
A More Details on Predecessor Representation

Here we provide proofs of the reciprocal relationship between the SR and the PR.
Proposition A.1. Ndiag(z) = diag(z)M, where diag(z) is the diagonal matrix with the diag-

onal elements as the vector z, and z is the vector of stationary distribution of P⇡
(i.e., z[i] =

limt!1 EP⇡ [st = i].

Proof. Given the formal definition of the SR and the PR (Eq. 3; 11), we have the following analytical
expressions.

M = (I� �P⇡)�1; N = (I� �P̃⇡)�1; (19)

where P̃⇡ is the temporally reversed transition distribution. Assume matrix formulation of P⇡ and
P̃⇡ , P and P̃ in R|S|⇥|S|, we have the following.

P̃ij = P(st = i|st+1 = j) =
P(st+1 = j|st = i)P(st = i)

P(st+1 = j
=

Pijzi
zj

,

)P̃diag(z) = diag(z)P ,

(20)

Substituting the reciprocal relationship between P̃ and P into the definition of the PR, we have the
following.

N =
�
I� �diag(z)Pdiag(z)�1

��1
,

Ndiag(z) =
�
I� �diag(z)Pdiag(z)�1

��1 diag(z)

=
�
diag(z)�1(I� �diag(z)Pdiag(z)�1)

��1

=
�
(I� �P)diag(z)�1

��1

= diag(z) ((I� �P))�1

= diag(z)M

(21)

B Further results on tabular hard exploration tasks.

B.1 Graphical illustration of tabular hard-exploration tasks.

The demos of RiverSwim and SixArms is shown in Figure 5. In both tasks, the environmental
transition dynamics impose asymmetry, biasing the agent towards low-rewarding states that are easier
to reach, with greater rewards available in hard-to-reach states.
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(a) RiverSwim
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Figure 5: Discrete MDPs. Transition probabilities are denoted by haction, probability, rewardi. In
RiverSwim (a), the agent starts in state 1 or 2. In SixArms (b), the agent starts in state 0.
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Table 3: Evaluations on RiverSwim and SixArms with intrinsic rewards based on fixed SR/FR
(averaged over 100 seeds, numbers in the parentheses represents standard errors).

SARSA-SR SARSA-FR SARSA-SRR

RiverSwim 327,402 278,096 3,096,913
(787,118) (666,752) (230,059)

SixArms 969,781 1,143,037 2,059,424
(2,895,306) (1,939,021) (3,292,936)

B.2 Pseudocode for SARSA-SRR.

We provide the pseudocode for SARSA-SRR in Algorithm 1. We note that SARSA, SARSA-SR and
SARSA-FR utilise the similar algorithm, but only replacing the intrinsic bonus.

Algorithm 1 Pseudocode for SARSA-SRR
Require: ↵, ⌘, �, �SR, �, ✏
s = env.reset();
M = 0 2 R|S|⇥|S|; . Initialise the SR matrix as zero matrix
Q = 0 2 R|S|⇥|A|;
while not done do

✓ ⇠ U(0, 1);
if ✓ < ✏ then . ✏-greedy policy

a ⇠ U(A);
else

a = argmaxa2A Q[s, a];
end if
s0, r, done = env.step(a);
M[s, :] = M[s, :] + ⌘ (1(s) + �SR(1� done)M[s0, :]�M[s, :]); . TD-learning of the SR
r = r + �(M[s, s0]� ||M[:, s0]||1); . Constructing intrinsic reward
✓0 ⇠ U(0, 1);
if ✓0 < ✏ then

a0 ⇠ U(A);
else

a0 = argmaxa2A Q[s0, a];
end if
Q[s, a] = Q[s, a] + ↵ (r + �(1� done)Q[s0, a0]�Q[s, a]);
s = s0;

end while

B.3 Evaluations given the fixed SR.

