
A Motivation (Ext)476

In this section, we delve deeper into the motivational aspects underscoring our research. Our study477

primarily concerns tabular datasets where the total number of features is significantly outnumbered by478

the training samples. We concentrate on applications necessitating user-provided personal information479

for decision-making, such as lending, online insurance services, and health-care services. The480

prevailing weaknesses of these applications, which our work attempts to address, are outlined as481

follows:482

1. Privacy Concerns: The primary issue stems from the need for users to disclose sensitive483

information. For instance, in the context of online health-care services, patients are required484

to share an array of sensitive health data—weight, height, smoking habits, etc.—via a485

website or mobile application. This exposes users to potential privacy threats.486

2. User and Organizational Expenditure of Time and Effort: Numerous applications, such487

as lending, involve the time-consuming and effort-intensive process of gathering sensitive488

information and its supporting evidence. Users, for example, are required to validate489

their income through payslips or employment contracts in lending applications. Similarly,490

the organization must invest time and resources to verify the authenticity of submitted491

documents.492

3. Legal Constraints: According to the EU General Data Protection Regulation’s principle493

of data minimization, the collection of excessive personal information by companies and494

organizations is restricted. Our primary text illustrates that it is not imperative to report all495

features to preserve the model’s accuracy.496

The Imperative for Minimal Inference Time We also emphasize the importance of low inference497

time from both user and business perspectives. From the user’s viewpoint, applications such as online498

car insurance require answering a series of questions to determine the insurance plan. Naturally, users499

prefer answering fewer questions in the least amount of time. From a business standpoint, prolonged500

inference time may lead to customer dissatisfaction, potentially resulting in contract termination.501

This serves as the basis for our algorithmic choices, in lieu of more complex conditional distribution502

modeling methods, which can significantly increase inference time.503

B Related work504

While we are not aware of studies on data minimization for inference problems, we draw connections505

with differential privacy, feature selection, and active learning.506

Differential Privacy. Differential Privacy (DP) [7] is a strong privacy notion which determines and507

bounds the risk of disclosing sensitive information of individuals participating into a computation.508

In the context of machine learning, DP ensures that algorithms can learn the relations between data509

and predictions while preventing them from memorizing sensitive information about any specific510

individual in the training data. In such a context, DP is primarily adopted to protect training data511

[1, 6, 24] and thus the setting contrasts with that studied in this work, which focuses on identifying the512

superfluous features revealed by users at test time to attain high accuracy. Furthermore, achieving tight513

constraints in differential privacy often comes at the cost of sacrificing accuracy, while the proposed514

privacy framework can reduce privacy loss without sacrificing accuracy under the assumption of515

linear classifiers.516

Feature selection. Feature selection [5] is the process of identifying and selecting a relevant subset517

of features from a larger set for use in model construction, with the goal of improving performance518

by reducing complexity and dimensionality of the data. The problem studied in this work can be519

considered as a specialized form of feature selection with the added consideration of personalized520

levels, where each individual may use a different subset of features. This contrasts standard feature521

selection [13], which select the same subset of features for each data sample. Additionally, and unlike522

traditional feature selection, which is performed during training and independent of the deployed523

classifier [5], the proposed framework performs feature selection at deployment time and is inherently524

dependent on the deployed classifier.525

Active learning. Finally. the proposed framework shares similarities with active learning [8, 20],526

whose goal is to iteratively select samples for experts to label in order to construct an accurate527
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classifier with the least number of labeled samples. Similarly, the proposed framework iteratively528

asks individuals to reveal one attribute given their released features so far, with the goal of minimizing529

the uncertainty in model predictions.530

Despite these similarities, the proposed data minimization for inference concept is motivated by a531

privacy need and pertains to the analysis of features to release to induce the same level of accuracy as532

if all features were released.533

C Missing proofs534

Proposition 1. Given a core feature set R ⊆ S with failure probability δ < 0.5, then there exists a535

function ϵ : R→ R that is monotonic decreasing function with ϵ(1) = 0 such that:536

H
[
fθ(XU , XR = xR)

]
≤ ϵ(1− δ),

where H[Z]=−
∑

z∈[L] Pr(Z = z) log Pr(Z = z) is the entropy of the random variable Z.537

Proof. In this proof, we demonstrate the binary classification case. The extension to a multi-class538

scenario can be achieved through a similar process.539

By the definition of the core feature set, there exists a representative label, denoted as ỹ ∈ {0, 1}540

such that the probability of P (fθ(XU , XR = xR) = ỹ) is greater than or equal to 1 − δ. Without541

loss of generality, we assume that the representative label is ỹ = 1. Therefore, if we denote Z as542

the probability of Pr(fθ(XU , XR = xR) = 1), then the probability of Pr(fθ(XU , XR = xR) =543

0) = 1 − Z. Additionally, we have Z ≥ 1 − δ > 0.5 due to the definition of core feature set544

and by the assumption that δ < 0.5. The entropy of the model’s prediction can be represented as:545

H
[
fθ(XU , XR = xR)

]
= −Z logZ − (1− Z) log(1− Z).546

Choose ϵ(Z) = −Z logZ − (1 − Z) log(1 − Z). The derivative of ϵ(Z) is given by dϵ(Z)
dZ =547

log 1−Z
Z < 0, as Z > 0.5. As a result, ϵ(Z) is a monotonically decreasing function, so ϵ(Z) ≤548

