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Abstract

The challenge of overfitting, in which the model memorizes the training data and1

fails to generalize to test data, has become increasingly significant in the training2

of large neural networks. To tackle this challenge, Sharpness-Aware Minimization3

(SAM) has emerged as a promising training method, which can improve the4

generalization of neural networks even in the presence of label noise. However,5

a deep understanding of how SAM works, especially in the setting of nonlinear6

neural networks and classification tasks, remains largely missing. In this paper,7

we fill this gap by demonstrating why SAM generalizes better than Stochastic8

Gradient Descent (SGD) for the certain data model and two-layer convolutional9

ReLU networks. Our result explains the benefits of SAM, particularly its ability10

to prevent noise learning in the early stages, thereby facilitating more effective11

learning of weak features. Experiments on both synthetic and real data corroborate12

our theory.13

1 Introduction14

The remarkable performance of deep neural networks has sparked considerable interest in creating15

ever-larger deep learning models, while the training process continues to be a critical bottleneck16

affecting overall model performance. The training of large models is unstable and difficult due to the17

sharpness, non-convexity, and non-smoothness of its loss landscape. In addition, as the number of18

model parameters is much larger than the training sample size, the model has the ability to memorize19

even randomly labeled data (Zhang et al., 2021), which leads to overfitting. Therefore, although20

traditional gradient-based methods like gradient descent (GD) and stochastic gradient descent (SGD)21

can achieve generalizable models under certain conditions, these methods may suffer from unstable22

training and harmful overfitting in general.23

To overcome the above challenge, Sharpness-Aware Minimization (SAM) (Foret et al., 2020), an24

innovative training paradigm, has exhibited significant improvement in model generalization and25

become widely adopted in many applications. In contrast to traditional gradient-based methods that26

primarily focus on finding a point in the parameter space with a minimal gradient, SAM also pursues27

a solution with reduced sharpness, characterized by how rapidly the loss function changes locally.28

Despite the empirical success of SAM across numerous tasks (Bahri et al., 2021; Behdin et al., 2022;29

Chen et al., 2021; Liu et al., 2022a), the theoretical understanding of this method remains limited.30

Foret et al. (2020) provided a PAC-Bayes bound on the generalization error of SAM to show that it will31

generalize well, while the bound only holds for the infeasible average-direction perturbation instead of32

practically used ascend-direction perturbation. Andriushchenko and Flammarion (2022) investigated33

the implicit bias of SAM for diagonal linear networks under global convergence assumption. The34

oscillations in the trajectory of SAM were explored by Bartlett et al. (2022), leading to a convergence35

result for the convex quadratic loss. A concurrent work (Wen et al., 2022) demonstrated that SAM36

could locally regularize the eigenvalues of the Hessian of the loss. In the context of least-squares37

linear regression, Behdin and Mazumder (2023) found that SAM exhibits lower bias and higher38
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Figure 1: Illustration of the phase transition between benign overfitting and harmful overfitting. The
blue region represents the regime under which the overfitted CNN trained by SGD is guaranteed to
have a small excess risk, and the yellow region represents the regime under which the excess risk is
guaranteed to be a constant order (e.g., greater than 0.1). The gray region is the regime where the
excess risk is not characterized.

variance compared to gradient descent. However, all the above analyses of SAM utilize the Hessian39

information of the loss and require the smoothness property of the loss implicitly. The study for40

non-smooth neural networks, particularly for the classification task, remains open.41

In this paper, our goal is to provide a theoretical basis demonstrating when SAM outperforms SGD.42

In particular, we consider a data distribution mainly characterized by the signal µ and input data43

dimension d, and prove the following separation in terms of test error between SGD and SAM.44

Theorem 1.1 (Informal). Let p be the strength of the label flipping noise. For any ϵ > 0, under45

certain regularity conditions, with high probability, there exists 0 ≤ t ≤ T such that the training loss46

converges to ϵ, i.e., LS(W
(t)) ≤ ϵ. Besides,47

1. For SGD, when the signal strength ∥µ∥2 ≥ Ω(d1/4), we have L0−1
D (W(t)) ≤ p+ ϵ. When the48

signal strength ∥µ∥2 ≤ O(d1/4), we have L0−1
D (W(t)) ≥ p+ 0.1.49

2. For SAM, provided the signal strength ∥µ∥2 ≥ Ω̃(1), we have L0−1
D (W(t)) ≤ p+ ϵ.50

Our contributions are summarized as follows:51

• We discuss how the loss landscape of two-layer convolutional ReLU networks is different from52

the smooth loss landscape and thus the current explanation for the success of SAM based on the53

Hessian information is insufficient for neural networks.54

• To understand the limit of SGD, we precisely characterize the conditions under which benign55

overfitting can occur in training two-layer convolutional ReLU networks with SGD. To the best of56

our knowledge, this is the first benign overfitting result for neural network trained with mini-batch57

SGD. We also prove a phase transition phenomenon for SGD, which is illustrated in Figure 1.58

• Under the conditions when SGD leads to harmful overfitting, we formally prove that SAM can59

achieve benign overfitting. Consequently, we establish a rigorous theoretical distinction between60

SAM and SGD, demonstrating that SAM strictly outperforms SGD in terms of generalization error.61

Specifically, we show that SAM effectively mitigates noise learning in the early stages of training,62

enabling neural networks to learn weak features more efficiently.63

Notation. We use lower case letters, lower case bold face letters, and upper case bold face letters64

to denote scalars, vectors, and matrices respectively. For a vector v = (v1, · · · , vd)⊤, we denote65

by ∥v∥2 :=
(∑d

j=1 v
2
j

)1/2
its l2 norm. For two sequence {ak} and {bk}, we denote ak = O(bk)66

if |ak| ≤ C|bk| for some absolute constant C, denote ak = Ω(bk) if bk = O(ak), and denote67

ak = Θ(bk) if ak = O(bk) and ak = Ω(bk). We also denote ak = o(bk) if lim |ak/bk| = 0. Finally,68

we use Õ(·) and Ω̃(·) to omit logarithmic terms in the notation. We denote the set {1, · · · , N} with69

[N ], and denote the set {0, · · · , N − 1} with [N ], respectively.70
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2 Preliminaries71

2.1 Data distribution72

Our focus is on binary classification where the label y ∈ {±1}. We consider the following data73

model.74

Definition 2.1. Let µ ∈ Rd be a fixed vector representing the signal contained in each data point. Each75

data point (x, y) with input x = [x(1)⊤,x(2)⊤, . . . ,x(P )⊤]⊤ ∈ RP×d,x(1),x(2), . . . ,x(P ) ∈ Rd76

and label y ∈ {−1, 1} is generated from a distribution D specified as follows:77

1. The true label ŷ is generated as a Rademacher random variable, i.e., P[ŷ = 1] = P[ŷ = −1] = 1/2.78

The observed label y is then generated by flipping ŷ with probability p where p < 1/2, i.e.,79

P[y = ŷ] = 1− p and P[y = −ŷ] = p.80

2. A noise vector ξ is generated from the Gaussian distribution N (0, σ2
pI).81

3. One of x(1),x(2), . . . ,x(P ) is randomly selected and then assigned as y · µ, which represents the82

signal, while the others are given by ξ, which represents noises.83

The data distribution in Definition 2.1 has been extensively employed in several previous works84

(Allen-Zhu and Li, 2020; Jelassi and Li, 2022; Shen et al., 2022; Cao et al., 2022; Kou et al., 2023).85

When P = 2, this data distribution aligns with the one analyzed in Kou et al. (2023). This distribution86

is inspired by image data, where the input is composed of different patches, with only a few patches87

being relevant to the label. The model has two key vectors: the feature vector and the noise vector.88

To avoid harmful overfitting, the model must learn the feature vector rather than the noise vector.89

2.2 Neural Network and Training Loss90

To effectively learn the distribution as per Definition 2.1, it is advantageous to utilize a shared weights91

structure, given that the specific signal patch is not known beforehand. When P > n, shared weights92

become indispensable as the location of the signal patch in the test could differ from the location of93

the signal patch in the training data.94

We consider a two-layer convolutional neural network whose filters are applied to the P patches95

x1, · · · ,xP separately, and the second layer parameters of the network are fixed as +1/m and −1/m96

respectively, where m is the number of convolutional filters. Then the network can be written as97

f(W,x) = F+1(W+1,x) − F−1(W−1,x), where F+1(W+1,x) and F−1(W−1,x) are defined98

as99

Fj(Wj ,x) = m−1∑m
r=1

∑P
p=1σ(⟨wj,r,x

(p)⟩). (1)

Here we consider ReLU activation function σ(z) = 1(z ≥ 0)z, wj,r ∈ Rd denotes the weight for100

the r-th filter, and Wj is the collection of model weights associated with Fj for j = ±1. Denote the101

training data set by S = {(xi, yi)}i∈[n]. We train the above CNN model by minimizing the empirical102

cross-entropy loss function103

LS(W) = n−1∑
i∈[n]ℓ(yif(W,xi)),

where ℓ(z) = log(1 + exp(−z)) is the logistic loss.104

2.3 Training Algorithm105

Minibatch Stochastic Gradient Descent. For epoch t, the training data set S is randomly divided106

into H := n/B mini batches It,b with batch size B ≥ 2. The empirical loss for batch It,b is defined107

as LIt,b
(W) = (1/B)

∑
i∈It,b

ℓ(yif(W,xi)). Then the gradient descent update of the filters in the108

CNN can be written as109

w(t,b+1) = w(t,b) − η · ∇WLIt,b
(W(t,b)), (2)

where the gradient of the empirical loss ∇WLIt,b
is the collection of ∇wj,r

LIt,b
as follows110

∇wj,r
LIt,b

(W(t,b)) =
(P − 1)

Bm

∑
i∈It,b

ℓ
′(t,b)
i · σ′(⟨w(t,b)

j,r , ξi⟩) · jyiξi

+
1

Bm

∑
i∈It,b

ℓ
′(t,b)
i · σ′(⟨w(t,b)

j,r , ŷiµ⟩) · ŷiyijµ, (3)
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for all j ∈ {±1} and r ∈ [m]. Here we introduce a shorthand notation ℓ
′(t,b)
i = ℓ′[yi · f(W(t,b),xi)]111

and assume the gradient of the ReLU activation function at 0 to be σ′(0) = 1 without loss of generality.112

We use (t, b) to denote epoch index t with mini-batch index b and use (t) as the shorthand of (t, 0).113

We initialize SGD by random Gaussian, where all entries of W(0) are sampled from i.i.d. Gaussian114

distributions N (0, σ2
0), with σ2

0 being the variance. From (3), we can infer that the loss landscape of115

the empirical loss is highly non-smooth because the derivative of the ReLU activation function is116

indicator function 1(·), which is not continuous at the origin. In particular, when ⟨w(t,b)
j,r , ξ⟩ is close117

to zero, even a very small perturbation can greatly change the activation pattern σ′(⟨w(t,b)
j,r , ξ⟩) and118

thus change the direction of ∇wj,rLIt,b
(W(t,b)). This observation prevents the analysis technique119

based on the Taylor expansion with the Hessian matrix, and calls for a more sophisticated activation120

pattern analysis.121

Sharpness Aware Minimization. Given an empirical loss function LS(W) with trainable parameter122

W, the idea of SAM is to minimize a perturbed empirical loss at the worst point in the neighborhood123

ball of W to ensure a uniformly low training loss value. In particular, it aims to solve the following124

optimization problem125

min
W

LSAM
S (W), where LSAM

S (W) := max
∥ϵ∥2≤τ

LS(W + ϵ), (4)

where the hyperparameter τ is called the perturbation radius. However, directly optimizing LSAM
S (W)126

is computationally expensive. In practice, people use the following sharpness-aware minimization127

(SAM) algorithm (Foret et al., 2020; Zheng et al., 2021) to minimize LSAM
S (W) efficiently,128

W(t+1) = W(t) − η∇WLS

(
W + ϵ̂

)
, where ϵ̂ = τ · ∇WLS(W)

∥∇WLS(W)∥2
. (5)

When applied to SGD in (2), the gradient ∇WLS in (5) is further replaced by stochastic gradient129

∇WLIt,b
(Foret et al., 2020). The detailed algorithm description of SAM in shown in Algorithm 1.130

Algorithm 1 Minibatch Sharpness Aware Minimization
Input: Training set S = ∪n

i=1{(xi,yi)}, Batch size B, step size η > 0, neighborhood size τ > 0.

Initialize weights W(0).
for t = 0, 1, . . . , T − 1 do

Randomly divide the training data set into H mini batches {It,b}H−1
b=0 .

for b = 0, 1, . . . ,H − 1 do

We calculate the perturbation ϵ̂(t,b) = τ
∇WLIt,b

(W(t,b))

∥∇WLIt,b
(W(t,b))∥F

.

Update model parameters: W(t,b+1) = W(t,b) − η∇WLIt,b
(W)|W=W(t,b)+ϵ̂(t,b) .

end for
Update model parameters: W(t+1,0) = W(t,H)

end for

3 Result for SGD131

In this section, we present our main theoretical results for the CNN trained with SGD. Our results132

are based on the following conditions on the dimension d, sample size n, neural network width m,133

initialization scale σ0 and learning rate η.134

Condition 3.1. Suppose there exists a sufficiently large constant C, such that the following hold:135

1. Dimension d is sufficiently large: d ≥ Ω̃
(
max{nP−2σ−2

p ∥µ∥22, n2, P−2σ−2
p Bm}

)
.136

2. Training sample size n and neural network width satisfy m,n ≥ Ω̃(1).137

3. The norm of the signal satisfies ∥µ∥2 ≥ Ω̃(Pσp).138

4. The noise rate p satisfies p ≤ 1/C.139

5. The standard deviation of Gaussian initialization σ0 is appropriately chosen such that σ0 ≤140

Õ
((

max
{
Pσpd/

√
n, ∥µ∥2

})−1
)

.141
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6. The learning rate η satisfies η ≤ Õ
((

max
{
P 2σ2

pd
3/2/(Bm), P 2σ2

pd/B, n∥µ∥2/(σ0B
√
dm),142

nPσp∥µ∥2/(B2mϵ)
})−1

)
.143

The conditions imposed on the data dimensions d, network width m, and the number of samples n144

ensure adequate overparameterization of the network. Additionally, the condition on the learning145

rate η facilitates efficient learning by our model. Comparable conditions have been established in146

Chatterji and Long (2021); Cao et al. (2022); Frei et al. (2022); Kou et al. (2023). Based on the above147

condition, we first present a set of results on benign/harmful overfitting for SGD in the following148

theorem.149

Theorem 3.2 (Benign/harmful overfitting of SGD in training CNNs). For any ϵ > 0, under Condi-150

tion 3.1, with probability at least 1− δ there exists t = Õ(η−1ϵ−1mnd−1P−2σ−2
p ) such that:151

1. The training loss converges to ϵ, i.e., LS(W
(t)) ≤ ϵ.152

2. When n∥µ∥42 ≥ C1dP
4σ4

p, the test error L0−1
D (W(t)) ≤ p+ ϵ153

3. When n∥µ∥42 ≤ C3dP
4σ4

p, the test error L0−1
D (W(t)) ≥ p+ 0.1.154

Theorem 3.2 reveals a sharp phase transition between benign and harmful overfitting for CNN trained155

with SGD. This transition is determined by the relative scale of the signal strength and the data156

dimension. Specifically, if the signal is relatively large such that n∥µ∥42 ≥ C1d(P − 1)4σ4
p, the157

model can efficiently learn the signal. As a result, the test error decreases, approaching the Bayesian158

optimal risk p, although the presence of label flipping noise prevents the test error from reaching zero.159

Conversely, when the condition n∥µ∥42 ≤ C3d(P − 1)4σ4
p holds, the test error fails to approach the160

Bayesian optimal risk. This phase transition is empirically illustrated in Figure 2. In both scenarios,161

the model is capable of fitting the training data thoroughly, even for examples with flipped labels.162

This finding aligns with longstanding empirical observations.163

The negative result of SGD, which encompasses the third point of Theorem 3.2 and the high test164

error observed in Figure 2, suggests that the signal strength needs to scale with the data dimension to165

enable benign overfitting. This constraint substantially undermines the efficiency of SGD, particularly166

when dealing with high-dimensional data. A significant part of this limitation stems from the fact that167

SGD does not inhibit the model from learning noise, leading to a comparable rate of signal and noise168

learning during iterative model parameter updates. This inherent limitation of SGD is effectively169

addressed by SAM, as we will discuss later in Section 4.170

3.1 Analysis of Mini-Batch SGD171

In contrast to GD, SGD does not utilize all the training data at each iteration. Consequently, different172

samples may contribute to parameters differently, leading to possible unbalancing in parameters. To173

analyze SGD, we extend the signal-noise decomposition technique developed by Kou et al. (2023);174

Cao et al. (2022) for GD, which in our case is formally defined as:175

Definition 3.3. Let w(t,b)
j,r for j ∈ {±1}, r ∈ [m] be the convolution filters of the CNN at the b-th176

batch of t-th epoch of gradient descent. Then there exist unique coefficients γ(t,b)
j,r and ρ

(t,b)
j,r,i such that177

w
(t,b)
j,r = w

(0,0)
j,r + j · γ(t,b)

j,r · ∥µ∥−2
2 · µ+

1

P − 1

n∑
i=1

ρ
(t,b)
j,r,i · ∥ξi∥

−2
2 · ξi.

Further denote ρ
(t,b)
j,r,i := ρ

(t,b)
j,r,i 1(ρ

(t,b)
j,r,i ≥ 0), ρ(t,b)

j,r,i
:= ρ

(t,b)
j,r,i 1(ρ

(t,b)
j,r,i ≤ 0). Then178

w
(t,b)
j,r = w

(0,0)
j,r + jγ

(t,b)
j,r ∥µ∥−2

2 µ+
1

P − 1

n∑
i=1

ρ
(t,b)
j,r,i∥ξi∥

−2
2 ξi +

1

P − 1

n∑
i=1

ρ(t,b)
j,r,i

∥ξi∥−2
2 ξi.