Conforming to our analysis of rSR-R with fixed SR (Section 3), we additionally evaluate SARSA-
SR/FR/SRR with the corresponding intrinsic rewards constructed based on fixed SR/FR matrix on
RiverSwim and SixArms (Table 3. Similar to what we found in the grid worlds (Figure 1c), both
SARSA-SR and SARSA-FR perform worse than their online-SR counterparts (note one exception
being SARSA-FR on SixArms). However, in contrast to the decrease in exploration efficiency of
SARSA-SRR in grid worlds, we found that fixing the SR actually improves the performance of
SARSA-SRR. Hence, in accord with our analysis in Section 3, the cause for the improved empirical
performance of rSR-R does not lie solely in the online learning process of SR, but might stems from
the inherent “bottleneck-seeking” property of rSR-R.

B.4 Ablation studies of SPIE in discrete tasks

We perform ablation studies on SARSA-SRR for further demonstration of the utility of the SPIE objec-
tive of combining both the prospective and retrospective information. We firstly show that prospective
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Table 4: Ablation studies of SARSA-SRR on RiverSwim and SixArms.
SARSA-SRR SARSA-SRR(a) SARSA-SRR(b) SARSA-SRR(c)

RiverSwim 2,547,156 127,703 2,629,947 95,691
(479,655) (530,564) (930,170) (181,216)

SixArms 2,199,291 893,530 1,902,553 562,346
(1,024,726) (2,601,324) (2,211,960) (1,748,455)

information alone cannot yield strong exploration, whereas utilising solely the retrospective infor-
mation maintains the strong explorative performance. We consider two variants of SARSA-SRR,
SARSA-SRR(a) and SARSA-SRR(b), with the respective intrinsic rewards as following.

RSR-R(a)(s, a, s
0) = M̂ [s, s0] , RSR-R(b)(s, a, s

0) = �||M̂ [:, s0]||1 , (22)

From Table 4, we observe that utilising the prospective information alone for exploration yields
suboptimal performance, hence empirically justifying the utility of the SPIE framework. However, we
do observe that utilising the retrospective information alone yields near- or supra-optimal performance.
Together, the results indicate that the global topological information contained in the retrospective
information is essential for intrinsic exploration purposes.

We argue that the dynamic balancing between exploring states with high uncertainty and bottleneck
states is a key factor driving the empirical success of SPIE. In order to test this hypothesis, we devise
a variant of the RSR-R.

RSR-R(c) = ||M̂ [s, :]||1 � M̂ [s, s0] , (23)
Intuitively, RSR-R(c) provides an intrinsic motivation for taking transitions that lead to states that are
less reachable from s, which only yields exploration towards states of high uncertainty, but does
not provide any motivation towards bottleneck states. Indeed, as we observe from Table 4 that
SARSA-SRR(c) also yields suboptimal performance, providing empirical evidence supporting the
benefits of SPIE in driving the agents towards bottleneck states.

C Further results on exploration in grid worlds

C.1 Transient dynamics of exploration.

We look more closely at the transient dynamics of the considered agents during pure exploration in
Cluster-simple-large (where Cluster-simple-large denotes the 20⇥ 20 grid world with two clusters).
We observe that in the absence of external reinforcement, SARSA-SR, regardless of based on intrinsic
rewards given either online-learned or fixed SR matrix, exhibits minimal exploration (Figure 6a 6b).
This is largely due to its local exploration behaviour. For SARSA-FR, we observe significant
difference between using online-trained and fixed FR matrix, where exploration with intrinsic
rewards based on fixed FR completed disrupts exploration, only exploring a small proportion of the
environment. In contrast, we observe that SARSA-SRR consistently fully explores both clusters
(repeatedly) under both conditions. Additionally, by closely examining the transient dynamics during
the exploration phase, we observe the “cycling” behaviour5.

C.2 Effect of optimistic initialisation.

