with Scalability Studies.

In this section, we show that in the case that the network has multiple stragglers, FLuID does not
assume that all stragglers have similar capabilities or select a sub-model for all stragglers based
on the slowest device. FLuID can select sub-model sizes for each straggler client based on each
client’s own capabilities. In this experiment, we cluster devices of similar capabilities into four groups
of sub-model sizes. Table 4 presents the accuracy when stragglers are assigned to 4 equal-sized
clusters (sub-model size 0.65, 0.75, 0.85, 0.95). The overall accuracy generally lies between assigning
sub-model sizes of 0.75 and 0.85 for all stragglers. This way, FLulD can achieve a higher training
accuracy with a shorter training time, even with stragglers that are initially more than 35% slower
than non-straggler devices.

Table 4: Accuracy comparison of Random Dropout, Ordered Dropout, and Invariant Dropout as we
cluster stragglers into different sub-model size groups.

Random Ordered Invariant

CIFAR10 71.7 72.3 72.7
FEMNIST 77.5 77.4 78.2
Shakespeare 53.8 53.9 54.1

A.5 Additional Experiments with Varying Straggler Percentages

In this section, we show that FLuID is capable of handling multiple ratios of stragglers. We have
run additional experiments to explore the impact of different ratios of stragglers. One common
trend we observed across state-of-the-art techniques and FLulD is that accuracy decreases as the
ratio of stragglers is increased as more of the devices are now being trained only on the sub-model.
Nonetheless, in all the cases, Invariant Dropout offers the highest accuracy because it is aware of the
neuron gradient changes and only drops the least changing neurons. The accuracy results of varying
the straggler ratios while using 0.75-sized sub-models are summarized in Figure 8.
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Figure 8: Accuracy of varying the straggler ratios from 10% to 40% with 0.75 sub-model size
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A.6 Scalability of FLulID with Client Sampling

As the federated learning system scales, FL servers sample a subset of clients participating in each
training round. At any point in training, FLulID is capable of recalibrating stragglers and supports
dynamic changes during runtime. The ability to adjust to a different set of clients and identify
stragglers in every training round enables FLulID to easily incorporate client sampling into its process.
We scaled FLulID to 1,000 clients with the FEMNIST dataset for 500 global training rounds. We run
with a client sampling ratio of 10%, as used by the prior works in federated learning spaces such
as FJORD [HLA'21]. We present the accuracy results in Table 5 against each sub-model size for
Invariant Dropout and the baseline techniques. Invariant Dropout maintains a better accuracy profile
than the baselines even when scaled up to 1000 clients while incorporating client sampling.

Table 5: Accuracy comparison of Random Dropout, Ordered Dropout, and Invariant Dropout as for
FEMNIST with 1000 clients and client sampling of 10%.

r=095 r=0.85 r=0.75 r=0.65 1=0.40
Random  87.9 87.5 87.5 86.9 85.7
Ordered  87.8 88.0 87.5 87.3 87.0
Invariant  88.1 88.2 88.0 81.7 87.2
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