(6)

The normalization terms 1
P−1 , ∥µ∥−2

2 , and ∥ξi∥−2
2 ensure that γ(t,b)

j,r ≈ ⟨w(t,b)
j,r , µ⟩ and ρ

(t,b)
j,r ≈179

(P − 1)⟨w(t,b)
j,r , ξi⟩. Through signal-noise decomposition, we characterize the learning progress of180
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signal µ using γ
(t,b)
j,r , and the learning progress of noise using ρ

(t,b)
j,r . This decomposition turns the181

analysis of SGD updates into the analysis of signal noise coefficients. Kou et al. (2023) extend this182

technique to the ReLU activation function as well as in the presence of label flipping noise. However,183

mini-batch SGD updates amplify the complications introduced by label flipping noise, making it184

more difficult to ensure learning. We have developed advanced methods for coefficient balancing185

and activation pattern analysis. These techniques will be thoroughly discussed in the sequel. The186

progress of signal learning is characterized by γ
(t,b)
j,r , whose update rule is as follows:187

γ
(t,b+1)
j,r = γ

(t,b)
j,r − η

Bm
·
[ ∑
i∈It,b∩S+

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , ŷi · µ⟩)

−
∑

i∈It,b∩S−

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , ŷi · µ⟩)
]
· ∥µ∥22. (7)

Here, It,b represents the indices of samples in batch b of epoch t, S+ denotes the set of clean samples188

where yi = ŷi, and S− represents the set of noisy samples where yi = −ŷi. The updates of γ(t,b)
j,r en-189

tail an increase due to clear sample learning, offset by a decrease attributable to noisy sample learning.190

Both empirical and theoretical analyses have demonstrated that overparametrization allows the model191

to fit even random labels. This occurs when the negative term
∑

i∈It,b∩S−
ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , yi · µ⟩)192

primarily drives model learning. Such unfavorable scenarios could be attributed to two possible fac-193

tors. Firstly, the gradient of the loss ℓ′(t,b)i might be significantly higher for noisy samples compared194

to clean samples. Secondly, during certain epochs, the majority of samples may be noisy, meaning195

that It,b ∩ S− significantly outnumbers It,b ∩ S+.196

To deal with the first factor, we have to control the ratio of the loss gradient with regard to different197

samples, as depicted in Equation (8). Given that noisy samples may overwhelm a single batch, we198

impose an additional requirement: the ratio of the loss gradient must be controllable across different199

batches within a single epoch.200

ℓ
′(t,b1)
i /ℓ

′(t,b2)
k ≤ C2. (8)

As ℓ′(z1)/ℓ
′(z2) ≈ exp(z2 − z1), we can upper bound ℓ

′(t,b1)
i /ℓ

′(t,b2)
k with yi · f(W(t,b1),xi) −201

yk · f(W(t,b2),xk). And yi · f(W(t,b1),xi)− yk · f(W(t,b2),xk) can be further upper bounded by202 ∑
r ρ

(t,b1)
yi,r,i

−
∑

r ρ
(t,b2)
yi,r,k

with a small error. Therefore, Equation (8) is equivalent to the symmetry of203

ρ
(t,b)
yi,r,i

:
∑m

r=1 ρ
(t,b1)
yi,r,i

−
∑m

r=1 ρ
(t,b2)
yk,r,k

≤ κ204

However, achieving this upper bound turns out to be challenging, since the updates to ρ
(t,b)
j,r,i are not205

evenly distributed across the epoch. Each update utilizes only a portion of the samples, meaning206

that symmetry can only be fully achieved once an entire epoch has been processed. Consequently,207

we have to first reconstruct the symmetry of ρ(t,b)yi,r,i
at the epoch level, and then control the maximal208

asymmetry within one epoch. The full batch update rule is established as follows:209

m∑
r=1

[
ρ
(t+1,0)
yi,r,i

− ρ
(t+1,0)
yk,r,k

]
=

m∑
r=1

[
ρ
(t,0)
yi,r,i

− ρ
(t,0)
yk,r,k

]
− η(P − 1)2

Bm
·
(
|S̃(t,b

(t)
i )

i |ℓ′(t,b
(t)
i )

i · ∥ξi∥22

− |S̃(t,b
(t)
k )

k |ℓ′(t,b
(t)
k )

k · ∥ξk∥22
)
,

(9)

Here, b(t)i denotes the batch to which sample i belongs in epoch t, and S̃
(t,b

(t)
i )

i represents the210

parameters that learn ξi at epoch t, as formally defined in Equation (10). Therefore, the update211

of
∑m

r=1

[
ρ
(t,0)
yi,r,i

− ρ
(t,0)
yk,r,k

]
is indeed characterized by the activation pattern of parameters, which212

serves as the key technique for analyzing the full epoch update of
∑m

r=1

[
ρ
(t,0)
yi,r,i

− ρ
(t,0)
yk,r,k

]
. However,213

analyzing the pattern of S(t,b)
i directly is challenging since ⟨w(t,b)

yi,r , ξi⟩ fluctuates in batches without214

sample i. Therefore, we introduce the set series S(t,b)
i as the activation pattern with certain threshold215

as follows:216

S
(t,b)
i := {r : ⟨w(t,b)

yi,r , ξi⟩ > σ0σp

√
d/

√
2}; S̃

(t,b)
i := {r : ⟨w(t,b)

yi,r , ξi⟩ > 0} (10)
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The following lemma suggests that the set of activated parameters S(t,0)
i is a non-decreasing sequence217

with regards to t, and the set of plain activated parameters S̃(t,b)
i always include S(t,0)

i . Consequently,218

S
(0,0)
i is always included in S̃

(t,b)
i , guaranteeing that ξi can always be learned by some parameter.219

And this further makes sure ρ
(t,b)
yi,r,i

is symmetric, as well as ℓ′(t,b1)i /ℓ
′(t,b2)
k ≤ C2.220

Lemma 3.4. For all t ∈ [0, T ∗] and b < H , we have221

S
(t−1,0)
i ⊆ S

(t,0)
i ⊆ S̃

(t,b)
i . (11)

As we have mentioned above, if noisy samples outnumber clean samples, γ(t,b)
j,r may also decrease.222

To deal with such scenario, we establish a two-stage analysis of γ(t,b)
j,r progress. In the first stage,223

when −ℓ′i is lower bounded by a positive constant, we prove that there are enough batches containing224

sufficient clear samples. This is characterized by the following high-probability event.225

Lemma 3.5. (Informal) With high probability, for all T ∈ [Õ(1), T ∗], there exist at least c1 · T226

epoches among [0, T ], such that at least c2 · H batches in each of these epoches satisfying the227

following condition:228

|S+ ∩ Sy ∩ It,b| ∈ [0.25B, 0.75B]. (12)

After the first stage of T = Θ(η−1m(P − 1)−2σ−2
p d−1) epochs, we would have γ

(T,0)
j,r =229

Ω
(
n

∥µ∥2
2

(P−1)2σ2
pd

)
. The scale of γ(T,0)

j,r guarantees that ⟨w(t,b)
j,r ,µ⟩ remains resistant to intra-epoch230

fluctuations. Consequently, this implies the sign of ⟨w(t,b)
j,r ,µ⟩ will persist unchanged throughout the231

entire epoch. Without loss of generality, we would suppose that ⟨w(t,b)
j,r ,µ⟩ > 0, then the update of232

γ
(t,b)
j,r can be written as follows:233

γ
(t+1,0)
j,r = γ

(t,0)
j,r +

η

Bm
·
[

min
i∈It,b,b

|ℓ′(t,b)i ||S+ ∩ S1| − max
i∈It,b,b

|ℓ′(t,b)i ||S− ∩ S−1|
]
· ∥µ∥22. (13)

As we have proved the balancing of logits ℓ′(t,b)i across batches, the progress analysis of γ(t+1,0)
j,r is234

established to characterize the signal learning of SGD.235

4 Result for SAM236

In this section, we present the positive results for SAM in the following theorem.237

Theorem 4.1. Choose τ = Θ
(

m
√
B

Pσp

√
d

)
, we train neural networks with SAM for238

O
(
η−1ϵ−1B−1mn∥µ∥−2

2

)
iteration. Then we can train the model with SGD, for any ϵ > 0,239

under Condition 3.1 with σ0 = Θ̃(P−1σ−1
p d−1/2), with probability at least 1 − δ there exists240

t = Õ
(
η−1ϵ−1B−1mnd−1P−2σ−2

p

)
such that:241

1. The training loss converges to ϵ, i.e., LS(W
(t)) ≤ ϵ.242

2. The test error L0−1
D (W(t)) ≤ p+ ϵ.243

In contrast to Theorem 3.2, Theorem 4.1 demonstrates that CNNs trained by SAM exhibit benign244

overfitting under much milder conditions. This condition is almost dimension-free, as opposed to the245

threshold of ∥µ∥42 ≥ Ω̃((d/n)P 4σ4
p) for CNNs trained by SGD. The discrepancy in the thresholds246

can be observed in Figure 1. This difference is because SAM introduces a perturbation during the247

model parameter update process, which effectively prevents the early-stage memorization of noise by248

deactivating the corresponding neurons.249

4.1 Noise Memorization Prevention250

In this subsection, we will show how SAM can prevent noise memorization by changing the activation251

pattern of the neurons. For SAM, we have the following update rule of decomposition coefficients252

γ
(t,b)
j,r , ρ

(t,b)
j,r,i , ρ

(t,b)
j,r,i

:253
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Lemma 4.2. The coefficients γ(t,b)
j,r , ρ

(t,b)
j,r,i , ρ

(t,b)
j,r,i

defined in Definition 3.3 satisfy the following iterative254

equations for all r ∈ [m], j ∈ {±1} and i ∈ [n]:255

γ
(0,0)
j,r , ρ

(0,0)
j,r,i , ρ

(0,0)
j,r,i

= 0,

γ
(t,b+1)
j,r = γ

(t,b)
j,r − η

Bm
·
[ ∑
i∈It,b∩S+

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r + ϵ̂
(t,b)
j,r , ŷi · µ⟩)

−
∑

i∈It,b∩S−

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r + ϵ̂
(t,b)
j,r , ŷi · µ⟩)

]
· ∥µ∥22,

ρ
(t,b+1)
j,r,i = ρ

(t,b)
j,r,i −

η(P − 1)2

Bm
· ℓ′(t,b)i · σ′(⟨w(t,b)

j,r + ϵ̂
(t,b)
j,r , ξi⟩) · ∥ξi∥22 · 1(yi = j)1(i ∈ It,b),

ρ(t,b+1)
j,r,i

= ρ(t,b)
j,r,i

+
η(P − 1)2

Bm
· ℓ′(t,b)i · σ′(⟨w(t,b)

j,r + ϵ̂
(t,b)
j,r , ξi⟩) · ∥ξi∥22 · 1(yi = −j)1(i ∈ It,b),

where It,b denotes the sample index set of the b-th batch in the t-th epoch.256

The primary distinction between SGD and SAM lies in how neuron activation is determined. In SAM,257

the activation is based on the perturbed weight w(t,b)
j,r + ϵ̂

(t,b)
j,r , whereas in SGD, it is determined by258

the unperturbed weight w(t,b)
j,r . This perturbation to the weight update process at each iteration gives259

SAM an intriguing denoising property. Specifically, if a neuron is activated by the SGD update, it260

will subsequently become deactivated after the perturbation, as stated in the following lemma.261

Lemma 4.3 (Informal). If ⟨w(t,b)
j,r , ξk⟩ ≥ 0, k ∈ It,b and j = yk, then ⟨w(t,b)

j,r + ϵ̂
(t,b)
j,r , ξk⟩ < 0.262

By leveraging this intriguing property, we can derive a constant upper bound for the noise coefficients263

ρ
(t,b)
j,r,i by considering the following cases:264

1. If ξi is not in the current batch, then ρ
(t,b)
j,r,i will not be updated in the current iteration.265

2. If ξi is in the current batch, we discuss two cases:266

(a) If ⟨w(t,b)
j,r , ξi⟩ ≥ 0, then by Lemma 4.3, one can know that σ′(⟨w(t,b)

j,r + ϵ̂
(t,b)
j,r , ξi⟩) = 0 and267

thus ρ(t,b)j,r,i will not be updated in the current iteration.268

(b) If ⟨w(t,b)
j,r , ξi⟩ ≤ 0, then given that ⟨w(t,b)

j,r , ξi⟩ ≈ ρ
(t,b)
j,r,i and ρ

(t,b+1)
j,r,i ≤ ρ

(t,b)
j,r,i +

η(P−1)2∥ξi∥2
2

Bm ,269

we can assert that, provided η is sufficiently small, the term ρ
(t,b)
j,r,i can be upper bounded by a270

small constant.271

In contrast to the analysis of SGD, which provides an upper bound for ρ(t,b)j,r,i of order O(log d),272

the noise memorization prevention property described in Lemma 4.3 allows us to obtain an upper273

bound for ρ(t,b)j,r,i of order O(1) throughout [0, T1]. This indicates that SAM memorizes less noise274

compared to SGD. On the other hand, the signal coefficient γ(t)
j,r,i also increases to Ω(1) for SAM,275

following the same argument as in SGD. This property ensures that training with SAM does not276

exhibit harmful overfitting for the same signal-to-noise ratio at which training with SGD suffers from277

harmful overfitting.278

5 Experiments279

In this section, we conduct synthetic experiments to validate our theory. Additional experiments on280

real data set can be found in Appendix D.281

We set training data size n = 20 without label-flipping noise. Since the learning problem is rotation-282

invariant, without loss of generality, we set µ = ∥µ∥2 · [1, 0, . . . , 0]⊤. We then generate the noise283

vector ξ from the Gaussian distribution N (0, σ2
pI) with fixed standard deviation σp = 1. We train a284

two-layer CNN model defined in Section 2 with ReLU activation function. The number of filters is285

set as m = 10. We use the default initialization method in PyTorch to initialize the CNN parameters286

and train the CNN with full-batch gradient descent with a learning rate of 0.1 for 100 iterations. We287

consider different dimensions d ranging from 1000 to 20000, and different signal strengths ∥µ∥2288
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Figure 2: (a) is a heatmap illustrating test error on synthetic data for various dimensions d and signal
strengths µ when trained using Vanilla Gradient Descent. High test errors are represented in blue,
while low test errors are shown in yellow. (b) displays a heatmap of test errors on the synthetic data
under the same conditions as in (a), but trained using SAM instead with τ = 0.03.

ranging from 0 to 10. Based on our results, for any dimension d and signal strength µ setting we289

consider, our training setup can guarantee a training loss smaller than 0.05. After training, we estimate290

the test error for each case using 1000 test data points. We report the test error heat map with average291

results over 10 runs in Figure 2.292

6 Related Work293

Sharpness Aware Minimization. Foret et al. (2020), and Zheng et al. (2021) concurrently introduced294

methods to enhance generalization by minimizing the loss in the worst direction, perturbed from the295

current parameter. Kwon et al. (2021) introduced ASAM, a variant of SAM, designed to address296

parameter re-scaling. Subsequently, Liu et al. (2022b) presented LookSAM, a more computationally297

efficient alternative. Zhuang et al. (2022) highlighted that SAM does not consistently favor the flat298

minima and proposed GSAM to improve generalization by minimizing the surrogate. Recently, Zhao299

et al. (2022) showed that SAM algorithm is related to gradient regularization (GR) method when loss300

is smooth, and proposed an algorithm which can be viewed as an generalization of SAM algorithm.301

Meng et al. (2023) further studied the mechanism of Per-Example Gradient Regularization (PEGR)302

on the CNN training and reveals that PEGR penalizes the variance of pattern learning.303

Benign Overfitting in Neural Networks. Since the pioneering work by Bartlett et al. (2020) on304

benign overfitting in linear regression, there is a surge of research studying benign overfitting in linear305

models, kernel methods and neural networks. Li et al. (2021); Montanari and Zhong (2022) examined306

benign overfitting in random feature or neural tangent kernel models defined in two-layer neural307

networks. Chatterji and Long (2022) studied the excess risk of interpolating deep linear networks308

trained by gradient flow. Understanding benign overfitting in neural networks beyond the linear/kernel309

regime is much more challenging because of the non-convexity of the problem. Recently, Frei et al.310

(2022) studied benign overfitting in fully-connected two-layer neural networks with smoothed leaky311

ReLU activation. Cao et al. (2022) provided an analysis for learning two-layer convolutional neural312

networks (CNNs) with polynomial ReLU activation function (ReLUq, q > 2). Kou et al. (2023)313

further investigates the phenomenon of benign overfitting in learning two-layer ReLU CNNs.314

7 Conclusion315

In this work, we rigorously analyze the training behavior of two-layer convolutional ReLU networks316

for both SGD and SAM. In particular, we precisely outlined the conditions under which benign317

overfitting can occur during SGD training, marking the first such finding for neural networks trained318

with mini-batch SGD. We also proved that SAM could lead to benign overfitting under circumstances319

that prompt harmful overfitting via SGD, which demonstrates the clear theoretical superiority of320

SAM over SGD. Our results provide a deeper comprehension of SAM, particularly when it comes321

to its utilization with non-smooth neural networks. An interesting future work is to consider other322

modern deep learning techniques, such as weight normalization, momentum, and weight decay, in323

our analysis.324

9



References325

ALLEN-ZHU, Z. and LI, Y. (2020). Towards understanding ensemble, knowledge distillation and326

self-distillation in deep learning. arXiv preprint arXiv:2012.09816 .327

ANDRIUSHCHENKO, M. and FLAMMARION, N. (2022). Towards understanding sharpness-aware328

minimization. In International Conference on Machine Learning. PMLR.329

BAHRI, D., MOBAHI, H. and TAY, Y. (2021). Sharpness-aware minimization improves language330

model generalization. arXiv preprint arXiv:2110.08529 .331

BARTLETT, P. L., LONG, P. M. and BOUSQUET, O. (2022). The dynamics of sharpness-aware332

minimization: Bouncing across ravines and drifting towards wide minima. arXiv preprint333

arXiv:2210.01513 .334

BARTLETT, P. L., LONG, P. M., LUGOSI, G. and TSIGLER, A. (2020). Benign overfitting in linear335

regression. Proceedings of the National Academy of Sciences .336

BEHDIN, K. and MAZUMDER, R. (2023). Sharpness-aware minimization: An implicit regularization337

perspective. arXiv preprint arXiv:2302.11836 .338

BEHDIN, K., SONG, Q., GUPTA, A., DURFEE, D., ACHARYA, A., KEERTHI, S. and MAZUMDER,339

R. (2022). Improved deep neural network generalization using m-sharpness-aware minimization.340

arXiv preprint arXiv:2212.04343 .341

CAO, Y., CHEN, Z., BELKIN, M. and GU, Q. (2022). Benign overfitting in two-layer convolutional342

neural networks. Advances in neural information processing systems 35 25237–25250.343

CHATTERJI, N. S. and LONG, P. M. (2021). Finite-sample analysis of interpolating linear classifiers344

in the overparameterized regime. Journal of Machine Learning Research 22 129–1.345

CHATTERJI, N. S. and LONG, P. M. (2022). Deep linear networks can benignly overfit when shallow346

ones do. arXiv preprint arXiv:2209.09315 .347

CHEN, X., HSIEH, C.-J. and GONG, B. (2021). When vision transformers outperform resnets348

without pre-training or strong data augmentations. arXiv preprint arXiv:2106.01548 .349

DEVROYE, L., MEHRABIAN, A. and REDDAD, T. (2018). The total variation distance between350

high-dimensional gaussians. arXiv preprint arXiv:1810.08693 .351

FORET, P., KLEINER, A., MOBAHI, H. and NEYSHABUR, B. (2020). Sharpness-aware minimization352

for efficiently improving generalization. arXiv preprint arXiv:2010.01412 .353

FREI, S., CHATTERJI, N. S. and BARTLETT, P. (2022). Benign overfitting without linearity: Neural354

network classifiers trained by gradient descent for noisy linear data. In Conference on Learning355

Theory. PMLR.356

JELASSI, S. and LI, Y. (2022). Towards understanding how momentum improves generalization in357

deep learning. In International Conference on Machine Learning. PMLR.358

KOU, Y., CHEN, Z., CHEN, Y. and GU, Q. (2023). Benign overfitting for two-layer relu networks.359

arXiv preprint arXiv:2303.04145 .360

KWON, J., KIM, J., PARK, H. and CHOI, I. K. (2021). Asam: Adaptive sharpness-aware minimiza-361

tion for scale-invariant learning of deep neural networks. In International Conference on Machine362

Learning. PMLR.363

LI, Z., ZHOU, Z.-H. and GRETTON, A. (2021). Towards an understanding of benign overfitting in364

neural networks. arXiv preprint arXiv:2106.03212 .365

LIU, Y., MAI, S., CHEN, X., HSIEH, C.-J. and YOU, Y. (2022a). Towards efficient and scalable366

sharpness-aware minimization. In Proceedings of the IEEE/CVF Conference on Computer Vision367

and Pattern Recognition (CVPR).368

10



LIU, Y., MAI, S., CHEN, X., HSIEH, C.-J. and YOU, Y. (2022b). Towards efficient and scalable369

sharpness-aware minimization. In Proceedings of the IEEE/CVF Conference on Computer Vision370

and Pattern Recognition.371

MENG, X., CAO, Y. and ZOU, D. (2023). Per-example gradient regularization improves learning372

signals from noisy data. arXiv preprint arXiv:2303.17940 .373

MONTANARI, A. and ZHONG, Y. (2022). The interpolation phase transition in neural networks:374

Memorization and generalization under lazy training. The Annals of Statistics 50 2816–2847.375

SHEN, R., BUBECK, S. and GUNASEKAR, S. (2022). Data augmentation as feature manipulation: a376

story of desert cows and grass cows. arXiv preprint arXiv:2203.01572 .377

VERSHYNIN, R. (2018). High-Dimensional Probability: An Introduction with Applications in Data378

Science. Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University379

Press.380

WEN, K., MA, T. and LI, Z. (2022). How does sharpness-aware minimization minimize sharpness?381

arXiv preprint arXiv:2211.05729 .382

ZHANG, C., BENGIO, S., HARDT, M., RECHT, B. and VINYALS, O. (2021). Understanding deep383

learning (still) requires rethinking generalization. Communications of the ACM 64 107–115.384

ZHAO, Y., ZHANG, H. and HU, X. (2022). Penalizing gradient norm for efficiently improving385

generalization in deep learning. In International Conference on Machine Learning. PMLR.386

ZHENG, Y., ZHANG, R. and MAO, Y. (2021). Regularizing neural networks via adversarial model387

perturbation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern388

Recognition.389

ZHUANG, J., GONG, B., YUAN, L., CUI, Y., ADAM, H., DVORNEK, N., TATIKONDA, S., DUNCAN,390

J. and LIU, T. (2022). Surrogate gap minimization improves sharpness-aware training. arXiv391

preprint arXiv:2203.08065 .392

11



A Preliminary Lemmas393

Lemma A.1 (Lemma B.4 in Kou et al. (2023)). Suppose that δ > 0 and d = Ω(log(6n/δ)). Then394

with probability at least 1− δ,395

σ2
pd/2 ≤ ∥ξi∥22 ≤ 3σ2

pd/2,

|⟨ξi, ξi′⟩| ≤ 2σ2
p ·
√
d log(6n2/δ),

|⟨ξi,µ⟩| ≤ ∥µ∥2σp ·
√

2 log(6n/δ)

for all i, i′ ∈ [n].396

Lemma A.2 (Lemma B.5 in Kou et al. (2023)). Suppose that d = Ω(log(mn/δ)), m = Ω(log(1/δ)).397

Then with probability at least 1− δ,398

σ2
0d/2 ≤ ∥w(0,0)

j,r ∥22 ≤ 3σ2
0d/2,

|⟨w(0,0)
j,r ,µ⟩| ≤

√
2 log(12m/δ) · σ0∥µ∥2,

|⟨w(0,0)
j,r , ξi⟩| ≤ 2

√
log(12mn/δ) · σ0σp

√
d

for all r ∈ [m], j ∈ {±1} and i ∈ [n]. Moreover,399

σ0∥µ∥2/2 ≤ max
r∈[m]

j · ⟨w(0,0)
j,r ,µ⟩ ≤

√
2 log(12m/δ) · σ0∥µ∥2,

σ0σp

√
d/4 ≤ max

r∈[m]
j · ⟨w(0,0)

j,r , ξi⟩ ≤ 2
√

log(12mn/δ) · σ0σp

√
d

for all j ∈ {±1} and i ∈ [n].400

Lemma A.3. Let S(t,b)
i denote {r : ⟨w(t,b)

yi,r , ξi⟩ > σ0σp

√
d/

√
2⟩}. Suppose that δ > 0 and401

m ≥ 50 log(2n/δ). Then with probability at least 1− δ,402

|S(0,0)
i | ≥ 0.8Φ(−1)m, ∀i ∈ [n].