We note that across all considered SARSA agents, the Q values were initialised to be 0 for all state
action pairs. Given that all SR entries are non-negative, we know that rSR-R only admits negative
rewards, hence the zero-initialisation yields optimistic initialisation, which encourages the agent
to explore [40, 29]. To disentangle the effect of SPIE from optimistic initialisation, we perform
the ablation study on pure exploration with augmented SARSA-SR and SARSA-FR agents with
optimistic initialisation. Specifically, we note that the maximum value the SR entries can take is 1

1�� ,
and additionally since the FR entries, by definition, are always less than or equal to the corresponding

5see the attached videos in supplementary materials for the full exploration dynamics for the considered
agents
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6: Pure exploration given fixed SR / FR measures. Temporal evoluation of state coverage
heatmaps over 6000 training steps of (a) SRASA-SR; (c) SARSA-FR; (e) SARSA-SRA agents with
intrinsic rewards based on fixed SR/FR measures in OF-small; and (b), (d), (f) for the counterparts
with online-trained SR/FR measures in the 20 ⇥ 20 Cluster-simple grid world. From left to right:
200, 400, 600, 800, 1000, 1500, 2000, 3000, 4000, 5000, 6000 steps.

16



Figure 7: Ablation study on optimistic initialisation on exploration efficiency. We evaluate
SARSA, SARSA-SRR, and optimistically augmented SARSA-SR and SARSA-FR on the considered
grid worlds (Figure 1a).

SR entries, we initialise the Q values for all state-action pairs for both SARSA-SR and SARSA-
FR to be 1

1�� . We evaluate the exploration efficiency for the optimistically augmented agents on
the grid worlds (Figure 7), and we observe that despite the optimistic initialisation improves the
performance of both SARSA-SR and SARSA-FR relative to their corresponding naive counterparts,
the performance differences in terms of exploration efficiency between the augmented agents and
SARSA-SRR are significant, hence justifying the utility of the SPIE framework independent of the
optimistic initialisation.

D Further results on deep RL implementation of SPIE in Atari games

D.1 Ablation study on the effect of predictive reconstruction auxiliary task

In our implementation of DQN-SF-PF, by following relevant literature [27, 12], we include an
additional sub-module in the neural architecture for predicting action-dependent future observation,
which is trained via minimising the predictive reconstruction error. The purpose of including this
sub-module is purely for learning better latent representations underlying the visual observation. We
validate the utility of such predictive reconstruction auxiliary supervision by performing ablation
study. We implemented an alternative version of DQN-SF-PF, removing the visual reconstruction
sub-module, and test on Montezuma’s Revenge. The resulting model achieves 551.5 points (averaged
over 5 random seeds, s.e. equals 618.4). We observe that there is a significant decrease from
standard DQN-SF-PF (Table 2), indicating the importance of stronger representation learning given
the predictive reconstruction auxiliary task. Moreover, given the reported performance of 398.5
points (s.e., equals 230.1) of DQN-SF in the absence of predictive reconstruction auxiliary task
from Machado et al. [12], we observe that the SPIE objective still yields improved performance over
exploration with SF alone, justifying the utility of SPIE irrespective of the specific neural architecture
we choose.

E Experiment Details

Here we provide further details of the experiments presented in the main paper.

Tabular tasks. We run hyperparameter sweeps for all considered agents (SARSA, SARSA-SR,
SARSA-FR, SARSA-SRR) on the following hyperparameters: {0.005, 0.05, 0.1, 0.25, 0.5} for learn-
ing rate of TD learning for the Q values (↵); {0.005, 0.05, 0.1, 0.25, 0.5} for learning rate of TD
learning for the SR/FR matrices (⌘); {0.5, 0.8, 0.9, 0.95, 0.99} for the discounting factor defining
the SR/FR formulation (�SR/FR); {1, 10, 50, 100, 1000, 10000} for the multiplicative scaling factor
controlling the scale of the intrinsic rewards (�); {0.01, 0.05, 0.1} for the degree of randomness in
✏-greedy exploration (✏). The complete sets of optimal hyperparameters for the reported performance
of the considered agents in Table 1 (and for the corresponding agents with intrinsic rewards based on
fixed SR/FR matrix; Table 3) in shown in Table 5.