Proof of Lemma A.3. Since ⟨w(0,0)
yi,r , ξi⟩ ∼ N (0, σ2

0∥ξi∥22), we have403

P (⟨w(0,0)
yi,r , ξi⟩ > σ0σp

√
d/

√
2) ≥ P (⟨w(0,0)

yi,r , ξi⟩ > σ0∥ξi∥2) = Φ(−1),

where Φ(·) is CDF of the standard normal distribution. Note that |S(0,0)
i | =

∑m
r=1 1[⟨w

(0,0)
yi,r , ξi⟩ >404

σ0σp

√
d/

√
2] and P

(
⟨w(0,0)

yi,r , ξi⟩ > σ0σp

√
d/

√
2
)
≥ Φ(−1), then by Hoeffding’s inequality, with405

probability at least 1− δ/n, we have406

|S(0,0)
i |
m

≥ Φ(−1)−
√

log(2n/δ)

2m
.

Therefore, as long as 0.2
√
mΦ(−1) ≥

√
log(2n/δ)

2 , by applying union bound, with probability at407

least 1− δ, we have408

|S(0)
i | ≥ 0.8Φ(−1)m, ∀i ∈ [n].

409

Lemma A.4. Let S(t,b)
j,r denote {i ∈ [n] : yi = j, ⟨w(t,b)

yi,r , ξi⟩ > σ0σp

√
d/

√
2}. Suppose that δ > 0410

and n ≥ 32 log(4m/δ). Then with probability at least 1− δ,411

|S(0)
j,r | ≥ nΦ(−1)/4, ∀j ∈ {±1}, r ∈ [m].

Proof of Lemma A.4. Since ⟨w(0,0)
j,r , ξi⟩ ∼ N (0, σ2

0∥ξi∥22), we have412

P (⟨w(0,0)
j,r , ξi⟩ > σ0σp

√
d/

√
2) ≥ P (⟨w(0,0)

j,r , ξi⟩ > σ0∥ξi∥2) = Φ(−1),

where Φ(·) is CDF of the standard normal distribution.413

12



Note that |S(0,0)
j,r | =

∑n
i=1 1[yi = j]1[⟨w(0)

j,r , ξi⟩ > σ0σp

√
d/

√
2] and P(yi = j, ⟨w(0)

j,r , ξi⟩ >414

σ0σp

√
d/

√
2) ≥ Φ(−1)/2, then by Hoeffding’s inequality, with probability at least 1− δ/2m, we415

have416

|S(0)
j,r |
n

≥ Φ(−1)/2 +

√
log(4m/δ)

2n
.

Therefore, as long as Φ(−1)/4 ≥
√

log(4m/δ)
2n , by applying union bound, we have with probability417

at least 1− δ,418

|S(0)
j,r | ≥ nΦ(−1)/4, ∀j ∈ {±1}, r ∈ [m].

419

Lemma A.5 (Lemma B.3 in Kou et al. (2023)). For |S+ ∩ Sy| and |S− ∩ Sy| where y ∈ {±1}, it420

holds with probability at least 1− δ(δ > 0) that421 ∣∣∣|S+ ∩ Sy| −
(1− p)n

2

∣∣∣ ≤√n

2
log
(8
δ

)
,
∣∣∣|S− ∩ Sy| −

pn

2

∣∣∣ ≤√n

2
log
(8
δ

)
,∀ y ∈ {±1}.

Lemma A.6. It holds with probability at least 1 − δ, for all T ∈ [ log(2T
∗/δ)

c23
, T ∗] and y ∈ {±1},422

there exist at least c3 ·T epochs among [0, T ], such that at least c4 ·H batches in these epochs, satisfy423

|S+ ∩ Sy ∩ It,b| ∈
[
B

4
,
3B

4

]
. (14)

Proof. Let424

E1,t := {In epoch t, there are at least c2 ·
n

B
batches such that 14 holds for y = 1},

E1,t,b := {In epoch t natch b, 14 holds for y = 1}.

First let n big enough, then we have S+ ∩ Sy ∈
[ 3(1−p)n

8 , 5(1−p)n
8

]
. We consider the first c1H425

batches. At the time we are starting to sample h-th batch in the first c1H batches, suppose there are426

n1 samples that belong to S+ ∩ Sy and there are n2 samples that don’t belong to S+ ∩ Sy. Then427

n1 ≥ 3(1−p)n
8 − c1n ≥ 5(1−p)n

16 and n2 ≥ 3(1−p)n
8 − c1n ≥ 5(1−p)n

16 .428

P(E1,t,h) =
∑3B/4

l=B/4 C
l
BC

l
n1
CB−l

n2

CB
n

≥

∑3B/4
l=1B/4 C

l
BC

l
5(1−p)n

16

CB−l
5(1−p)n

16

CB
n

≥
B
2 C

B/4
B ( 9(1−p)n

32 )B/B!

nB/B!

=
B

2
C

B/4
B

(
9(1− p)

32

)B

:= 2c2.

Then, the probability that there are less than c1c2H batches in first c1H batches such that 14 holds is:429

c1c2H−1∑
i=0

∑
∑

lh=i

P[1(E1,t,0) = l0]P[1(E1,t,1) = l1|1(E1,t,0) = l0] · · ·

P[1(E1,t,c1H−1) = lc1H−1|1(E1,t,0) = l0, · · · ,1(E1,t,c1H−2) = lc1H−2]

≤
c1c2H∑
i=0

Ci
c1H(1− 2c2)

c1H−i

≤ c1c2H · (2c2)c1c2H(1− 2c2)
c1H−c1c2H
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Choose H0 such that c1c2H0 · (2c2)c1c2H0(1−2c2)
c1H0−c1c2H0 = 1−2c3, then as long as H ≥ H0,430

with probability c3, there are at least c1c2H batches in first c1H batches such that 14 holds. Then431

P[E1,t] ≥ 2c3.432

Therefore,433

P(
∑
t

1(Et)− 2Tc3 ≤ −t) ≤ exp(−2t2

T
)

Let T ≥ log(2T∗/δ)
2c23

. Then, with probability at least 1− δ/(2T ∗),434 ∑
t

1(E1,t) ≥ c3T.

Let c4 = c1c2. Thus there are at least c3T ∗ epochs, such that they have at least c4H batches satisfying435

EquationA.6. This also holds for y = −1. Taking a union bound to get the result.436

B Result of SGD437

In this section, we build the result for SGD. We first define some notations. Define H = n/B as438

the number of batches within an epoch. For any t1, t2 and b1, b2 ∈ [H], we write (t1, b1) ≤ (t, b) ≤439

(t2, b2) to denote all iterations from t1-th epoch’s b1-th batch (included) to t2-th epoch’s b2-th batch440

(included). And the meanings change accordingly if we replace ≤ with <.441

B.1 Signal-noise Decomposition Coefficient Analysis442

This part is dedicated to analyzing the update rule of Signal-noise Decomposition Coefficients. It is443

worth noting that444

Fj(W,X) =
1

m

m∑
r=1

P∑
p=1

σ(⟨wj,r,xp⟩) =
1

m

m∑
r=1

σ(⟨wj,r, ŷµ⟩) + (P − 1)σ(⟨wj,r, ξ⟩).

Let It,b denote the set of indices of randomly chosen samples at epoch t batch b, and |It,b| = B, then445

the update rule is:446

for b ∈ [H] w
(t,b+1)
j,r = w

(t,b)
j,r − η · ∇wj,rLIt,b

(W(t,b))

= w
(t,b)
j,r − η(P − 1)

Bm

∑
i∈It,b

ℓ
′(t,b)
i · σ′(⟨w(t,b)

j,r , ξi⟩) · jyiξi

− η

Bm

∑
i∈It,b

ℓ
′(t,b)
i · σ′(⟨w(t,b)

j,r , ŷiµ⟩) · jyiŷiµ

and w
(t+1,0)
j,r = w

(t,H)
j,r (15)

B.1.1 Iterative Expression for Decomposition Coefficient Analysis447

Lemma B.1. The coefficients γ(t,b)
j,r , ρ

(t,b)
j,r,i , ρ

(t,b)
j,r,i

defined in Definition 3.3 satisfy the following itera-448

tive equations:449

γ
(0,0)
j,r , ρ

(0,0)
j,r,i , ρ

(0,0)
j,r,i

= 0, (16)

γ
(t,b+1)
j,r = γ

(t,b)
j,r − η

Bm
·
[ ∑
i∈It,b∩S+

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , ŷi · µ⟩)

−
∑

i∈It,b∩S−

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , ŷi · µ⟩)
]
· ∥µ∥22, (17)

ρ
(t,b+1)
j,r,i = ρ

(t,b)
j,r,i −

η(P − 1)2

Bm
· ℓ′(t,b)i · σ′(⟨w(t,b)

j,r , ξi⟩) · ∥ξi∥22 · 1(yi = j)1(i ∈ It,b), (18)

14



ρ(t,b+1)
j,r,i

= ρ(t,b)
j,r,i

+
η(P − 1)2

Bm
· ℓ′(t,b)i · σ′(⟨w(t,b)

j,r , ξi⟩) · ∥ξi∥22 · 1(yi = −j)1(i ∈ It,b), (19)

for all r ∈ [m], j ∈ {±1} and i ∈ [n].450

Proof. First, we iterate the gradient descent update rule t epochs plus b batches and get451

w
(t,b)
j,r = w

(0,0)
j,r − η(P − 1)

Bm

∑
(t′,b′)<(t,b)

∑
i∈It′,b′

ℓ
′(t′,b′)
i · σ′(⟨w(t′,b′)

j,r , ξi⟩) · jyi(P − 1)ξi

− η

Bm

∑
(t′,b′)<(t,b)

∑
i∈Is,k

ℓ
′(t′,b′)
i · σ′(⟨w(t′,b′)

j,r , ŷiµ⟩) · yiŷijµ

According to the definition of γ(t)
j,r and ρ

(t)
j,r,i,452

w
(t,b)
j,r = w

(0,0)
j,r + j · γ(t,b)

j,r · ∥µ∥−2
2 · µ+

1

P − 1

n∑
i=1

ρ
(t,b)
j,r,i · ∥ξi∥

−2
2 · ξi.

Since ξi and µ are linearly independent with probability 1, we have the unique representation as453

follows:454

ρ
(t,b)
j,r,i = −η(P − 1)2

Bm

∑
(t′,b′)<(t,b)

ℓ
′(t′,b′)
i · σ′(⟨w(t′,b′)

j,r , ξi⟩) · ∥ξi∥22 1(i ∈ Is,k)yij

γ
(t,b)
j,r = − η

Bm

∑
(t′,b′)<(t,b)

[ ∑
i∈It′,b′∩S+

ℓ
′(t′,b′)
i σ′(⟨w(t′,b′)

j,r , yi · µ⟩)

−
∑

i∈It′,b′∩S−

ℓ
′(t′,b′)
i σ′(⟨w(t′,b′)

j,r , yi · µ⟩)
]
∥µ∥22

Since we define ρ
(t,b)
j,r,i := ρ

(t,b)
j,r,i 1(ρ

(t,b)
j,r,i ≥ 0), ρ(t)

j,r,i
:= ρ

(t,b)
j,r,i 1(ρ

(t,b)
j,r,i ≤ 0), we obtain455

ρ
(t,b)
j,r,i = −η(P − 1)2

Bm

∑
(t′,b′)<(t,b)

ℓ
′(t′,b′)
i · σ′(⟨w(t′,b′)

j,r , ξi⟩) · ∥ξi∥22 1(i ∈ It′,b′)1(yi = j)

ρ(t,b)
j,r,i

=
η(P − 1)2

Bm

∑
(t′,b′)<(t,b)

ℓ
′(t′,b′)
i · σ′(⟨w(t′,b′)

j,r , ξi⟩) · ∥ξi∥22 1(i ∈ It′,b′)1(yi = −j)

And the iterative update equations (17), (18), and (19) follow directly.456

B.1.2 Scale of Decomposition Coefficients457

We first define T ∗ = η−1poly(ϵ−1, d, n,m) and458

α := 4 log(T ∗), (20)

β := 2max
i,j,r

{|⟨w(0,0)
j,r ,µ⟩|, (P − 1)|⟨w(0,0)

j,r , ξi⟩|}, (21)

SNR :=
∥µ∥2

(P − 1)σp

√
d
. (22)

By Lemma A.2 and Condition 3.1, β can be bounded as459

β = 2max
i,j,r

{|⟨w(0,0)
j,r ,µ⟩|, (P − 1)|⟨w(0,0)

j,r , ξi⟩|}

≤ 2max{
√

2 log(12m/δ) · σ0∥µ∥2, 2
√
log(12mn/δ) · σ0(P − 1)σp

√
d}

= O
(√

log(mn/δ) · σ0(P − 1)σp

√
d
)

Then, by Condition 3.1, we have the following inequality:460

max

{
β,SNR

√
32 log(6n/δ)

d
nα, 5

√
log(6n2/δ)

d
nα

}
≤ 1

12
. (23)

We first prove the following bounds for signal-noise decomposition coefficients.461
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Proposition B.2. Under Assumption 3.1, for (0, 0) ≤ (t, b) ≤ (T ∗, 0), we have that462

γ
(0,0)
j,r , ρ

(0,0)
j,r,i , ρ

(0,0)
j,r,i

= 0 (24)

0 ≤ ρ
(t,b)
j,r,i ≤ α, (25)

0 ≥ ρ(t,b)
j,r,i

≥ −β − 10

√
log(6n2/δ)

d
nα ≥ −α, (26)

and there exists a positive constant C ′ such that463

− 1

12
≤ γ

(t,b)
j,r ≤ C ′γ̂α, (27)

for all r ∈ [m], j ∈ {±1} and i ∈ [n], where γ̂ := n · SNR2.464

We will prove Proposition B.2 by induction. We first approximate the change of inner product by465

corresponding decomposition coefficients when Proposition B.2 holds.466

Lemma B.3. Under Assumption 3.1, suppose (25), (26) and (27) hold after b-th batch of t-th epoch.467

Then, for all r ∈ [m], j ∈ {±1} and i ∈ [n],468 ∣∣⟨w(t,b)
j,r −w

(0,0)
j,r ,µ⟩ − j · γ(t,b)

j,r

∣∣ ≤ SNR

√
32 log(6n/δ)

d
nα, (28)

∣∣⟨w(t,b)
j,r −w

(0,0)
j,r , ξi⟩ −

1

P − 1
ρ(t,b)
j,r,i

∣∣ ≤ 5

P − 1

√
log(6n2/δ)

d
nα, j ̸= yi, (29)

∣∣⟨w(t,b)
j,r −w

(0,0)
j,r , ξi⟩ −

1

P − 1
ρ
(t,b)
j,r,i

∣∣ ≤ 5

P − 1

√
log(6n2/δ)

d
nα, j = yi. (30)

Proof of Lemma B.3. First, for any time (t, b) ≥ (0, 0), we have from the following decomposition469

by dinitions,470

⟨w(t,b)
j,r −w

(0,0)
j,r ,µ⟩ = j · γ(t,b)

j,r +
1

P − 1

n∑
i′=1

ρ
(t,b)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ ,µ⟩

+
1

P − 1

n∑
i′=1

ρ(t,b)
j,r,i′

∥ξi′∥−2
2 · ⟨ξi′ ,µ⟩

According to Lemma A.1, we have471 ∣∣∣∣∣ 1

P − 1

n∑
i′=1

ρ
(t,b)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ ,µ⟩+

1

P − 1

n∑
i′=1

ρ(t,b)
j,r,i′

∥ξi′∥−2
2 · ⟨ξi′ ,µ⟩

∣∣∣∣∣
≤ 1

P − 1

n∑
i′=1

|ρ(t,b)j,r,i′ |∥ξi′∥
−2
2 · |⟨ξi′ ,µ⟩|+

1

P − 1

n∑
i′=1

|ρ(t,b)
j,r,i′

|∥ξi′∥−2
2 · |⟨ξi′ ,µ⟩|

≤
2∥µ∥2

√
2 log(6n/δ)

(P − 1)σpd

( n∑
i′=1

|ρ(t,b)j,r,i′ |+
n∑

i′=1

|ρ(t,b)
j,r,i′

|
)

= SNR

√
8 log(6n/δ)

d

( n∑
i′=1

|ρ(t,b)j,r,i′ |+
n∑

i′=1

|ρ(t,b)
j,r,i′

|
)

≤ SNR

√
32 log(6n/δ)

d
nα,

where the first inequality is by triangle inequality, the second inequality is by Lemma A.1, the equality472

is by SNR = ∥µ∥2/((P − 1)σp

√
d), and the last inequality is by (25), (26). It follows that473 ∣∣⟨w(t,b)

j,r −w
(0,0)
j,r ,µ⟩ − j · γ(t,b)

j,r

∣∣ ≤ SNR

√
32 log(6n/δ)

d
nα.
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Then, for j ̸= yi and any t ≥ 0, we have474

⟨w(t,b)
j,r −w

(0,0)
j,r , ξi⟩

= j · γ(t,b)
j,r ∥µ∥−2

2 · ⟨µ, ξi⟩+
1

P − 1

n∑
i′=1

ρ
(t,b)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ , ξi⟩

+
1

P − 1

n∑
i′=1

ρ(t,b)
j,r,i′

∥ξi′∥−2
2 · ⟨ξi′ , ξi⟩

= j · γ(t,b)
j,r ∥µ∥−2

2 · ⟨µ, ξi⟩+
1

P − 1

n∑
i′=1

ρ(t,b)
j,r,i′

∥ξi′∥−2
2 · ⟨ξi′ , ξi⟩

=
1

P − 1
ρ(t,b)
j,r,i

+ j · γ(t,b)
j,r ∥µ∥−2

2 · ⟨µ, ξi⟩+
1

P − 1

∑
i′ ̸=i

ρ(t,b)
j,r,i′

∥ξi′∥−2
2 · ⟨ξi′ , ξi⟩,

where the second equality is due to ρ(t,b)
j,r,i

= 0 for j ̸= yi. Next, we have475 ∣∣∣∣j · γ(t,b)
j,r ∥µ∥−2

2 · ⟨µ, ξi⟩+
1

P − 1

∑
i′ ̸=i

ρ(t,b)
j,r,i′

∥ξi′∥−2
2 · ⟨ξi′ , ξi⟩

∣∣∣∣
≤ |γ(t,b)

j,r |∥µ∥−2
2 · |⟨µ, ξi⟩|+

1

P − 1

∑
i′ ̸=i

|ρ(t,b)
j,r,i′

|∥ξi′∥−2
2 · |⟨ξi′ , ξi⟩|

≤ |γ(t,b)
j,r |∥µ∥−1

2 σp

√
2 log(6n/δ) +

4

P − 1

√
log(6n2/δ)

d

∑
i′ ̸=i

|ρ(t,b)
j,r,i′

|

=
SNR−1

P − 1

√
2 log(6n/δ)

d
|γ(t,b)

j,r |+ 4

P − 1

√
log(6n2/δ)

d

∑
i′ ̸=i

|ρ(t,b)
j,r,i′

|

≤ SNR

P − 1

√
8C2 log(6n/δ)

d
nα+

4

P − 1

√
log(6n2/δ)

d
nα

≤ 5

P − 1

√
log(6n2/δ)

d
nα,

where the first inequality is by triangle inequality; the second inequality is by Lemma A.1; the476

equality is by SNR = ∥µ∥2/σp

√
d; the third inequality is by (26) and (27); the forth inequality is by477

SNR ≤ 1/
√
8C ′2. Therefore, for j ̸= yi, we have478 ∣∣⟨w(t,b)

j,r −w
(0,0)
j,r , ξi⟩ −

1

P − 1
ρ(t,b)
j,r,i

∣∣ ≤ 5

P − 1

√
log(6n2/δ)

d
nα.

Similarly, we have for yi = j that479

⟨w(t,b)
j,r −w

(0,0)
j,r , ξi⟩

= j · γ(t,b)
j,r ∥µ∥−2

2 · ⟨µ, ξi⟩+
1

P − 1

n∑
i′=1

ρ
(t,b)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ , ξi⟩

+
1

P − 1

n∑
i′=1

ρ(t,b)
j,r,i′

∥ξi′∥−2
2 · ⟨ξi′ , ξi⟩

= j · γ(t,b)
j,r ∥µ∥−2

2 · ⟨µ, ξi⟩+
1

P − 1

n∑
i′=1

ρ
(t,b)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ , ξi⟩

=
1

P − 1
ρ
(t,b)
j,r,i + j · γ(t,b)

j,r ∥µ∥−2
2 · ⟨µ, ξi⟩+

1

P − 1

∑
i′ ̸=i

ρ
(t,b)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ , ξi⟩,

and480 ∣∣∣∣j · γ(t,b)
j,r ∥µ∥−2

2 · ⟨µ, ξi⟩+
∑
i′ ̸=i

ρ
(t,b)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ , ξi⟩

∣∣∣∣
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≤ SNR−1

P − 1

√
2 log(6n/δ)

d
|γ(t,b)

j,r |+ 4

P − 1

√
log(6n2/δ)

d

∑
i′ ̸=i

|ρ(t,b)j,r,i′ |

≤ SNR

P − 1

√
8C2 log(6n/δ)

d
nα+

4

P − 1

√
log(6n2/δ)

d
nα

≤ 5

P − 1

√
log(6n2/δ)

d
nα,

where the second inequality is by (25) and (27), and the third inequality is by SNR ≤ 1/
√
8C ′2.481

Therefore, for j = yi, we have482 ∣∣⟨w(t,b)
j,r −w

(0,0)
j,r , ξi⟩ −

1

P − 1
ρ
(t,b)
j,r,i

∣∣ ≤ 5

P − 1

√
log(6n2/δ)

d
nα.

483

Lemma B.4. Under Condition 3.1, suppose (25), (26) and (27) hold after b-th batch of t-th epoch.484

Then, for all j ̸= yi, j ∈ {±1} and i ∈ [n], Fj(W
(t,b)
j ,xi) ≤ 0.5.485

Proof of Lemma B.4. According to Lemma B.3, we have486

Fj(W
(t,b)
j ,xi) =

1

m

m∑
r=1

[σ(⟨w(t,b)
j,r , yiµ⟩) + (P − 1)σ(⟨w(t,b)

j,r , ξi⟩)]

≤ 2max{⟨w(t,b)
j,r , yiµ⟩, (P − 1)⟨w(t,b)

j,r , ξi⟩, 0}

≤ 6max

{
⟨w(0)

j,r , yiµ⟩, (P − 1)⟨w(0)
j,r , ξi⟩,SNR

√
32 log(6n/δ)

d
nα, yijγ

(t,b)
j,r ,

5

√
log(6n2/δ)

d
nα+ ρ(t,b)

j,r,i

}
≤ 6max

{
β/2,SNR

√
32 log(6n/δ)

d
nα,−γ

(t,b)
j,r , 5

√
log(6n2/δ)

d
nα

}
≤ 0.5,

where the second inequality is by (28), (29) and (30); the third inequality is due to the definition of β487

and ρ(t,b)
j,r,i

< 0; the third inequality is by (23) and −γ
(t,b)
j,r ≤ 1

12 .488

489

Lemma B.5. Under Condition 3.1, suppose (25), (26) and (27) hold at b-th batch of t-th epoch.490

Then, it holds that491

(P − 1)⟨w(t,b)
yi,r , ξi⟩ ≥ −0.25,

(P − 1)⟨w(t,b)
yi,r , ξi⟩ ≤ (P − 1)σ(⟨w(t,b)

yi,r , ξi⟩) ≤ (P − 1)⟨w(t,b)
yi,r , ξi⟩+ 0.25,

for any i ∈ [n].492

Proof of Lemma B.5. According to (30) in Lemma B.3, we have493

(P − 1)⟨w(t,b)
yi,r , ξi⟩ ≥ (P − 1)⟨w(0,0)

yi,r , ξi⟩+ ρ
(t,b)
yi,r,i

− 5n

√
log(6n2/δ)

d
α

≥ −β − 5n

√
log(6n2/δ)

d
α

≥ −0.25,

where the second inequality is due to ρ
(t,b)
yi,r,i

≥ 0, the third inequality is due to β < 1/8 and494

5n
√
log(6n2/δ)/d · α < 1/8 by Condition 3.1.495
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For the second equation, the first inequality holds naturally since z ≤ σ(z). For the inequality, if496

⟨w(t)
yi,r, ξi⟩ ≤ 0, we have497

(P − 1)σ(⟨w(t,b)
yi,r , ξi⟩) = 0 ≤ (P − 1)⟨w(t,b)

yi,r , ξi⟩+ 0.25.

And if ⟨w(t,b)
yi,r , ξi⟩ > 0, we have498

(P − 1)σ(⟨w(t,b)
yi,r , ξi⟩) = (P − 1)⟨w(t,b)

yi,r , ξi⟩ < (P − 1)⟨w(t,b)
yi,r , ξi⟩+ 0.25.

499

Lemma B.6 (Lemma C.6 in Kou et al. (2023)). Let g(z) = ℓ′(z) = −1/(1 + exp(z)), then for all500

z2 − c ≥ z1 ≥ −1 where c ≥ 0 we have that501

exp(c)

4
≤ g(z1)

g(z2)
≤ exp(c).

Lemma B.7. For any iteration t ∈ [0, T ∗) and b, b1, b2 ∈ [H], we have the following statements502

hold:503

1.
∣∣∣∑m

r=1

[
ρ
(t,0)
yi,r,i

− ρ
(t,0)
yk,r,k

]
−
∑m

r=1

[
ρ
(t,b1)
yi,r,i

− ρ
(t,b2)
yk,r,k

]∣∣∣ ≤ 0.1κ.504

2. ⟨w(t,b)
yi,r , ξi⟩ ≥ ⟨w(t,0)

yi,r , ξi⟩ − σ0σp

√
d/

√
2505

3. Let S̃(t,b)
i = {r ∈ [m] : ⟨w(t,b)

yi,r , ξi⟩ > 0}, then we have506

S
(t,0)
i ⊆ S̃

(t,b)
i

4. Let S̃(t,b)
j,r = {i ∈ [n] : yi = j, ⟨w(t,b)

j,r , ξi⟩ > 0}, then we have507

S
(t,0)
j,r ⊆ S̃

(t,b)
j,r

Proof. For the first statement,508 ∣∣∣ m∑
r=1

[
ρ
(t,0)
yi,r,i

− ρ
(t,0)
yk,r,k

]
−

m∑
r=1

[
ρ
(t,b1)
yi,r,i

− ρ
(t,b2)
yk,r,k

]∣∣∣
≤ η(P − 1)2

Bm
max

{
|S(t̃−1,b1)

i ||ℓ′(t̃−1,b1)
i | · ∥ξi∥22, |S

(t̃−1,b2)
k ||ℓ′(t̃−1,b2)

k | · ∥ξk∥22
}

≤ η(P − 1)2

B

3σ2
pd

2
≤ 0.1κ,

where the first inequality follows from the iterative update rule of ρ(t,b)j,r,i , the second inequality is due509

to Lemma A.2, and the last inequality is due to Condition 3.1.510

For the second statement, recall that the stochastic gradient update rule is511

⟨w(t,b)
yi,r , ξi⟩ = ⟨w(t,b−1)

yi,r , ξi⟩ −
η

Bm
·
∑

i′∈It,b−1

ℓ
(t,b−1)
i′ · σ′(⟨w(t,b−1)

yi,r , yi′µ⟩) · ⟨yi′µ, ξi⟩yi′

− η(P − 1)

Bm
·

∑
i′∈It,b−1/i

ℓ
(t,b−1)
i′ · σ′(⟨w(t,b−1)

yi,r , ξi′⟩) · ⟨ξi′ , ξi⟩.

Therefore,512

⟨w(t,b)
yi,r , ξi⟩ ≥ ⟨w(t,0)

yi,r , ξi⟩ −
η

Bm
· n · ∥µ∥2σp

√
2 log(6n/δ)− η(P − 1)

Bm
· n · 2σ2

p

√
d log(6n2/δ)

≥ ⟨w(t,0)
yi,r , ξi⟩ − σ0σp

√
d/

√
2,
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where the first inequality is due to Lemma A.1, and the second inequality is due to Condition 3.1513

For the third statement. Let r∗ ∈ S
(t,0)
i , then514

⟨w(t,b)
yi,r∗ , ξi⟩ ≥ ⟨w(t,0)

yi,r∗ , ξi⟩ − σ0σp

√
d/

√
2 > 0,

where the first inequality is due to the second statement, and the second inequality is due to the515

definition of S̃t,0
i . Therefore, r∗ ∈ S̃

(t,b)
i and S

(t,b)
i ⊆ S̃

(t,b)
i . The forth statement can be obtained516

similarly.517

Lemma B.8. Under Assumption 3.1, suppose (25), (26) and (27) hold for any iteration (t′, b′) ≤518

(t, 0). Then, the following conditions also hold for ∀t′ ≤ t and ∀b′, b′1, b′2 ∈ [H]:519

1.
∑m

r=1

[
ρ
(t′,0)
yi,r,i

− ρ
(t′,0)
yk,r,k

]
≤ κ for all i, k ∈ [n].520

2. yi · f(W(t′,b′1),xi)− yk · f(W(t′,b′2),xk) ≤ C1 for all i, k ∈ [n],521

3. ℓ
′(t′,b′1)
i /ℓ

′(t′,b′2)
k ≤ C2 = exp(C1) for all i, k ∈ [n].522

4. S
(0,0)
i ⊆ S

(t′,0)
i , where S

(t′,0)
i := {r ∈ [m] : ⟨w(t′,0)

yi,r , ξi⟩ > σ0σp

√
d/

√
2}, and hence523

|S(t′,0)
i | ≥ 0.8mΦ(−1) for all i ∈ [n].524

5. S
(0,0)
j,r ⊆ S

(t′,0)
j,r , where S

(t′,0)
j,r := {i ∈ [n] : yi = j, ⟨w(t′,0)

j,r , ξi⟩ > σ0σp

√
d/

√
2}, and hence525

|S(t′,0)
j,r | ≥ Φ(−1)n/4 for all j ∈ {±1}, r ∈ [m].526

Here we take κ and C1 as 10 and 5 respectively.527

Proof of Lemma B.8. We prove Lemma B.8 by induction. When t′ = 0, the fourth and fifth conditions528

hold naturally by Lemma A.3 and A.4.529

For the first condition, since we have ρ
(0,0)
j,r,i = 0 for any j, r, i according to (24), it is straightforward530

that
∑m

r=1

[
ρ
(0,0)
yi,r,i

− ρ
(0,0)
yk,r,k

]
= 0 for all i, k ∈ [n]. So the first condition holds for t′ = 0.531

For the second condition, we have532

yi · f(W(0,0),xi)− yk · f(W(0,0),xk)

= Fyi
(W(0,0)

yi
,xi)− F−yi

(W
(0,0)
−yi

,xi) + F−yk
(W

(0,0)
−yk

,xi)− Fyk
(W(0,0)

yk
,xi)

≤ Fyi
(W(0,0)

yi
,xi) + F−yk

(W
(0,0)
−yk

,xi)

=
1

m

m∑
r=1

[σ(⟨w(0,0)
yi,r , yiµ⟩) + (P − 1)σ(⟨w(0,0)

yi,r , ξi⟩)]

+
1

m

m∑
r=1

[σ(⟨w(0,0)
−yk,r

, ykµ⟩) + (P − 1)σ(⟨w(0,0)
−yk,r

, ξi⟩)]

≤ 4β ≤ 1/3 ≤ C1,

where the first inequality is by Fj(W
(0,0)
j ,xi) > 0 , the second inequality is due to (21), and the533

third inequality is due to (23).534

By Lemma B.6 and the second condition, the third condition can be obtained directly as535

ℓ
′(0,0)
i

ℓ
′(0,0)
k

≤ exp
(
yk · f(W(0,0),xk)− yi · f(W(0,0),xi)

)
≤ exp(C1).

Now suppose there exists (t̃, b̃) ≤ (t, b) such that these five conditions hold for any (0, 0) ≤ (t′, b′) <536

(t̃, b̃). We aim to prove that these conditions also hold for (t′, b′) = (t̃, b̃).537
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We first show that, for any 0 ≤ t′ ≤ t and 0 ≤ b′1, b
′
2 ≤ b, yi · f(W(t′,b′1),xi)− yk · f(W(t′,b′2),xk)538

can be approximated by 1
m

∑m
r=1

[
ρ
(t′,b′1)
yi,r,i

− ρ
(t′,b′2)
yk,r,k

]
with a small constant approximation error. We539

begin by writing out540

yi · f(W(t′,b′1),xi)− yk · f(W(t′,b′2),xk)

= yi
∑

j∈{±1}

j · Fj(W
(t′,b′1)
j ,xi)− yk

∑
j∈{±1}

j · Fj(W
(t′,b′2)
j ,xk)

= F−yk
(W

(t′,b′2)
−yk

,xk)− F−yi(W
(t′,b′1)
−yi

,xi) + Fyi(W
(t′,b′1)
yi ,xi)− Fyk

(W
(t′,b′2)
yk ,xk)

= F−yk
(W

(t′,b′2)
−yk

,xk)− F−yi
(W

(t′,b′1)
−yi

,xi)

+
1

m

m∑
r=1

[σ(⟨w(t′,b′1)
yi,r , yi · µ⟩) + (P − 1)σ(⟨w(t′,b′1)

yi,r , ξi⟩)]

− 1

m

m∑
r=1

[σ(⟨w(t′,b′2)
yk,r , yk · µ⟩) + (P − 1)σ(⟨w(t′,b′2)

yk,r , ξk⟩)]

= F−yk
(W

(t′,b′2)
−yk

,xk)− F−yi
(W

(t′,b′1)
−yi

,xi)︸ ︷︷ ︸
I1

+
1

m

m∑
r=1

[σ(⟨w(t′,b′1)
yi,r , yi · µ⟩)− σ(⟨w(t′,b′2)

yk,r , yk · µ⟩)]︸ ︷︷ ︸
I2

+
1

m

m∑
r=1

[(P − 1)σ(⟨w(t′,b′1)
yi,r , ξi⟩)− (P − 1)σ(⟨w(t′,b′2)

yk,r , ξk⟩)]︸ ︷︷ ︸
I3

,

(31)

where all the equalities are due to the network definition. Then we bound I1, I2 and I3.541

For |I1|, we have the following upper bound by Lemma B.4:542

|I1| ≤ |F−yk
(W

(t′,b′2)
−yk

,xk)|+ |F−yi
(W

(t′,b′1)
−yi

,xi)|

= F−yk
(W

(t′,b′2)
−yk

,xk) + F−yi
(W

(t′,b′1)
−yi

,xi)

≤ 1. (32)

For |I2|, we have the following upper bound:543

|I2| ≤ max

{
1

m

m∑
r=1

σ(⟨w(t′,b′1)
yi,r , yi · µ⟩),

1

m

m∑
r=1

σ(⟨w(t′,b′2)
yk,r , yk · µ⟩)

}

≤ 3max

{
|⟨w(0,0)

yi,r , yi · µ⟩|, |⟨w(0,0)
yk,r

, yk · µ⟩|, γ(t′,b′1)
j,r , γ

(t′,b′2)
j,r ,SNR

√
32 log(6n/δ)

d
nα

}

≤ 3max

{
β,C ′γ̂α, SNR

√
32 log(6n/δ)

d
nα

}
≤ 0.25,

(33)
where the second inequality is due to (28), the second inequality is due to the definition of β and (27),544

the third inequality is due to Condition 3.1 and (23).545
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For I3, we have the following upper bound546

I3 =
1

m

m∑
r=1

[
(P − 1)σ(⟨w(t′,b′1)

yi,r , ξi⟩)− (P − 1)σ(⟨w(t′,b′2)
yk,r , ξk⟩)

]
≤ 1

m

m∑
r=1

[
(P − 1)⟨w(t′,b′1)

yi,r , ξi⟩ − (P − 1)⟨w(t′,b′2)
yk,r , ξk⟩

]
+ 0.25

≤ 1

m

m∑
r=1

[
ρ
(t′,b′1)
yi,r,i

− ρ
(t′,b′2)
yk,r,k

+ 10

√
log(6n2/δ)

d
nα

]
+ 0.25

≤ 1

m

m∑
r=1

[
ρ
(t′,b′1)
yi,r,i

− ρ
(t′,b′2)
yk,r,k

]
+ 0.5,

(34)

where the first inequality is due to Lemma B.5, the second inequality is due to Lemma B.3, the third547

inequality is due to 5
√
log(6n2/δ)/dnα ≤ 1/8 according to Condition 3.1.548

Similarly, we have the following lower bound549

I3 =
1

m

m∑
r=1

[
(P − 1)σ(⟨w(t′,b′1)

yi,r , ξi⟩)− (P − 1)σ(⟨w(t′,b′2)
yk,r , ξk⟩)

]
≥ 1

m

m∑
r=1

[
(P − 1)⟨w(t′,b′1)

yi,r , ξi⟩ − (P − 1)⟨w(t′,b′2)
yk,r , ξk⟩

]
− 0.25

≥ 1

m

m∑
r=1

[
ρ
(t′,b′1)
yi,r,i

− ρ
(t′,b′2)
yk,r,k

− 10

√
log(6n2/δ)

d
nα

]
− 0.25

≥ 1

m

m∑
r=1

[
ρ
(t′,b′1)
yi,r,i

− ρ
(t′,b′2)
yk,r,k

]
− 0.5,

(35)

where the first inequality is due to Lemma B.5, the second inequality is due to Lemma B.3, the third550

inequality is due to 5
√
log(6n2/δ)/dnα ≤ 1/8 according to Condition 3.1.551

By plugging (32)-(34) into (31), we have552

yi · f(W(t′,b′1),xi)− yk · f(W(t′,b′2),xk) ≤ |I1|+ |I2|+ I3

≤ 1

m

m∑
r=1

[
ρ
(t′,b′1)
yi,r,i

− ρ
(t′,b′2)
yk,r,k

]
+ 1.75

yi · f(W(t′,b′1),xi)− yk · f(W(t′,b′2),xk) ≥ −|I1| − |I2|+ I3

≥ 1

m

m∑
r=1

[
ρ
(t′,b′1)
yi,r,i

− ρ
(t′,b′2)
yk,r,k

]
− 1.75,

which is equivalent to553 ∣∣∣∣yi · f(W(t′,b′1),xi)− yk · f(W(t′,b′2),xk)−
1

m

m∑
r=1

[
ρ
(t′,b′1)
yi,r,i

− ρ
(t′,b′2)
yk,r,k

]∣∣∣∣ ≤ 1.75. (36)

Therefore, the second condition immediately follows from the first condition.554

Then, we prove the first condition holds for (t̃, b̃). Recall that from Lemma B.1 that555

ρ
(t,b+1)
j,r,i = ρ

(t,b)
j,r,i −

η(P − 1)2

Bm
· ℓ′(t,b)i · σ′(⟨w(t,b)

j,r , ξi⟩) · ∥ξi∥22 · 1(yi = j)1(i ∈ It,b)

for all j ∈ {±1}, r ∈ [m], i ∈ [n], (0, 0) ≤ (t, b) < [T ∗, 0]. It follows that556

m∑
r=1

[
ρ
(t,b+1)
yi,r,i

− ρ
(t,b+1)
yk,r,k

]
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=

m∑
r=1

[
ρ
(t,b)
yi,r,i

− ρ
(t,b)
yk,r,k

]
− η(P − 1)2

Bm
·
(
|S̃(t,b)

i |ℓ′(t,b)i · ∥ξi∥22 1(i ∈ It,b)