Exploration in grid worlds. For all presented results in the grid worlds, we use the hyperparameters
(0.1, 0.1, 0.95, 0.95, 1.0, 0.1) for (↵, ⌘, �, �SR/FR,�, ✏).

MountainCar experiment. We use the 128-dimensional random Fourier features, defined over the
two-dimensional state space (location⇥speed), as the state representation. We use the hyperparameters
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Table 5: Hyperparameters for the considered agents in the tabular hard-exploration tasks (the values
in parentheses are the corresponding hyperparameter values for the learning of the PR).

agent ↵ ⌘ � �SR/FR � ✏

RiverSwim SARSA 0.005 - 0.95 - - 0.01
SARSA-SR 0.25 0.1 0.95 0.95 10 0.1
SARSA-FR 0.25 0.01 0.95 0.95 50 0.1

SARSA-SRR 0.1 0.25 0.95 0.95 10 0.01
SARSA-SR-PR 0.25 0.25(0.1) 0.95 0.95(0.99) 1 0.01

SARSA-SR (fixed) 0.01 - 0.95 0.95 10 0.05
SARSA-FR (fixed) 0.1 - 0.95 0.95 10 0.1

SARSA-SRR (fixed) 0.25 - 0.95 0.95 10 0.01

SixArms SARSA 0.5 - 0.95 - - 0.01
SARSA-SR 0.1 0.01 0.95 0.99 100 0.01
SARSA-FR 0.1 0.01 0.95 0.99 100 0.01

SARSA-SRR 0.01 0.01 0.95 0.99 10000 0.01
SARSA-SR-PR 0.05 0.25(0.25) 0.95 0.95(0.99) 10 0.01

SARSA-SR (fixed) 0.5 - 0.95 0.95 1 0.01
SARSA-FR (fixed) 0.5 - 0.95 0.95 1 0.01

SARSA-SRR (fixed) 0.5 - 0.95 0.95 10 0.01

(0.1, 0.2, 0.2, 0.99, 0.95, 0.95, 1000, 0.3) for (↵, ⌘, ⌘PR, �, �SR, �PR,�, ✏), where ⌘PR and �PR are the
learning rate and discounting factor values for the PR, respectively.

Atari experiments. The neural architecture of the deep RL implementation shown in Figure 2,
here we provide the specific hyperparameters of the architecture. The Conv block is a convolutional
network with the configuration (4, 84, 84, 0, 2)�ReLU�(64, 40, 40, 2, 2)�ReLU�(64, 6, 6, 2, 2)�
ReLU � (64, 10, 10, 0, 0)� FC(1024), where the tuple represents a 2-dimensional convolutional
layer with the architecture (num_filters, kernel_width, kernel_height, padding_size, stride), and
FC(1024) represents a fully connected layer with 1024 hidden units. We take the output of the Conv

block as the 1024-dimensional state representation given the observation, which is then subsequently
used for computing the SF and the PF. The action input is transformed into a high-dimensional
embedding through a linear transformation, FC(2048). The MLP for the predictive reconstruction
block is FC(2048)� ReLU , for the Q-value estimation block is FC(|A|), for the SF head block
is FC(2048) � ReLU � FC(1024), for the PF head block is FC(2048) � ReLU � FC(1024).
The Deconv block is FC(2048) � FC(1024) � ReLU � FC(6400) � Reshape((64, 10, 10)) �
h64, 6, 6, 2, 2i�h64, 6, 6, 2, 2i�h1, 6, 6, 0, 2i�Flatten, where the tuple represents a 2-dimensional
deconvolutional layer with parameters h num_filters, kernel_width, kernel_height, padding_size,
stride i.
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