− |S̃(t,b)
k |ℓ′(t,b)k · ∥ξk∥22 1(k ∈ It,b)

)
,

for all i, k ∈ [n] and 0 ≤ t ≤ T ∗, b < H .557

If b̃ ∈ {1, 2, · · · , H−1}, then the first statement for (t′, b′) = (t̃, b̃) and for the last (t′, b′) < (t̃, b̃) are558

the same. Otherwise, if b̃ = 0, we consider two separate cases:
∑m

r=1

[
ρ
(t̃−1,0)
yi,r,i

− ρ
(t̃−1,0)
yk,r,k

]
≤ 0.9κ559

and
∑m

r=1

[
ρ
(t̃−1,0)
yi,r,i

− ρ
(t̃−1,0)
yk,r,k

]
> 0.9κ.560

When
∑m

r=1

[
ρ
(t̃−1,0)
yi,r,i

− ρ
(t̃−1,0)
yk,r,k

]
≤ 0.9κ, we have561

m∑
r=1

[
ρ
(t̃,0)
yi,r,i

− ρ
(t̃,0)
yk,r,k

]
=

m∑
r=1

[
ρ
(t̃−1,0)
yi,r,i

− ρ
(t̃−1,0)
yk,r,k

]
− η(P − 1)2

Bm
·
(∣∣S̃(t̃−1,b

(t̃−1)
i )

i

∣∣ℓ′(t̃−1,b
(t̃−1)
i )

i · ∥ξi∥22

−
∣∣S̃(t̃−1,b

(t̃−1)
k )

k

∣∣ℓ′(t̃−1,b
(t̃−1)
k )

k · ∥ξk∥22
)

≤
m∑
r=1

[
ρ
(t̃−1,0)
yi,r,i

− ρ
(t̃−1,0)
yk,r,k

]
− η(P − 1)2

Bm
·
∣∣S̃(t̃−1,b

(t̃−1)
i )

i

∣∣ℓ′(t̃−1,b
(t̃−1)
i )

i · ∥ξi∥22

≤
m∑
r=1

[
ρ
(t̃−1,0)
yi,r,i

− ρ
(t̃−1,0)
yk,r,k

]
+

η(P − 1)2

B
· ∥ξi∥22

≤ 0.9κ+ 0.1κ

= κ,

where the first inequality is due to ℓ
′(t̃−1,b

(t̃−1)
i )

i < 0; the second inequality is due to
∣∣S(t̃−1,b

(t̃−1)
i )

i

∣∣ ≤562

m and −ℓ
′(t̃−1,b

(t̃−1)
i )

i < 1; the third inequality is due to Condition 3.1.563

On the other hand, for when
∑m

r=1

[
ρ
(t̃−1,0)
yi,r,i

− ρ
(t̃−1,0)
yk,r,k

]
> 0.9κ, we have from the (36) that564

yi · f(W(t̃−1,b
(t̃−1)
i ),xi)− yk · f(W(t̃−1,b

(t̃−1)
k ),xk)

≥ 1

m

m∑
r=1

[
ρ
(t̃−1,b

(t̃−1)
i )

yi,r,i
− ρ

(t̃−1,b
(t̃−1)
k )

yk,r,k

]
− 1.75

≥ 1

m

m∑
r=1

[
ρ
(t̃−1,0)
yi,r,i

− ρ
(t̃−1,0)
yk,r,k

]
− 0.1κ− 1.75

≥ 0.9κ− 0.1κ− 0.54κ

= 0.26κ,

(37)

where the second inequality is due to κ = 10. Thus, according to Lemma B.6, we have565

ℓ
′(t̃−1,b

(t̃−1)
i )

i

ℓ
′(t̃−1,b

(t̃−1)
k )

k

≤ exp
(
yk · f(W(t̃−1,b

(t̃−1)
k ),xk)− yi · f(W(t̃−1,b

(t̃−1)
i ),xi)

)
≤ exp(−0.26κ).

Since S
(t̃−1,0)
i ⊆ S̃

(t̃−1,b
(t̃−1)
i )

i , we have
∣∣∣∣S̃(t̃−1,b

(t̃−1)
k )

k

∣∣∣∣ ≥ 0.8Φ(−1)m according to the fourth566

condition. Also we have that |S(t̃−1,b
(t̃−1)
i )

i | ≤ m. It follows that567 ∣∣S(t̃−1,b
(t̃−1)
i )

i

∣∣ℓ′(t̃−1,b
(t̃−1)
i )

i∣∣S(t̃−1,b
(t̃−1)
k )

k

∣∣ℓ′(t̃−1,b
(t̃−1)
k )

k

≤ exp(−0.26κ)

0.8Φ(−1)
< 0.8.
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According to Lemma A.1, under event Eprelim, we have568 ∣∣∥ξi∥22 − d · σ2
p

∣∣ = O
(
σ2
p ·
√

d log(6n/δ)
)
, ∀i ∈ [n].

Note that d = Ω(log(6n/δ)) from Condition 3.1, it follows that569

|S(t̃,b
(t̃−1)
i )

i |(−ℓ
′(t̃,b(t̃−1)

i )
i ) · ∥ξi∥22 < |S(t̃,b

(t̃−1)
k )

k |(−ℓ
′(t̃,b(t̃−1)

k )

k ) · ∥ξk∥22.

Then we have570
m∑
r=1

[
ρ
(t̃,0)
yi,r,i

− ρ
(t̃,0)
yk,r,k

]
≤

m∑
r=1

[
ρ
(t̃−1,0)
yi,r,i

− ρ
(t̃−1,0)
yk,r,k

]
≤ κ,

which completes the proof of the first hypothesis at iteration (t′, b′) = (t̃, b̃). Next, by applying the571

approximation in (36), we are ready to verify the second hypothesis at iteration (t̃, b̃). In fact, for any572

(t′, b′1), (t
′, b′2) ≤ (t̃, b̃), we have573

yi · f(W(t′,b′1),xi)− yk · f(W(t′,b′2),xk) ≤
1

m

m∑
r=1

[
ρ
(t′,b′1)
yi,r,i

− ρ
(t′,b′2)
yk,r,k

]
+ 1.75

≤ 1

m

m∑
r=1

[
ρ
(t′,0)
yi,r,i

− ρ
(t′,0)
yk,r,k

]
+ 0.1κ+ 1.75

≤ C1,

where the first inequality is by (36); the last inequality is by induction hypothesis and taking κ as 10574

and C1 as 5.575

And the third hypothesis directly follows by noting that, for any (t′, b′1), (t
′, b′2) ≤ (t̃, b̃),576

ℓ
′(t′,b′1)
i

ℓ
′(t′,b′2)
k

≤ exp
(
yk · f(W(t′,b′1),xk)− yi · f(W(t′,b′2),xi)

)
≤ exp(C1) = C2.

For the fourth hypothesis, If b̃ ∈ {1, 2, · · · , H − 1}, then the first statement for (t′, b′) = (t̃, b̃) and577

for the last (t′, b′) < (t̃, b̃) are the same. Otherwise, if b̃ = 0, according to the gradient descent rule,578

we have579

⟨w(t̃,0)
yi,r , ξi⟩ = ⟨w(t̃−1,0)

yi,r , ξi⟩ −
η

Bm
·
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i′∈It̃−1,b′

ℓ
(t̃−1,̃b)
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Bm
·
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η

Bm
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∑
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i′ · σ′(⟨w(t̃−1,b′)

yi,r , ŷi′µ⟩) · ⟨yi′µ, ξi⟩yi′

− η(P − 1)

Bm
· ℓ(t̃−1,b

(t̃−1)
i )

i · σ′(⟨w(t̃−1,̃b)
yi,r , ξi⟩) · ∥ξi∥22

− η(P − 1)

Bm
·
H−1∑
b′=0

∑
i′∈It̃−1,b′

ℓ
(t̃,b′)
i′ · σ′(⟨w(t̃,b′)

yi,r , ξi′⟩) · ⟨ξi′ , ξi⟩1(i′ ̸= i)

= ⟨w(t̃,0)
yi,r , ξi⟩ −

η(P − 1)

Bm
· ℓ(t̃−1,b

(t̃−1)
i )

i · ∥ξi∥22︸ ︷︷ ︸
I4

− η(P − 1)

Bm
·
H−1∑
b′=0

∑
i′∈It̃−1,b′

ℓ
(t̃−1,b′)
i′ · σ′(⟨w(t̃−1,b′)

yi,r , ξi′⟩) · ⟨ξi′ , ξi⟩1(i′ ̸= i)

︸ ︷︷ ︸
I5
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− η

Bm
·
H−1∑
b̃=0

∑
i′∈It̃−1,b′

ℓ
(t̃−1,b′)
i′ · σ′(⟨w(t̃−1,b′)

yi,r , yi′µ⟩) · ⟨yi′µ, ξi⟩yi′

︸ ︷︷ ︸
I6

,

for any r ∈ S
(t̃−1,0)
i , where the last equality is by ⟨w(t̃−1,b

(t̃−1)
i )

yi,r , ξi⟩ > 0. Then we respectively580

estimate I4, I5, I6. For I4, according to Lemma A.1, we have581

−I4 ≥ |ℓ(t̃−1,b
(t̃−1)
i )

i | · σ2
pd/2.

For I5, we have following upper bound582

|I5| ≤
H−1∑
b′=0

∑
i′∈It̃−1,b′

|ℓ(t̃−1,b′)
i′ | · σ′(⟨w(t̃−1,b′)

yi,r , ξi′⟩) · |⟨ξi′ , ξi⟩|1(i′ ̸= i)

≤
H−1∑
b′=0

∑
i′∈It̃−1,b′

|ℓ(t̃−1,b′)
i′ | · |⟨ξi′ , ξi⟩|1(i′ ̸= i)

≤
H−1∑
b′=0

∑
i′∈It̃−1,b′

|ℓ(t̃−1,b′)
i′ | · 2σ2

p ·
√
d log(6n2/δ)

≤ nC2

∣∣ℓ(t̃−1,b
(t̃−1)
i )

i

∣∣ · 2σ2
p ·
√
d log(6n2/δ),

where the first inequality is due to triangle inequality, the second inequality is due to σ′(z) ∈ {0, 1},583

the third inequality is due to Lemma A.1, the forth inequality is due to the third hypothesis at epoch584

t̃− 1.585

For I6, we have following upper bound586

|I6| ≤
H−1∑
b′=0

∑
i′∈It̃−1,b′

|ℓ(t̃−1,b′)
i′ | · σ′(⟨w(t̃−1,b′)

yi,r , yi′µ⟩) · |⟨yi′µ, ξi⟩|

≤
H−1∑
b′=0

∑
i′∈It̃−1,b′

|ℓ(t̃−1,b′)
i′ ||⟨yi′µ, ξi⟩|

≤ nC2

∣∣ℓ(t̃−1,b
(t̃−1)
i )

i

∣∣ · ∥µ∥2σp

√
2 log(6n/δ),

where the first inequality is by triangle inequality; the second inequality is due to σ′(z) ∈ {0, 1}; the587

third inequality is by Lemma A.1; the last inequality is due to the third hypothesis at epoch t̃− 1.588

Since d ≥ max{32C2
2n

2 · log(6n2/δ), 4C2n∥µ∥σ−1
p

√
2 log(6n/δ)}, we have −(P − 1)I4 ≥589

max{(P − 1)|I5|/2, |I6|/2} and hence −(P − 1)I4 ≥ (P − 1)|I5|+ |I6|. It follows that590

⟨w(t̃,0)
yi,r , ξi⟩ ≥ ⟨w(t̃−1,0)

yi,r , ξi⟩ > σ0σp

√
d/

√
2,

for any r ∈ S
(t̃−1,0)
i . Therefore, S(0,0)

i ⊆ S
(t̃−1,0)
i ⊆ S

(t̃,0)
i . And it directly follows by Lemma A.3591

that |S(t̃,0)
i | ≥ 0.8mΦ(−1), ∀i ∈ [n].592

For the fifth hypothesis, similar to the proof of the fourth hypothesis, we also have593

⟨w(t̃,0)
yi,r , ξi⟩ = ⟨w(t̃−1,0)

yi,r , ξi⟩ −
η(P − 1)

Bm
· ℓ(t̃−1,b

(t−1)
i )

i · ∥ξi∥22︸ ︷︷ ︸
I4

− η(P − 1)

Bm
·
H−1∑
b′=0

∑
i′∈It̃,b′

ℓ
(t̃−1,b′)
i′ · σ′(⟨w(t̃−1,b′)

yi,r , ξi′⟩) · ⟨ξi′ , ξi⟩1(i′ ̸= i)

︸ ︷︷ ︸
I5
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− η

Bm
·
H−1∑
b′=0

∑
i′∈It̃−1,b′

ℓ
(t̃−1,b′)
i′ · σ′(⟨w(t̃−1,b′)

yi,r , yi′µ⟩) · ⟨yi′µ, ξi⟩yi′

︸ ︷︷ ︸
I6

,

for any i ∈ S
(t̃−1,0)
j,r , where the equality holds due to ⟨w(t̃−1,b

(t̃−1)
i )

j,r , ξi⟩ > 0 and yi = j. By applying594

the same technique used in the proof of the fourth hypothesis, it follows that595

⟨w(t̃,0)
j,r , ξi⟩ ≥ ⟨w(t̃−1,0)

j,r , ξi⟩ > 0,

for any i ∈ S
(t̃−1,0)
j,r . Thus, we have S

(0,0)
j,r ⊆ S

(t̃−1,0)
j,r ⊆ S

(t̃,0)
j,r . And it directly follows by Lemma596

A.4 that |S(t̃,0)
j,r | ≥ nΦ(−1)/4.597

598

Proof of Proposition B.2. Our proof is based on induction. The results are obvious at iteration (0, 0)599

as all the coefficients are zero. Suppose that the results in Proposition B.2 hold for all iterations600

(0, 0) ≤ (t, b) < (t̃, b̃). We aim to prove that they also hold for iteration (t̃, b̃).601

Firstly, We prove that (26) exists at iteration (t̃, b̃), i.e., ρ(t̃,̃b)
j,r,i

≥ −β − 10
√

log(6n2/δ)/d · nα for602

any r ∈ [m], j ∈ {±1} and i ∈ [n]. Notice that ρ(t̃,̃b)
j,r,i

= 0 for j = yi, therefore we only need to603

consider the case that j ̸= yi. We also only need to consider the case of b̃ = b
(t̃)
i + 1 since ρ(t̃,̃b)

j,r,i
604

doesn’t change in other cases according to (19).605

When ρ
(t̃,b

(t̃)
i )

j,r,t < −0.5β − 5
√

log(6n2/δ)/d · nα, by (30) in Lemma B.3 we have that606

(P − 1)⟨w(t̃,b
(t̃)
i )

j,r , ξi⟩ ≤ ρ(t̃,b
(t̃)
i )

j,r,i
+ (P − 1)⟨w(0,0)

j,r , ξi⟩+ 5

√
log(6n2/δ)

d
nα < 0

and thus607

ρ(t̃,̃b)
j,r,i

= ρ(t̃,b
(t̃)
i )

j,r,i
+

η(P − 1)2

Bm
· ℓ′(t̃,b

(t̃)
i )

i · σ′(⟨w(t̃,b
(t̃)
i )

j,r , ξi⟩) · ∥ξi∥22·

= ρ(t̃,b
(t̃)
i )

j,r,i
≥ −β − 10

√
log(6n2/δ)

d
nα,

where the last inequality is by induction hypothesis.608

When ρ
(t̃,b

(t̃)
i )

j,r,t ≥ −0.5β − 5
√

log(6n2/δ)/d · nα, we have609

ρ(t̃,̃b)
j,r,i

= ρ(t,b
(t̃)
i )

j,r,i
+

η(P − 1)2

Bm
· ℓ′(t,b

(t̃)
i )

i · σ′(⟨w(t,b
(t̃)
i )

j,r , ξi⟩) · ∥ξi∥22

≥ −0.5β − 5

√
log(6n2/δ)

d
nα−

η(P − 1)2 · 3σ2
pd

2Bm

≥ −0.5β − 10

√
log(6n2/δ)

d
nα

≥ −β − 10

√
log(6n2/δ)

d
nα,

where the first inequality is by ℓ
′(t,b(t̃)i )
i ∈ (−1, 0) and ∥ξi∥22 ≤ (3/2)σ2

pd by Lemma A.1; the second610

inequality is due to 5
√
log(6n2/δ)/d · nα ≥ 3ησ2

pd/(2Bm) by Condition 3.1.611

Next we prove (25) holds for (t̃, b̃). We only need to consider the case of j = yi. Consider612

|ℓ′(t̃,̃b)i | = 1

1 + exp{yi · [F+1(W
(t̃,̃b)
+1 ,xi)− F−1(W

(t̃,̃b)
−1 ,xi)]}

≤ exp(−yi · [F+1(W
(t̃,̃b)
+1 ,xi)− F−1(W

(t̃,̃b)
−1 ,xi)])

≤ exp(−Fyi
(W(t̃,̃b)

yi
,xi) + 0.5),

(38)
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where the last inequality is by Fj(W
(t̃,̃b)
j ,xi) ≤ 0.5 for j ̸= yi according to Lemma B.4. Now recall613

the iterative update rule of ρ(t,b)j,r,i :614

ρ
(t,b+1)
j,r,i = ρ

(t,b)
j,r,i −

η(P − 1)2

Bm
· ℓ′(t,b)i · σ′(⟨w(t,b)

j,r , ξi⟩) · ∥ξi∥22 · 1(i ∈ It,b).

Let (tj,r,i, bj,r,i) be the last time before (t̃, b̃) that ρ(tj,r,i,bj,r,i)j,r,i ≤ 0.5α. Then by iterating the update615

rule from (tj,r,i, bj,r,i) to (t̃, b̃), we get616

ρ
(t̃,̃b)
j,r,i

= ρ
(tj,r,i,bj,r,i)
j,r,i − η(P − 1)2

Bm
· ℓ′(tj,r,i,bj,r,i)i · 1(⟨w(tj,r,i,bj,r,i)

j,r , ξi⟩ ≥ 0) · 1(i ∈ It,b)∥ξi∥22︸ ︷︷ ︸
I7

−
∑

(tj,r,i,bj,r,i)<(t,b)<(t̃,̃b)

η(P − 1)2

Bm
· ℓ′(t,b)i · 1(⟨w(t,b)

j,r , ξi⟩ ≥ 0) · 1(i ∈ It,b)∥ξi∥22

︸ ︷︷ ︸
I8

.

(39)

We first bound I7 as follows:617

|I7| ≤ (η(P − 1)2/Bm) · ∥ξi∥22 ≤ (η(P − 1)2/Bm) · 3σ2
pd/2 ≤ 1 ≤ 0.25α,

where the first inequality is by ℓ
′(tj,r,i,bj,r,i)
i ∈ (−1, 0); the second inequality is by Lemma A.1; the618

third inequality is by Condition 3.1; the last inequality is by our choice of α = 4 log(T ∗) and T ∗ ≥ e.619

Second, we bound I8. For (tj,r,i, bj,r,i) < (t, b) < (t̃, b̃) and yi = j, we can lower bound the inner620

product ⟨w(t,b)
j,r , ξi⟩ as follows621

⟨w(t,b)
j,r , ξi⟩ ≥ ⟨w(0,0)

j,r , ξi⟩+
1

P − 1
ρ
(t,b)
j,r,i −

5

P − 1

√
log(6n2/δ)

d
nα

≥ − 0.5

P − 1
β +

0.5

P − 1
α− 5

P − 1

√
log(6n2/δ)

d
nα

≥ 0.25

P − 1
α,

(40)

where the first inequality is by (29) in Lemma B.3; the second inequality is by ρ
(t,b)
j,r,i > 0.5α622

and ⟨w(0,0)
j,r , ξi⟩ ≥ −0.5β/(P − 1) due to the definition of tj,r,i and β; the last inequality is by623

β ≤ 1/8 ≤ 0.1α and 5
√
log(6n2/δ)/d · nα ≤ 0.2α by Condition 3.1.624

Thus, plugging the lower bounds of ⟨w(t,b)
j,r , ξi⟩ into I8 gives625

|I8| ≤
∑

(tj,r,i,bj,r,i)<(t,b)<(t̃,̃b)

η(P − 1)2

Bm
· exp

(
− 1

m

m∑
r=1

(P − 1)σ(⟨w(t,b)
j,r , ξi⟩) + 0.5

)
· 1(⟨w(t,b)

j,r , ξi⟩ ≥ 0) · ∥ξi∥22

≤ 2ηT ∗n(P − 1)2

Bm
· exp(−0.25α) exp(0.5) ·

3σ2
pd

2

≤ 2ηT ∗n(P − 1)2

Bm
· exp(− log(T ∗)) exp(0.5) ·

3σ2
pd

2

=
2ηn(P − 1)2

Bm
·
3σ2

pd

2
exp(0.5) ≤ 1 ≤ 0.25α,

where the first inequality is by (38); the second inequality is by (40); the third inequality is by626

α = 4 log(T ∗); the fourth inequality is by Condition 3.1; the last inequality is by log(T ∗) ≥ 1 and627

α = 4 log(T ∗). Plugging the bound of I7, I8 into (39) completes the proof for ρ.628
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For the upper bound of (27), we prove a augmented hypothesis that there exists a i∗ ∈ [n] with629

yi∗ = j such that for 1 ≤ t ≤ T ∗ we have that γ(t,0)
j,r /ρj,r,i∗ ≤ C ′γ̂. Recall the iterative update rule630

of γ(t,b)
j,r and ρ

(t,b)
j,r,i , we have631

ρ
(t,b+1)
j,r,i = ρ

(t,b)
j,r,i −

η(P − 1)2

Bm
· ℓ′(t,b)i · σ′(⟨w(t,b)

j,r , ξi⟩) · ∥ξi∥22 · 1(yi = j)1(i ∈ It,b)

γ
(t,b+1)
j,r = γ

(t,b)
j,r − η

Bm
·
[ ∑
i∈It,b∩S+

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , yi · µ⟩)

−
∑

i∈It,b∩S−

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , yi · µ⟩)
]
· ∥µ∥22

According to the fifth statement of Lemma B.8, for any i∗ ∈ S
(0,0)
j,r it holds that j = yi∗ and632

⟨w(t,b)
j,r , ξi∗⟩ ≥ 0 for any (t, b) ≤ (t̃, b̃). Thus, we have633

ρ
(t̃,0)
j,r,i∗ = ρ

(t̃−1,0)
j,r,i∗ − η(P − 1)2

Bm
·ℓ′(t̃−1,b

(t̃−1)

i∗ )

i∗ ·∥ξi∗∥22 ≥ ρ
(t̃−1,0)
j,r,i∗ − η(P − 1)2

Bm
·ℓ′(t̃−1,b

(t̃−1)

i∗ )

i∗ ·σ2
pd/2.

For the update rule of γ(t,b)
j,r , according to Lemma B.8, we have634 ∑

b<H

∣∣∣ ∑
i∈It,b∩S+

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , yi · µ⟩)−
∑

i∈It,b∩S−

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , yi · µ⟩)
∣∣∣

≤ C2n
∣∣∣ℓ′(T̃−1,b

(T̃−1)

i∗ )

i∗

∣∣∣.
Then, we have635

γ
(t̃,0)
j,r

ρ
(t̃,0)
j,r,i∗

≤ max

{
γ
(t̃−1,0)
j,r

ρ
(t̃−1,0)
j,r,i∗

,
C2nℓ

′(t̃−1,b
(t̃−1)

i∗ )

i∗ ∥µ∥22

(P − 1)2 · ℓ′(t̃−1,b
(t̃−1)

i∗ )

i∗ · σ2
pd/2

}

= max

{
γ
(t̃−1,0)
j,r

ρ
(t̃−1,0)
j,r,i∗

,
2C2n∥µ∥22
(P − 1)2σ2

pd

}

≤ 2C2n∥µ∥22
(P − 1)2σ2

pd
,

(41)

where the last inequality is by γ
(t̃−1,0)
j,r /ρ

(t̃−1,0)
j,r,i∗ ≤ 2C2γ̂ = 2C2n∥µ∥22/(P − 1)2σ2

pd. Therefore,636

γ
(t̃,0)
j,r

ρ
(t̃,0)
j,r,i∗

≤ 2C2γ̂.

For iterations other than the starting of en epoch, we have the following upper bound:637

γ
(t̃,b)
j,r

ρ
(t̃,b)
j,r,i∗

≤
2γ

(t̃,0)
j,r

ρ
(t̃,0)
j,r,i∗

≤ 4C2γ̂

Thus, by taking C ′ = 4C2, we have γ
(t̃,b)
j,r /ρ

(t̃,b)
j,r,i∗ ≤ C ′γ̂.638

On the other hand, when (t, b) < ( log(2T
∗/δ)

2c23
, 0), we have639

γ
(t,b)
j,r ≥ − log(2T ∗/δ)

2c23
· η

Bm
· n · ∥µ∥22 ≥ − 1

12
,

where the first inequality is due to update rule of γt,b
j,r, and the second inequality is due to Condition 3.1.640
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When (t, b) ≥ ( log(2T
∗/δ)

2c23
, 0), According to Lemma A.6, we have641

γ
(t,b)
j,r ≥

∑
(t′,b′)<(t,b)

η

Bm

[
min
i,b′

ℓ
′(t′,b′)
i min{|It′,b′ ∩ S+ ∩ S−1|, |It′,b′ ∩ S+ ∩ S1|}

−max
i,b′

ℓ
′(t′,b′)
i |It′,b′ ∩ S−|

]
· ∥µ∥22

≥ η

Bm

( t−1∑
t′=0

(c3c4H
B

4
min
i,b′

ℓ
′(t′,b′)
i − nqmax

i,b′
ℓ
′(t′,b′)
i )− nqmax

i,b′
ℓ
′(t,b′)
i

))
∥µ∥22

≥ 0,

where the first inequality is due to the update rule of γ(t,b)
j,r , the second inequality is due to Lemma A.6,642

and the third inequality is due to Condition 3.1.643

B.2 Decoupling with a Two-stage Analysis644

B.2.1 First Stage645

Lemma B.9. There exist646

T1 = C3η
−1Bm(P − 1)−2σ−2

p d−1, T2 = C4η
−1Bm(P − 1)−2σ−2

p d−1

where C3 = Θ(1) is a large constant and C4 = Θ(1) is a small constant, such that647

• ρ
(T1,0)
j,r∗,i ≥ 2 for any r∗ ∈ S

(0,0)
i = {r ∈ [m] : ⟨w(0)

yi,r, ξi⟩ > 0}, j ∈ {±1} and i ∈ [n] with yi = j.648

• maxj,r γ
(t,b)
j,r = O(γ̂) for all (t, b) ≤ (T1, 0).649

• maxj,r,i |ρ(t,b)j,r,i
| = max{β,O

(
n
√
log(n/δ) log(T ∗)/

√
d
)
} for all (t, b) ≤ (T1, 0).650

• minj,r γ
(t,0)
j,r = Ω(γ̂) for all t ≥ T2.651

• maxj,r ρ
(T1,0)
j,r,i = O(1) for all i ∈ [n].652

Proof of Lemma B.9. By Proposition B.2, we have that ρ(t,b)
j,r,i

≥ −β − 10n
√

log(6n2/δ)
d α for all653

j ∈ {±1}, r ∈ [m], i ∈ [n] and (0, 0) ≤ (t, b) ≤ (T ∗, 0). According to Lemma A.2, for β we have654

β = 2max
i,j,r

{|⟨w(0,0)
j,r ,µ⟩|, (P − 1)|⟨w(0,0)

j,r , ξi⟩|}
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√

2 log(12m/δ) · σ0∥µ∥2, 2
√
log(12mn/δ) · σ0(P − 1)σp

√
d}

= O
(√

log(mn/δ) · σ0(P − 1)σp

√
d
)

where the last equality is by the first condition of Condition 3.1. Since ρ(t,b)
j,r,i

≤ 0 , we have that655

max
j,r,i

|ρ(t,b)
j,r,i

| = max
j,r,i

−ρ(t,b)
j,r,i

≤ β + 10

√
log(6n2/δ)

d
nα

= max

{
β,O

(√
log(n/δ) log(T ∗) · n/

√
d
)}

.

Next, for the growth of γ(t)
j,r , we have following upper bound656

γ
(t,b+1)
j,r = γ

(t,b)
j,r − η

Bm
·
∑

i∈It,b

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , yi · µ⟩) · ∥µ∥22

≤ γ
(t,b)
j,r +

η

m
· ∥µ∥22,
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where the inequality is by |ℓ′| ≤ 1. Note that γ(0,0)
j,r = 0 and recursively use the inequality tB + b657

times we have658

γ
(t,b)
j,r ≤ η(tH + b)

m
· ∥µ∥22. (42)

Since n · SNR2 = n∥µ∥22/
(
(P − 1)2σ2

pd
)
= γ̂, we have659

T1 = C3η
−1Bm(P − 1)−2σ−2

p d−1 = C3η
−1m∥µ∥−2

2 γ̂B/n.

And it follows that660

γ
(t)
j,r ≤ η(tH + b)

m
· ∥µ∥22 ≤ ηnT1

mB
· ∥µ∥22 ≤ C3γ̂,

for all (0, 0) ≤ (t, b) ≤ (T1, 0).661

For ρ(t)j,r,i, recall from (18) that662

ρ
(t+1,0)
yi,r,i

= ρ
(t,0)
yi,r,i

− η(P − 1)2

Bm
· ℓ′(t,b

(t)
i )

i · σ′(⟨w(t,b
(t)
i )

yi,r , ξi⟩) · ∥ξi∥22·

According to Lemma B.8, for any r∗ ∈ S
(0,0)
i = {r ∈ [m] : ⟨w(0)

yi,r, ξi⟩ > σ0σp

√
d/

√
2}, we have663

⟨w(t,b)
yi,r∗ , ξi⟩ > 0 for all (0, 0) ≤ (t, b) ≤ (T ∗, 0) and hence664

ρ
(t+1,0)
j,r∗,i = ρ

(t,0)
j,r∗,i −

η(P − 1)2

Bm
· ℓ′(t,b

(t)
i )

i ∥ξi∥22

For each i, we denote by T
(i)
1 the last time in the period [0, T1] satisfying that ρ(t,0)yi,r∗,i

≤ 2. Then for665

(0, 0) ≤ (t, b) < (T
(i)
1 , 0), maxj,r{|ρ(t,b)j,r,i |, |ρ(t,b)j,r,i

|} = O(1) and maxj,r γ
(t,b)
j,r = O(1). Therefore,666

we know that F−1(W
(t,b),xi), F+1(W

(t,b),xi) = O(1). Thus there exists a positive constant C667

such that −ℓ
′(t,b)
i ≥ C ≥ C2 for 0 ≤ t ≤ T

(i)
1 .668

Then we have669

ρ
(t,0)
yi,r∗,i

≥
Cη(P − 1)2σ2

pdt

2Bm
.

Therefore, ρ(t,0)yi,r∗,i
will reach 2 within670

T1 = C3η
−1Bm(P − 1)2σ−2

p d−1

iterations for any r∗ ∈ S
(0,0)
i , where C3 can be taken as 4/C.671

Next, we will discuss the lower bound of the growth of γ(t,b)
j,r . For ρ(t,b)j,r,i , we have672

ρ
(t,b+1)
j,r,i = ρ

(t,b)
j,r,i −

η(P − 1)2

Bm
· ℓ′(t,b)i · σ′(⟨w(t,b)

j,r , ξi⟩) · ∥ξi∥22 · 1(yi = j)1(i ∈ It,b)

≤ ρ
(t,b)
j,r,i +

3η(P − 1)2σ2
pd

2Bm

According to (42) and ρ
(0,0)
j,r,i = 0, it follows that673

ρ
(t,b)
j,r,i ≤

3η(P − 1)2σ2
pd(tH + b)

2Bm
, γ

(t,b)
j,r ≤ η(tH + b)

m
· ∥µ∥22. (43)

Therefore, maxj,r,i ρ
(t,b)
j,r,i will be smaller than 1 and γ

(t,b)
j,r smaller than Θ(n∥µ∥22/(P − 1)2σ2

pd) =674

Θ(n · SNR2) = Θ(γ̂) = O(1) within675

T2 = C4η
−1Bm(P − 1)−2σ−2

p d−1

iterations, where C4 can be taken as 2/3. Therefore, we know that676

F−1(W
(t,b),xi), F+1(W

(t,b),xi) = O(1) in (0, 0) ≤ (t, b) ≤ (T2, 0). Thus, there exists a677

positive constant C such that −ℓ
′(t,b)
i ≥ C for 0 ≤ t ≤ T2.678
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Recall that we denote {i ∈ [n]|yi = y} as Sy , and we have the update rule679

γ
(t,b+1)
j,r = γ

(t,b)
j,r − η

Bm
·
[ ∑
i∈It,b∩S+

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , ŷi · µ⟩)

−
∑

i∈It,b∩S−

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , ŷi · µ⟩)
]
· ∥µ∥22.

For the growth of γ(t,b)
j,r , if ⟨w(t,b)

j,r ,µ⟩ ≥ 0, we have680

γ
(t,b+1)
j,r = γ

(t,b)
j,r − η

Bm
·
[ ∑
i∈It,b∩S+∩S1

ℓ
′(t)
i −

∑
i∈It,b∩S−∩S1

ℓ
′(t)
i

]
∥µ∥22

≥ γ
(t,b)
j,r +

η

Bm
·
[
C|It,b ∩ S+ ∩ S1| − |It,b ∩ S− ∩ S−1|

]
· ∥µ∥22.

(44)

Similarly, if ⟨w(t,b)
j,r ,µ⟩ < 0,681

γ
(t,b+1)
j,r ≥ γ

(t,b)
j,r +

η

Bm
·
[
C|It,b ∩ S+ ∩ S−1| − |It,b ∩ S− ∩ S1|

]
· ∥µ∥22. (45)

Therefore, for t ∈ [T2, T1], we have682

γ
(t,0)
j,r ≥

∑
(t′,b′)<(t,0)

η

Bm

[
Cmin{|It′,b′ ∩ S+ ∩ S−1|, |It′,b′ ∩ S+ ∩ S1|} − |It,b ∩ S−|

]
· ∥µ∥22

≥ η

Bm
(c3tc4HC

B

4
− T1nq)∥µ∥22

=
η

Bm
(c3c4tC

n

4
− T1nq)∥µ∥22

≥ ηc3c4Ctn∥µ∥22
8Bm

(46)

≥ c3c4CC4n∥µ∥22
(P − 1)2σ2

pd
= Θ(n · SNR2) = Θ(γ̂),

where the second inequality is due to Lemma A.6, the third inequality is due to q < C4Cc3c4
8C3

in683

Condition 3.1.684

And it follows directly from (43) that685

ρ
(T1,0)
j,r,i ≤

3η(P − 1)2σ2
pdT1H

2Bm
=

3C3

2
, ρ

(T1,0)
j,r,i = O(1),

which completes the proof.686

B.2.2 Second Stage687

By the signal-noise decomposition, at the end of the first stage, we have688

w
(t,b)
j,r = w

(0,0)
j,r + jγ

(t,b)
j,r ∥µ∥−2

2 µ+
1

P − 1

n∑
i=1

ρ
(t,b)
j,r,i∥ξi∥

−2
2 ξi +

1

P − 1

n∑
i=1

ρ(t,b)
j,r,i

∥ξi∥−2
2 ξi.

for j ∈ [±1] and r ∈ [m]. By the results we get in the first stage, we know that at the beginning of689

this stage, we have the following property holds:690

• ρ
(T1,0)
j,r∗,i ≥ 2 for any r∗ ∈ S

(0,0)
i = {r ∈ [m] : ⟨w(0,0)

yi,r , ξi⟩ > σ0σp

√
d/

√
2}, j ∈ {±1} and i ∈ [n]691

with yi = j.692

• maxj,r,i |ρ(T1,0)
j,r,i

| = max{β,O
(
n
√
log(n/δ) log(T ∗)/

√
d
)
}.693

• γ
(T1,0)
j,r = Θ(γ̂) for any j ∈ {±1}, r ∈ [m].694
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where γ̂ = n · SNR2. Now we choose W∗ as follows695

w∗
j,r = w

(0,0)
j,r +

20 log(2/ϵ)

P − 1

[ n∑
i=1

1(j = yi) ·
ξi

∥ξi∥22

]
.

Lemma B.10. Under the same conditions as Theorem 3.2, we have that ∥W(T1,0) − W∗∥F ≤696

Õ(m1/2n1/2(P − 1)−1σ−1
p d−1/2(1 + max{β, n

√
log(n/δ) log(T ∗)/

√
d})).697

Proof.

∥W(T1,0) −W∗∥F
≤ ∥W(T1,0) −W(0,0)∥F + ∥W∗ −W(0,0)∥F

≤ O(
√
m)max

j,r
γ
(T1,0)
j,r ∥µ∥−1

2 +
1

P − 1
O(

√
m)max

j,r

∥∥∥∥ n∑
i=1

ρ
(T1,0)
j,r,i · ξi

∥ξi∥22
+

n∑
i=1

ρ(T1,0)
j,r,i

· ξi
∥ξi∥22

∥∥∥∥
2

+O(m1/2n1/2 log(1/ϵ)(P − 1)−1σ−1
p d−1/2)

= O(m1/2γ̂∥µ∥−1
2 ) + Õ(m1/2n1/2(P − 1)−1σ−1

p d−1/2(1 + max{β, n
√
log(n/δ) log(T ∗)/

√
d}))

+O(m1/2n1/2 log(1/ϵ)(P − 1)−1σ−1
p d−1/2)

= O(m1/2n · SNR · (P − 1)−1σ−1
p d−1/2(1 + max{β, n

√
log(n/δ) log(T ∗)/

√
d}))

+ Õ(m1/2n1/2 log(1/ϵ)(P − 1)−1σ−1
p d−1/2)

= Õ(m1/2n1/2(P − 1)−1σ−1
p d−1/2(1 + max{β, n

√
log(n/δ) log(T ∗)/

√
d})),

where the first inequality is by triangle inequality, the second inequality and the first equality are by698

our decomposition of W(T1,0), W∗ and Lemma A.1; the second equality is by n · SNR2 = Θ(γ̂)699

and SNR = ∥µ∥/(P − 1)σpd
1/2; the third equality is by n1/2 · SNR = O(1).700

Lemma B.11. Under the same conditions as Theorem 3.2, we have that701

yi⟨∇f(W(t,b),xi),W
∗⟩ ≥ log(2/ϵ)

for all (T1, 0) ≤ (t, b) ≤ (T ∗, 0).702

Proof of Lemma B.11. Recall that f(W(t,b)) = (1/m)
∑

j,r j · [σ(⟨w(t,b)
j,r , ŷiµ⟩) + (P −703

1)σ(⟨w(t,b)
j,r , ξi⟩)], thus we have704

yi⟨∇f(W(t,b),xi),W
∗⟩

=
1

m

∑
j,r

σ′(⟨w(t,b)
j,r , ŷiµ⟩)⟨yiŷiµ, jw∗
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P − 1

m

∑
j,r

σ′(⟨w(t,b)
j,r , ξi⟩)⟨yiξi, jw∗

j,r⟩

=
1

m

∑
j,r

n∑
i′=1

σ′(⟨w(t,b)
j,r , ξi⟩)20 log(2/ϵ)1(j = yi′) ·

⟨ξi′ , ξi⟩
∥ξi′∥22

+
1

m

∑
j,r

n∑
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σ′(⟨w(t,b)
j,r , ŷiµ⟩)20 log(2/ϵ)1(j = yi′) ·

⟨ŷiµ, ξi′⟩
∥ξi′∥22

+
1

m

∑
j,r

σ′(⟨w(t,b)
j,r , ŷiµ⟩)⟨yiŷiµ, jw(0,0)

j,r ⟩+ P − 1

m

∑
j,r

σ′(⟨w(t,b)
j,r , ξi⟩)⟨yiξi, jw(0,0)

j,r ⟩

≥ 1

m

∑
j=yi,r

σ′(⟨w(t,b)
j,r , ξi⟩)20 log(2/ϵ)−

1

m

∑
j,r

∑
i′ ̸=i

σ′(⟨w(t,b)
j,r , ξi⟩)20 log(2/ϵ) ·

|⟨ξi′ , ξi⟩|
∥ξi′∥22

− 1

m

∑
j,r

n∑
i′=1

σ′(⟨w(t,b)
j,r , ŷiµ⟩)20 log(2/ϵ) ·

|⟨ŷiµ, ξi′⟩|
∥ξi′∥22

− 1

m

∑
j,r

σ′(⟨w(t,b)
j,r , ŷiµ⟩)β
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≥ 1

m

∑
j=yi,r

σ′(⟨w(t,b)
j,r , ξi⟩)20 log(2/ϵ)︸ ︷︷ ︸
I9

− 1

m

∑
j,r

σ′(⟨w(t,b)
j,r , ξi⟩)20 log(2/ϵ)O

(
n
√

log(n/δ)/
√
d
)

︸ ︷︷ ︸
I10

− 1

m

∑
j,r

σ′(⟨w(t,b)
j,r , ŷiµ⟩)O

(
n
√
log(n/δ) · SNR · d−1/2

)
︸ ︷︷ ︸

I11

− 1

m

∑
j,r

σ′(⟨w(t,b)
j,r , yiµ⟩)β︸ ︷︷ ︸

I12

,

(47)

where the first inequality is by Lemma A.2 and the last inequality is by Lemma A.1. Then, we will705

bound each term in (47) respectively.706

For I10, I11, I12, I14, we have that707

|I10| ≤ O
(
n
√
log(n/δ)/

√
d
)
, |I11| ≤ O

(
n
√
log(n/δ) · SNR · d−1/2

)
,

|I12| ≤ O
(
β
)
,

(48)

For j = yi and r ∈ S
(0)
i , according to Lemma B.3, we have708

(P − 1)⟨w(t,b)
j,r , ξi⟩ ≥ (P − 1)⟨w(0,0)

j,r , ξi⟩+ ρ
(t,b)
j,r,i − 5n

√
log(4n2/δ)

d
α

≥ 2− β − 5n

√
log(4n2/δ)

d
α

≥ 1.5− β > 0

where the first inequality is by Lemma B.3; the second inequality is by 5n
√

log(4n2/δ)
d ≤ 0.5; and709

the last inequality is by β < 1.5. Therefore, for I9, according to the fourth statement of Proposition710

B.8, we have711

I9 ≥ 1

m
|S̃(t,b)

i |20 log(2/ϵ) ≥ 2 log(2/ϵ). (49)

By plugging (48) and (49) into (47) and according to triangle inequality we have712

yi⟨∇f(W(t,b),xi),W
∗⟩ ≥ I9 − |I10| − |I11| − |I12| − |I14| ≥ log(2/ϵ),

which completes the proof.713

Lemma B.12. Under Assumption 3.1, for (0, 0) ≤ (t, b) ≤ (T ∗, 0), the following result holds.714

∥∇LIt,b
(W(t,b))∥2F ≤ O(max{∥µ∥22, (P − 1)2σ2

pd})LIt,b
(W(t,b)).

Proof. We first prove that715

∥∇f(W(t,b),xi

)
∥F = O(max{∥µ∥2, (P − 1)σp

√
d}). (50)

Without loss of generality, we suppose that ŷi = 1. Then we have that716

∥∇f(W(t,b),xi)∥F ≤ 1

m

∑
j,r

∥∥∥∥[σ′(⟨w(t,b)
j,r ,µ⟩)µ+ (P − 1)σ′(⟨w(t,b)

j,r , ξi⟩)ξi
]∥∥∥∥

2

≤ 1

m

∑
j,r

σ′(⟨w(t,b)
j,r ,µ⟩)∥µ∥2 +

P − 1

m

∑
j,r

σ′(⟨w(t,b)
j,r , ξi⟩)∥ξi∥2

≤ 4max{∥µ∥2, 2(P − 1)σp

√
d},

where the first and second inequalities are by triangle inequality, the third inequality is by Lemma A.1.717

Then we upper bound the gradient norm ∥∇LS(W
(t,b))∥F as:718

∥∇LIt,b
(W(t,b))∥2F ≤

[
1

B

∑
i∈It,b

ℓ′
(
yif(W

(t,b),xi)
)
∥∇f(W(t,b),xi)∥F

]2
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≤
[
1

B

∑
i∈It,b

O(max{∥µ∥2, (P − 1)σp

√
d})
(
− ℓ′

(
yif(W

(t,b),xi)
))]2

≤ O(max{∥µ∥22, (P − 1)2σ2
pd}) ·

1

B

∑
i∈It,b

−ℓ′
(
yif(W

(t,b),xi)
)

≤ O(max{∥µ∥22, (P − 1)σ2
pd})LIt,b

(W(t,b)),

where the first inequality is by triangle inequality, the second inequality is by (50), the third inequality719

is by Cauchy-Schwartz inequality and the last inequality is due to the property of the cross entropy720

loss −ℓ′ ≤ ℓ.721

Lemma B.13. Under the same conditions as Theorem 3.2, we have that722

∥W(t,b) −W∗∥2F − ∥W(t+1,b) −W∗∥2F ≥ ηLIt,b
(W(t,b))− ηϵ

for all (T1, 0) ≤ (t, b) ≤ (T ∗, 0).723

Proof of Lemma B.13. We have724

∥W(t,b) −W∗∥2F − ∥W(t+1,b) −W∗∥2F
= 2η⟨∇LIt,b

(W(t,b)),W(t,b) −W∗⟩ − η2∥∇LS(W
(t,b))∥2F

=
2η

B

∑
i∈It,b

ℓ
′(t,b)
i [yif(W

(t,b),xi)− ⟨∇f(W(t,b),xi),W
∗⟩]− η2∥∇LIt,b

(W(t,b))∥2F

≥ 2η

B

∑
i∈It,b

ℓ
′(t,b)
i [yif(W

(t,b),xi)− log(2/ϵ)]− η2∥∇LS(W
(t,b))∥2F

≥ 2η

B

∑
i∈It,b

[ℓ
(
yif(W

(t,b),xi)
)
− ϵ/2]− η2∥∇LIt,b

(W(t,b))∥2F

≥ ηLIt,b
(W(t,b))− ηϵ,

where the first inequality is by Lemma B.11; the second inequality is due to the convexity of the725

cross-entropy function; the last inequality is due to Lemma B.12.726

Lemma B.14. ∣∣∣LI(t,b)(W(t,b))− LI(t,b)(W(t,0))
∣∣∣ ≤ ϵ

Proof. ∣∣∣LI(t,b)(W(t,b))− LI(t,b)(W(t,0))
∣∣∣

≤ 1

B

∑
i∈It,b

∣∣∣ℓ(yif(W(t,b), xi))− ℓ(yif(W
(t,0), xi))

∣∣∣
≤ 1

B

∑
i∈It,b

∣∣∣yif(W(t,b), xi)− yif(W
(t,0), xi)

∣∣∣
≤ 1

B

∑
i∈It,b

1

m

∑
j,r

(∣∣∣⟨w(t,b)
j,r −w

(t,0)
j,r ,µ⟩

∣∣∣+ (P − 1)
∣∣∣⟨w(t,b)

j,r −w
(t,0)
j,r , ξi⟩

∣∣∣)
≤ Hη(P − 1)

Bm
∥µ∥2σp

√
2 log(6n/δ) +

Hη(P − 1)2

Bm
2σ2

p

√
d log(6n2/δ)

≤ ϵ,

where the first inequality is due to triangle inequality, the second inequality is due to |ℓ′i| ≤ 1, the third727

inequality is due to triangle inequality and the definition of neural networks, the forth inequality is due728

to parameter update rule (15) and Lemma A.1, and the fifth inequality is due to Condition 3.1.729
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Lemma B.15. Under the same conditions as Theorem 3.2, for all T1 ≤ t ≤ T ∗, we have730

maxj,r,i |ρ(t,b)j,r,i
| = max

{
O
(√

log(mn/δ) · σ0σp

√
d
)
, O
(
n
√
log(n/δ) log(T ∗)/

√
d
)}

. Besides,731

1

(s− T1)H

∑
(T1,0)≤(t,b)<(s,0)

LIt,b
(W(t,b)) ≤ ∥W(T1,0) −W∗∥2F

η(s− T1)H
+ ϵ

for all T1 ≤ t ≤ T ∗. Therefore, we can find an iterate with training loss smaller than 2ϵ within732

T = T1 +
⌊
∥W(T1) −W∗∥2F /(ηϵ)

⌋
= T1 + Õ(η−1ϵ−1mnd−1σ−2

p ) iterations.733

Proof of Lemma B.15. Note that maxj,r,i |ρ(t)j,r,i
| = max

{
O
(√

log(mn/δ) · σ0(P −734

1)σp

√
d
)
, O
(
n
√

log(n/δ) log(T ∗)/
√
d
)}

can be proved in the same way as Lemma B.9.735

For any T1 ≤ s ≤ T ∗, by taking a summation of the inequality in Lemma B.13 and dividing736

(s− T1)H on both sides, we obtain that737

1

(s− T1)H

∑
(T1,0)≤(t,b)<(s,0)

LIt,b
(W(t,b)) ≤ ∥W(T1,0) −W∗∥2F

η(s− T1)H
+ ϵ.

According to the definition of T , we have738

1

(T − T1)H

∑
(T1,0)≤(t,b)<(T,0)

LIt,b
(W(t,b)) ≤ 2ϵ.

Then there exists an epoch T1 ≤ t ≤ T ∗ such that739

1

H

H−1∑
b=0

LIt,b
(W(t,b)) ≤ 2ϵ.

Thus, according to Lemma B.14, we have740

LS(W
(t,0)) ≤ 3ϵ

741

Lemma B.16. Under the same conditions as Theorem 3.2, we have742

n∑
i=1

ρ
(t,b)
j,r,i/γ

(t,b)
j′,r′ = Θ(SNR−2) (51)

for all j, j′ ∈ {±1}, r, r′ ∈ [m] and (T2, 0) ≤ (t, b) ≤ (T ∗, 0).743

Proof. Now suppose that there exists (0, 0) < (T̃ , 0) ≤ (T ∗, 0) such that
∑n

i=1 ρ
(t,0)
j,r,i /γ

(t,b)
j′,r′ =744

Θ(SNR−2) for all (0, 0) < (t, 0) < (T̃ , 0). Then for ρ(t,b)j,r,i , according to Lemma B.1, we have745

γ
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·
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b<H
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ℓ
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(t)
i )

j,r , ŷi · µ⟩)

−
∑

i∈S−∩It,b

ℓ
′(t,b(t)i )
i σ′(⟨w(t,b

(t)
i )

j,r , ŷi · µ⟩)
]
· ∥µ∥22,

ρ
(t+1,0)
j,r,i = ρ

(t,0)
j,r,i −

η(P − 1)2

Bm
· ℓ′(t,b

(t)
i )

i · σ′(⟨w(t,b
(t)
i )

j,r , ξi⟩) · ∥ξi∥22 · 1(yi = j),
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It follows that746

n∑
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ρ
(T̃ ,0)
j,r,i

=
∑

i:yi=j

ρ
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j,r,i

=
∑
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ρ
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·
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ρ
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·
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i∈S̃

(T̃−1,b̃
(T̃−1)
i
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i )

i ∥ξi∥22

≥
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ρ
(T̃−1)
j,r,i +

η(P − 1)2σ2
pdHΦ(−1)

8m
· min
i∈S̃

(t̃,b̃−1)
j,r ∩I

t̃,b̃−1

|ℓ′(T̃−1,b
(T̃−1)
i )

i |,

(52)

where the last equality is by the definition of S(T̃−1)
j,r as {i ∈ [n] : yi = j, ⟨w(T̃−1)

j,r , ξi⟩ > 0}; the last747

inequality is by Lemma A.1 and the fifth statement of Lemma B.8.748

And749

γ
(T̃ ,0)
j′,r′ ≤ γ

(T̃−1,0)
j′,r′ − η

Bm
·
∑
i∈S+

ℓ
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i )
j′,r′ , ŷi · µ⟩) · ∥µ∥22

≤ γ
(T̃−1,0)
j′,r′ +

Hη∥µ∥22
m
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i∈S+

|ℓ′(T̃−1)
i |.

(53)

According to the third statement of Lemma B.8, we have maxi∈S+
|ℓ′(T̃−1,bT̃−1

i )
i | ≤750

C2 min
i∈S

(T̃−1,b
T̃−1
i

)

j,r

|ℓ′(T̃−1)
i |. Then by combining (52) and (53), we have751
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i=1 ρ
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j,r,i

γ
(T̃ ,0)
j′,r′

≥ min
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i=1 ρ

(T̃−1,0)
j,r,i

γ
(T̃−1,0)
j′,r′

,
(P − 1)2σ2

pd

16C2∥µ∥22

}
= Θ(SNR−2). (54)

On the other hand, we will now show
∑n

i=1 ρ
(t,0)
j,r,i

γ
(t,0)

j′,r′
≤ Θ(SNR−2) for t ≥ T2 by induction. By Lemma752

A.1 and (52), we have753

n∑
i=1

ρ
(T2,0)
j,r,i ≤

n∑
i=1

ρ
(T2−1,0)
j,r,i +

3η(P − 1)2σ2
pdn

2Bm

≤
3η(P − 1)2σ2

pdnT2

2Bm
And, by Equation 46, we know that at t = T2, we have754

γ
(T2,0)
j′,r′ ≥ ηc3c4CT2n∥µ∥22

8Bm

Thus,755 ∑n
i=1 ρ

(T2,0)
j,r,i

γ
(T2,0)
j′,r′

≤ Θ(SNR−2)

Suppose
∑n

i=1 ρ
(T,0)
j,r,i

γ
(T,0)

j′,r′
≤ Θ(SNR−2). According to the decomposition, we have:756

⟨w(T,b)
j,r , ŷiµ⟩ = ⟨w(0,0)

j,r , ŷiµ⟩+ j · γ(T,b)
j,r · ŷi
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+
1

P − 1

n∑
i=1

ρ
(T,b)
j,r,i · ∥ξi∥−2

2 ⟨ξi, ŷiµ⟩+
1

P − 1

n∑
i=1

ρ(T,b)
j,r,i

· ∥ξi∥−2
2 ⟨ξi, ŷiµ⟩ (55)

And we have that757

|⟨w(0,0)
j,r , ŷiµ⟩+

1

P − 1

n∑
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ρ
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≤ β/2 + |
n∑

i=1

ρ
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4∥µ∥2
√
2 log(6n/δ)

σpd(P − 1)

≤ β/2 +
Θ(SNR−1)γ

(T,b)
j,r√

d

≤ γ
(T,0)
j,r ,

where the first inequality is due to triangle inequality and Lemma A.1, the second inequality is due758

to induction hypothesis, and the last inequality is due to Condition 3.1.759

Thus, the sign of ⟨w(T,b)
j,r , ŷiµ⟩ is persistent through out the epoch. Then, without loss of generality,760

we suppose ⟨w(T,b)
j,r ,µ⟩ > 0. Thus, the update rule of γ is:761

γ
(t,b+1)
j,r

= γ
(t,b)
j,r − η

Bm
·
[ ∑
i∈IT,b∩S+∩S1

ℓ
′(T,b)
i −

∑
i∈IT,b∩S−∩S1

ℓ
′(T,b)
i

]
∥µ∥22

≥ γ
(T,b)
j,r +

η

Bm
·
[
min
i∈IT,b

ℓ
(T,b)
i |IT,b ∩ S+ ∩ S1| − max

i∈IT,b

|IT,b ∩ S− ∩ S−1|
]
· ∥µ∥22.

(56)

Therefore,762

γ
(T+1,0)
j,r ≥ γ

(T,b)
j,r +

η

Bm
·
[
min ℓ

(T,b
(T )
i )

i |S+ ∩ S1| −max ℓ
(T,b

(T )
i )

i |S− ∩ S−1|
]
· ∥µ∥22. (57)

And, by (52), we have763

n∑
i=1

ρ
(T+1,0)
j,r,i ≤

n∑
i=1

ρ
(T,0)
j,r,i +

η(P − 1)2σ2
pdHΦ(−1)

8m
·max |ℓ′(T,b

(T )
i )

i | (58)

Thus, combining (57) and (58), we have764 ∑n
i=1 ρ

(T+1,0)
j,r,i

γ
(T+1,0)
j,r

≤ max

{∑n
i=1 ρ

(T,0)
j,r,i

γ
(T,0)
j,r

,
(P − 1)2σ2

pdnΦ(−1) ·max |ℓ′(T,b
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8
[
min ℓ

(T,b
(T )
i )

i |S+ ∩ S1| −max ℓ
(T,b

(T )
i )

i |S− ∩ S−1|
]
· ∥µ∥22

}
≤ Θ(SNR−2) (59)

where the last inequality is due to induction hypothesis, third statement of Lemma B.8, and765

Lemma A.5. Thus, by induction, we have for all T1 ≤ t ≤ T ∗ that766

∑n
i=1 ρ

(t,0)
j,r,i

γ
(t,0)
j′,r′

≤ Θ(SNR−2)

And for (T1, 0) ≤ (t, b) ≤ (T ∗, 0), we can bound the ratio as follows:767 ∑n
i=1 ρ

(t,b)
j,r,i

γ
(t,b)
j′,r′

≤
4
∑n

i=1 ρ
(t,0)
j,r,i

γ
(t,0)
j′,r′

≤ Θ(SNR−2),

where the first inequality is due to the update rule of ρ(t,b)j,r,i and ρ
(t,b)
j,r,i . Thus, we have completed the768

proof.769
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B.3 Test Error770

In this section, we present and prove the exact upper bound and lower bound of test error in771

Theorem 3.2. Since we have resolved the challenges brought by stochastic mini-batch parameter772

update, the remaining proof for test error is similar to the counterpart in Kou et al. (2023).773

B.3.1 Test Error Upper Bound774

First, we prove the upper bound of test error in Theorem 3.2 when the training loss converges to ϵ.775

Theorem B.17 (Second part of Theorem 3.2). Under the same conditions as Theorem 3.2, then776

there exists a large constant C1 such that when n∥µ∥22 ≥ C1(P − 1)4σ4
pd, for time t defined in777

Lemma B.15, we have the test error778

P(x,y)∼D
(
y ̸= sign(f(W(t,0),x))

)
≤ p+ exp

(
− n∥µ∥42/(C2(P − 1)4σ4

pd)

)
,

where C2 = O(1).779

Proof. The proof is similar to the proof of Theorem E.1 in Kou et al. (2023). The only difference is780

substituting ξ in their proof with (P − 1)ξ.781

B.3.2 Test Error Lower Bound782

In this part, we prove the lower bound of the test error in Theorem 3.2. We give two key Lemmas.783

Lemma B.18. For (T1, 0) ≤ (t, b) < (T ∗, 0), denote g(ξ) =
∑

j,r j(P − 1)σ(⟨w(t,b)
j,r , ξ⟩). There784

exists a fixed vector v with ∥v∥2 ≤ 0.06σp such that785 ∑
j′∈{±1}

[g(j′ξ + v)− g(j′ξ)] ≥ 4C6 max
j∈{±1}

{∑
r

γ
(t,b)
j,r

}
, (60)

for all ξ ∈ Rd.786

Proof of Lemma B.18. The proof is similar to the proof of Lemma 5.8 in Kou et al. (2023). The only787

difference is substituting ξ in thrir proof with (P − 1)ξ.788

Lemma B.19 (Proposition 2.1 in Devroye et al. (2018)). The TV distance between N (0, σ2
pId) and789

N (v, σ2
pId) is smaller than ∥v∥2/2σp.790

Then, we can prove the lower bound of the test error.791

Theorem B.20 (Third part of Theorem 3.2). Suppose that n∥µ∥42 ≤ C3d(P − 1)4σ4
p, then we have792

that L0−1
D (W(t,0)) ≥ p+ 0.1, where C3 is an sufficiently large absolute constant.793

Proof. The proof is similar to the proof of Theorem 4.3 in Kou et al. (2023). The only difference is794

substituting ξ in their proof with (P − 1)ξ.795

C SAM algorithm796

The following lemma shows the update rule of the neural network797

Lemma C.1. We denote ℓ
′(t,b)
i = ℓ′[yi · f(W(t,b),xi)], then the adversarial point of W(t,b) is798

W(t,b) + ϵ̂(t,b), where799

ϵ̂
(t,b)
j,r =

τ

m

∑
i∈It,b

∑
p∈[P ] ℓ

′(t,b)
i j · yiσ′(⟨w(t,b)

j,r ,xi,p⟩)xi,p

∥∇WLIt,b
(W(t,b))∥F

.

Then the training update rule of the parameter is800

w
(t+1,b)
j,r = w

(t,b)
j,r − η

Bm

∑
i∈It,b

∑
p∈[P ]

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r + ϵ̂
(t,b)
j,r ,xi,p⟩)j · xi,p
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= w
(t,b)
j,r − η

Bm

∑
i∈It,b

∑
p∈[P ]

ℓ
′(t,b)
i σ′(⟨w(t,b)
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Bm
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ℓ
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−η(P − 1)

Bm

∑
i∈It,b

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , ξi⟩+ ⟨ϵ̂(t,b)j,r , ξi⟩)jyiξi︸ ︷︷ ︸
NoiseTerm

We will show that the noise term will be small if we train with SAM algorithm. We consider the first801

stage where t ≤ T1 where T1 = mn/(12Bη∥µ∥22). Then the following property holds.802

Proposition C.2. Under Assumption 3.1, for 0 ≤ t ≤ T1, we have that803

γ
(0,0)
j,r , ρ

(0,0)
j,r,i , ρ

(0,0)
j,r,i

= 0 (61)

0 ≤ γ
(t,b)
j,r ≤ 1/12, (62)

0 ≤ ρ
(t,b)
j,r,i ≤ 1/12, (63)

0 ≥ ρ(t,b)
j,r,i

≥ −β − 10

√
log(6n2/δ)

d
n, (64)

Besides, γ(T1,0)
j,r = Ω(1).804

Lemma C.3. Under Assumption 3.1, suppose (25), (26) and (27) hold at iteration t. Then, for all805

r ∈ [m], j ∈ {±1} and i ∈ [n],806 ∣∣⟨w(t,b)
j,r −w

(0,0)
j,r ,µ⟩ − j · γ(t,b)

j,r

∣∣ ≤ SNR

√
32 log(6n/δ)

d
nα, (65)

∣∣⟨w(t,b)
j,r −w

(0,0)
j,r , ξi⟩ −

1

P − 1
ρ(t,b)
j,r,i

∣∣ ≤ 5

P − 1

√
log(6n2/δ)

d
nα, j ̸= yi, (66)

∣∣⟨w(t,b)
j,r −w

(0,0)
j,r , ξi⟩ −

1

P − 1
ρ
(t,b)
j,r,i

∣∣ ≤ 5

P − 1

√
log(6n2/δ)

d
nα, j = yi. (67)

Proof of Lemma C.3. Notice that 1/12 < α, if the condition (62), (63), (64) holds, (25), (26) and807

(27) also holds. Therefore, by Lemma B.3, we know that Lemma C.3 also hold.808

Lemma C.4. Under Assumption 3.1, suppose (62), (63), (64) hold at iteration t, b. Then, for all809

j ∈ {±1} and i ∈ [n], Fj(W
(t,b)
j ,xi) ≤ 0.5. Therefore −0.3 ≥ ℓ′i ≥ −0.7.810

Proof. Notice that 1/12 < α, if the condition (62), (63), (64) holds, (25), (26) and (27) also holds.811

Therefore, by Lemma B.4, we know that for all j ̸= yi and i ∈ [n], Fj(W
(t,b)
j ,xi) ≤ 0.5. Next we812

will show that for j = yi, Fj(W
(t,b)
j ,xi) ≤ 0.5 also holds.813

According to Lemma C.3, we have814

Fj(W
(t,b)
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1

m
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}
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≤ 0.5,

where the second inequality is by (65), (66) and (67); the third inequality is due to the definition of β;815

the last inequality is by (23), (62), (63).816

Since Fj(W
(t,b)
j ,xi) ∈ [0, 0.5] we know that817

−0.3 ≥ − 1

1 + exp(0.5)
≥ ℓ′i ≥ − 1

1 + exp(−0.5)
≥ −0.7.

818

Based on the previous foundation lemmas, we can provide the key lemma of SAM which is different819

from the dynamic of SGD.820

Lemma C.5. Under Assumption 3.1, suppose (62), (63) and (64) hold at iteration t, b. We have that821

if ⟨w(t,b)
j,r , ξk⟩ ≥ 0, k ∈ It,b and j = yk, then ⟨w(t,b)

j,r + ϵ̂
(t,b)
j,r , ξk⟩ < 0.822

Proof. We first prove that there for t ≤ T1, there exists a constant C2 such that823
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√
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From Lemma C.1, we have829
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where we the last equality is by choosing τ = m
√
B

C3Pσp

√
d

. Now we give an upper bound of ⟨w(t)
j,r, ξk⟩,830

by (67) we have that831
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d
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Combining (68) and (69) completes the proof.832

Lemma C.6. Under Assumption 3.1, suppose (62), (63), (64) hold at iteration t, b. Then (63) also833

holds for t, b+ 1834

Proof. Now consider the SAM algorithm. Recall that835
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Proof of Proposition C.2. We will use induction to give the proof. The results are obvious hold at843
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Second, by Lemma C.6, we know that (63) holds for (T̃ − 1, b̃).850

Last, we need to prove that (64) holds (T̃ − 1, b̃). The prove is similar to previous proof without851

SAM.852

When ρ
(T̃−1,̃b−1)
j,r,k < −0.5(P − 1)β − 6

√
log(6n2/δ)

d nα, by (29), we have853

⟨w(T̃−1,̃b−1)
j,r , ξk⟩ < ⟨w(0,0)

j,r , ξk⟩+
1

P − 1
ρ(T̃−1,̃b−1)
j,r,k

+
5

P − 1

√
log(6n2/δ)

d
nα ≤ − 1

P − 1

√
log(6n2/δ)

d
nα,

and we have854

⟨ϵ̂(T̃−1,̃b−1)
j,r , ξi⟩ =

τ

mB
∥∇WLI

T̃−1,b̃−1
(W(T̃−1,̃b−1))∥−1

F

∑
i∈I

T̃−1,b̃−1

∑
p∈[P ]

ℓ
′(T̃−1,̃b−1)
i j · yi

σ′(⟨w(T̃−1,̃b−1)
j,r ,xi,p⟩)⟨xi,p, ξk⟩

=
τ

mB
∥∇WLI

T̃−1,b̃−1
(W(T̃−1,̃b−1))∥−1

F ·
( ∑

i∈I
T̃−1,b̃−1

,i̸=k

ℓ
′(T̃−1,̃b−1)
i j · yi

(P − 1)σ′(⟨w(T̃−1,̃b−1)
j,r , ξi⟩)⟨ξi, ξk⟩+ ℓ

′(t)
k jyk · (P − 1)σ′(⟨w(t)

j,r, ξk⟩)⟨ξk, ξk⟩

+
∑

i∈I
T̃−1,b̃−1

ℓ
′(T̃−1,̃b−1)
i j · σ′(⟨w(T̃−1,̃b−1)

j,r , yiµ)⟨µ, ξk⟩
)

≤ τ

mC2Pσp

√
Bd

[
0.8B(P − 1)σ2

P

√
d log(6n2/δ) + 0.4BσP ∥µ∥2

√
2 log(6n2/δ)

]
≤ C4

τ
√
Bσp

√
log(6n2/δ)

m

= C4
B
√
log(6n2/δ)

C3P
√
d

≤ 1

P

√
log(6n2/δ)

d
nα,

and thus ⟨w(T̃−1,̃b−1)
j,r + ϵ̂

(T̃−1,̃b−1)
j,r , ξi⟩ < 0 which leads to855

ρ(T̃−1,̃b)
j,r,i

= ρ(T̃−1,̃b−1)
j,r,i

+
η(P − 1)2

Bm
· ℓ′(T̃−1,̃b−1)

i · σ′(⟨w(T̃−1,̃b−1)
j,r , ξi⟩) · ∥ξi∥22 · 1(yi = −j)1(i ∈ IT̃−1,̃b−1)

= ρ(T̃−1,̃b−1)
j,r,i

.

Therefore, we have856

ρ(T̃−1,̃b)
j,r,i

= ρ(T̃−1,̃b−1)
j,r,i

≥ −(P − 1)β − 5P

√
log(6n2/δ)

d
nα.

When ρ(T̃−1,̃b−1)
j,r,i

≥ −0.5(P − 1)β − 5
√

log(6n2/δ)
d nα, we have that857

ρ(T̃−1,̃b)
j,r,i

≥ ρ(T̃−1,̃b−1)
j,r,i

+
η(P − 1)2

Bm
· ℓ′(T̃−1,̃b−1)

i · ∥ξi∥22

≥ ρ(T̃−1,̃b−1)
j,r,i

− 0.4η(P − 1)2

Bm
· 2dσ2

p

≥ −(P − 1)β − 5P

√
log(6n2/δ)

d
nα.

Therefore, the induction is completed and thus Proposition C.2 holds.858

Next, we will prove that γ
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epochs, satisfy861
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Now we can give proof of Theorem 4.885
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for j ∈ [±1] and r ∈ [m] where894
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Next, we will evaluate the test error for W(t,0). Notice that we use (t) as the shorthand notation of895
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(
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)
,

(73)

where in the second equation we used the definition of D in Definition 2.1. It therefore suffices to899

provide an upper bound for P(x,ŷ)∼D
(
ŷf(W(t),x) ≤ 0

)
. To achieve this, we write x = (ŷµ, ξ),900

and get901

ŷf(W(t),x) =
1

m

∑
j,r

ŷj[σ(⟨w(t)
j,r, ŷµ⟩) + σ(⟨w(t)

j,r, ξ⟩)]

=
1

m

∑
r

[σ(⟨w(t)
ŷ,r, ŷµ⟩) + (P − 1)σ(⟨w(t)

ŷ,r, ξ⟩)]

− 1

m

∑
r

[σ(⟨w(t)
−ŷ,r, ŷµ⟩) + (P − 1)σ(⟨w(t)

−ŷ,r, ξ⟩)] (74)

The inner product with j = ŷ can be bounded as902

⟨w(t)
ŷ,r, ŷµ⟩ = ⟨w(0)

ŷ,r, ŷµ⟩+ γ
(t)
ŷ,r +

1

(P − 1)

n∑
i=1

ρ
(t)
ŷ,r,i · ∥ξi∥

−2
2 · ⟨ξi, ŷµ⟩+

1

(P − 1)

n∑
i=1

ρ(t)
ŷ,r,i

· ∥ξi∥−2
2 · ⟨ξi, ŷµ⟩

≥ ⟨w(0)
ŷ,r, ŷµ⟩+ γ

(t)
ŷ,r −

√
2 log(6n/δ)

P − 1
· σp∥µ∥2 · (σ2

pd/2)
−1

[ n∑
i=1

ρ
(t)
ŷ,r,i +

n∑
i=1

|ρ(t)
ŷ,r,i

|
]

= ⟨w(0)
ŷ,r, ŷµ⟩+ γ

(t)
ŷ,r −Θ

(√
log(n/δ) · (Pσpd)

−1∥µ∥2
)
·Θ(SNR−2) · γ(t)

ŷ,r

= ⟨w(0)
ŷ,r, ŷµ⟩+

[
1−Θ

(√
log(n/δ) · Pσp/∥µ∥2

)]
γ
(t)
ŷ,r

= ⟨w(0)
ŷ,r, ŷµ⟩+Θ(γ

(t)
ŷ,r)

= Ω(1),
(75)

where the inequality is by Lemma A.1; the second equality is obtained by plugging in the coefficient903

orders we summarized at (72); the third equality is by the condition SNR = ∥µ∥2/Pσp

√
d; the904

fourth equality is due to ∥µ∥22 ≥ C ·P 2σ2
p log(n/δ) in Condition 3.1, so for sufficiently large constant905

C the equality holds; the last equality is by Lemma C.7. Moreover, we can deduce in a similar906
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manner that907

⟨w(t)
−ŷ,r, ŷµ⟩ = ⟨w(0)

−ŷ,r, ŷµ⟩ − γ
(t)
−ŷ,r +

n∑
i=1

ρ
(t)
−ŷ,r,i · ∥ξi∥

−2
2 · ⟨ξi,−ŷµ⟩+

n∑
i=1

ρ(t)−ŷ,r,i
· ∥ξi∥−2

2 · ⟨ξi, ŷµ⟩

≤ ⟨w(0)
−ŷ,r, ŷµ⟩ − γ

(t)
−ŷ,r +

√
2 log(6n/δ) · σp∥µ∥2 · (σ2

pd/2)
−1

[ n∑
i=1

ρ
(t)
−ŷ,r,i +

n∑
i=1

|ρ(t)−ŷ,r,i
|
]

= ⟨w(0)
−ŷ,r, ŷµ⟩ −Θ(γ

(t)
−ŷ,r)

= −Ω(1) < 0,
(76)

where the second equality holds based on similar analyses as in (75).908

Denote g(ξ) as
∑

r σ(⟨w
(t)
−ŷ,r, ξ⟩). According to Theorem 5.2.2 in Vershynin (2018), we know that909

for any x ≥ 0 it holds that910

P(g(ξ)− Eg(ξ) ≥ x) ≤ exp
(
− cx2

σ2
p∥g∥2Lip

)
, (77)

where c is a constant. To calculate the Lipschitz norm, we have911

|g(ξ)− g(ξ′)| =

∣∣∣∣∣
m∑
r=1

σ(⟨w(t)
−ŷ,r, ξ⟩)−

m∑
r=1

σ(⟨w(t)
−ŷ,r, ξ

′⟩)

∣∣∣∣∣
≤

m∑
r=1

∣∣σ(⟨w(t)
−ŷ,r, ξ⟩)− σ(⟨w(t)

−ŷ,r, ξ
′⟩)
∣∣

≤
m∑
r=1

|⟨w(t)
−ŷ,r, ξ − ξ′⟩|

≤
m∑
r=1

∥∥w(t)
−ŷ,r

∥∥
2
· ∥ξ − ξ′∥2,

where the first inequality is by triangle inequality; the second inequality is by the property of ReLU;912

the last inequality is by Cauchy-Schwartz inequality. Therefore, we have913

∥g∥Lip ≤
m∑
r=1

∥∥w(t)
−ŷ,r

∥∥
2
, (78)

and since ⟨w(t)
−ŷ,r, ξ⟩ ∼ N

(
0, ∥w(t)

−ŷ,r∥
2
2σ

2
p

)
, we can get914

Eg(ξ) =
m∑
r=1

Eσ(⟨w(t)
−ŷ,r, ξ⟩) =

m∑
r=1

∥w(t)
−ŷ,r∥2σp√

2π
=

σp√
2π

m∑
r=1

∥w(t)
−ŷ,r∥2.

Next we seek to upper bound the 2-norm of w(t)
j,r. First, we tackle the noise section in the decomposi-915

tion, namely:916 ∥∥∥∥ n∑
i=1

ρ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi

∥∥∥∥2
2

=

n∑
i=1

ρ
(t)
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2
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2 + 2
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ρ
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ρ
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2
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p

√
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ρ
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2
+ 32σ−2
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√
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[( n∑
i=1

∣∣ρ(t)j,r,i
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−
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ρ
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2
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= Θ(σ−2
p d−1)

n∑
i=1

ρ
(t)
j,r,i

2
+ Θ̃(σ−2

p d−3/2)

( n∑
i=1

∣∣ρ(t)j,r,i

∣∣)2
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∣∣ρ(t)
j,r,i

∣∣)2

≤ Θ(σ−2
p d−1n−1)

( n∑
i=1

ρ
(t)
j,r,i

)2

where for the first inequality we used Lemma A.1; for the second inequality we used the definition of917

ρ, ρ; for the second to last equation we plugged in coefficient orders. We can thus upper bound the918

norm of w(t)
j,r as:919

∥w(t)
j,r∥2 ≤ ∥w(0)

j,r ∥2 + γ
(t)
j,r · ∥µ∥

−1
2 +

1

P − 1

∥∥∥∥ n∑
i=1

ρ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi

∥∥∥∥
2

≤ ∥w(0)
j,r ∥2 + γ

(t)
j,r · ∥µ∥

−1
2 +Θ(P−1σ−1

p d−1/2n−1/2) ·
n∑

i=1

ρ
(t)
j,r,i

= Θ(σ0

√
d) + Θ(P−1σ−1

p d−1/2n−1/2) ·
n∑

i=1

ρ
(t)
j,r,i, (79)

where the first inequality is due to the triangle inequality, and the equality is due to the following920

comparisons:921

γ
(t)
j,r · ∥µ∥

−1
2

Θ(P−1σ−1
p d−1/2n−1/2) ·

∑n
i=1 ρ

(t)
j,r,i

= Θ(P−1σpd
1/2n1/2∥µ∥−1

2 SNR2)

= Θ(P−1σ−1
p d−1/2n1/2∥µ∥2)

= O(1)

based on the coefficient order
∑n

i=1 ρ
(t)
j,r,i/γ

(t)
j,r = Θ(SNR−2), the definition SNR = ∥µ∥2/(σp

√
d),922

and the condition for d in Condition 3.1; and also ∥w(0)
j,r ∥2 = Θ(σ0

√
d) based on Lemma C.7. With923

this and (75), we analyze the key component in (83):924 ∑
r σ(⟨w

(t)
ŷ,r, ŷµ⟩)

(P − 1)σp
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r=1

∥∥w(t)
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(80)

It directly follows that925 ∑
r

σ(⟨w(t)
ŷ,r, ŷµ⟩)−

(P − 1)σp√
2π

m∑
r=1

∥w(t)
−ŷ,r∥2 > 0. (81)

Now using the method in (77) with the results above, we plug (76) into (74) and then (73), to obtain926

P(x,ŷ,y)∼D
(
ŷf(W (t),x) ≤ 0

)
(82)

≤ P(x,ŷ,y)∼D
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−ŷ,r∥2

)
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Table 1: ImageNet accuracy of ResNet-50 when we vary the starting point of using the SAM update
rule, baseline result is 76.4%.

τ 10% 30% 50% 70% 90%
0.01 76.9 76.9 76.9 76.7 76.7
0.02 77.1 77.0 76.9 76.8 76.6
0.05 76.2 76.4 76.3 76.3 76.2

≤ exp

[
−

c
(
(1/(P − 1))

∑
r σ(⟨w

(t)
ŷ,r, ŷµ⟩)− (σp/

√
2π)
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r=1 ∥w

(t)
−ŷ,r

∥∥
2

)2
σ2
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−ŷ,r

∥∥
2
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−ŷ,r
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2
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√
2π

)2]

≤ exp(c/2π) exp

(
− 0.5c
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ŷ,r, ŷµ⟩)

(P − 1)σp

∑m
r=1

∥∥w(t)
−ŷ,r

∥∥
2

)2)
(83)

where the second inequality is by (81) and plugging (78) into (77), the third inequality is due to the927

fact that (s− t)2 ≥ s2/2− t2,∀s, t ≥ 0.928

And we can get from (80) and (83) that929

P(x,ŷ,y)∼D
(
ŷf(W (t),x) ≤ 0

)
≤ exp(c/2π) exp

(
− 0.5c

( ∑
r σ(⟨w

(t)
ŷ,r, ŷµ⟩)

(P − 1)σp

∑m
r=1

∥∥w(t)
−ŷ,r

∥∥
2

)2)
≤ exp

( c

2π
− Cmin{σ−2

0 d−1, Pσ2
pdn

−1α−2}
)

≤ exp
(
− 0.5Cmin{σ−2

0 d−1, Pσ2
pdn

−1α−2}
)

≤ ϵ,

where C = O(1), the last inequality holds since σ2
0 ≤ 0.5Cd−1 log(1/ϵ) and d ≥930

2C−1P−1σ−2
p nα2 log(1/ϵ).931

932

D Additional Experiments933

In this section, we provide the experiments on real data sets.934

Varying different starting points for SAM In section 4, we show that the SAM algorithm can935

effectively prevent noise memorization and thus improve weak feature learning. Is SAM also effective936

if we add the algorithm at the end of the training? We conduct experiments on the ImageNet dataset937

with ResNet50. We choose the batch size as 1024 and the model is train for 90 epochs with the938

best learning rate in grid search {0.01, 0.03, 0.1, 0.3}. The learning rate schedule is 10k steps linear939

warmup then cosine decay. As shown in Table D, the earlier SAM is introduced, the more pronounced940

its effectiveness becomes.941

SAM with additive noises Here, we conduct experiments on the CIFAR dataset with WRN-16-8.942

We add Gaussian random noises to the image data with variance {0.1, 0.3, 1}. We choose the batch943

size as 128 and train the model over 200 epochs using a learning rate of 0.1, a momentum of 0.9,944

and a weight decay of 5e− 4. The SAM hyperparameter is chosen as τ = 2.0. As we can see from945

Table 2, SAM can consistently prevent noise learning and get better performance, compared to the946

SGD, vary from different additive noises level.947
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Table 2: CIFAR accuracy of wide ResNet when adding different level of Gaussian noise.

Model Noise Dataset Optimizer Accuracy
WRN-16-8 - CIFAR-10 SGD 96.69
WRN-16-8 - CIFAR-10 SAM 97.19

WRN-16-8 N (0, 0.1) CIFAR-10 SGD 95.87
WRN-16-8 N (0, 0.1) CIFAR-10 SAM 96.57

WRN-16-8 N (0, 0.3) CIFAR-10 SGD 92.40
WRN-16-8 N (0, 0.3) CIFAR-10 SAM 93.37

WRN-16-8 N (0, 1) CIFAR-10 SGD 79.50
WRN-16-8 N (0, 1) CIFAR-10 SAM 80.37

WRN-16-8 - CIFAR-100 SGD 81.93
WRN-16-8 - CIFAR-100 SAM 83.68
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