ϵ(1− δ)549

When δ = 0, we have Z = 1, and by the property of the entropy H
[
fθ(XU , XR = xR)

]
= 0.550

Proposition 2. Given two subsets R and R′ of sensitive features S, with R ⊆ R′,551

H
(
fθ(XU , XR = xR)

)
≥ H

(
fθ(XU ′ , XR′ = xR′)

)
,

where U = S \R and U ′ = S \R′.552

Proof. This is due to the property that conditioning reduces the uncertainty, or the well-known553

information never hurts theorem in information theory [9].554

Proposition 3. The conditional distribution of any subset of unrevealed features U ′ ∈ U , given the555

the values of released features XR = xR is given by:556

Pr(XU ′ |XR = xR) = N
(
µU ′ +ΣU ′,RΣ

−1
RR(xR − µR), ΣU ′U ′ − ΣU ′RΣ

−1
RRΣR,U ′

)
,

where Σ is the covariance matrix557

Proof. This is a well-known property of the Gaussian distribution and we refer the reader to Chapter558

2.3.2 of the textbook [3] for further details.559

Proposition 4. The model predictions before thresholding, f̃θ(XU , XR = xR) = θUXU + θRxR is560

a random variable with a Gaussian distribution N
(
mf , σf

)
, where561

mf = θRxR + θ⊤U
(
µU +ΣURΣ

−1
RR(xR − µR)

)
(8)

σ2
f = θ⊤U

(
ΣUU − ΣURΣ

−1
RRΣRU

)
θU , (9)

where θU is the sub-vector of parameters θ corresponding to the unrevealed features U .562
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Proof. The proof of this statement is straightforward due to the property that a linear combination of563

Gaussian variables XU is also Gaussian. Additionally, the posterior distribution of XU is already564

provided in Proposition 3.565

Proposition 5. Let the model predictions prior thresholding f̃θ(XU , XR = xR), be a random566

variable following a Gaussian distribution N (mf , σ
2
f ). Then, the model prediction following thresh-567

olding fθ(XU , XR = xR) is a random variable following a Bernoulli distribution Bern(p) with568

p = Φ(
mf

σf
), where Φ(·) refers to the CDF of the standard normal distribution, and mf and σf , are569

given in Equations (5) and (6), respectively.570

Proof. In the case of a binary classifier, we have fθ(x) = 1{f̃θ(x) ≥ 0}. If f̃ follows a normal571

distribution, denoted as f̃ ∼ N (mf , σ
2
f ), then by the properties of the normal distribution, fθ follows572

a Bernoulli distribution, denoted as fθ ∼ Bern(p), with parameter p = Φ(
mf

σf
), where Φ(·) is the573

cumulative density function of the standard normal distribution.574

Proposition 6. Assume fθ is a linear classifier. Then, determining if a subset U of sensitive features575

S is a pure core feature set can be performed in O(|P |+ |S|) time.576

Proof. As discussed in the main text, to test if a subset U is a core feature set or not, we need to577

check if the following two terms have the same sign (either negative or non-negative):578

max
XU

θ⊤UXU + θ⊤RxR = ∥θU∥1 + θ⊤RxR

min
XU

θ⊤UXU + θ⊤RxR = −∥θU∥1 + θ⊤RxR.
(10)

These can be solved in time O(|P |+ |S|) due to the property of the linear equality above.579

Theorem 1. The distribution of the random variable f̃θ = f̃θ(XU , XR = xR) where XU ∼580

N
(
µ

pos
U ,Σ

pos
U

)
can be approximated by a Normal distribution as581

f̃θ ∼ N
(
f̃θ(XU = µpos

U , XR = xR), g
⊤
UΣ

pos
U gU

)
(11)

where gU = ∇XU
f̃θ(XU = µpos

U , XR = xR) is the gradient of model prediction at XU = µpos
U .582

Proof. The proof relies on the first Taylor approximation of classifier f̃ around its mean:583

f̃θ(XU , XR = xR, ) ≈ f̃θ(XU = µpos
U , XR = xR) + (XU − µpos

U )T∇XU
f̃θ(XU = µpos

U , XR = xR)
(12)

Since XU ∼ N
(
µ

pos
U ,Σ

pos
U

)
hence XU − µ

pos
U ∼ N

(
0,Σ

pos
U

)
. By the properties of normal584

distribution, the right-hand side of Equation (12) is a linear combination of Gaussian variables, and it585

is also Gaussian.586

D Algorithms Pseudocode587

The pseudocode for MinDRel for non-linear classifiers is presented in Algorithm 2. There are two588

main differences between this algorithm and the case of linear classifiers. Firstly, unlike linear589

classifiers, the procedure of pure core feature testing on line 5 does not require the guanrantee (see590

again Section 6.2). The accuracy of the testing procedures depends on the number of random samples591

that we evaluate. The greater the number of drawn samples, the more likely the testing procedure592

is to be accurate. During experiments, we draw 105 samples to perform the testing. Additionally,593

we use Theorem 1 to estimate the distribution of the soft prediction as seen on line 11, as the exact594

distribution cannot be computed analytically as in the case of linear classifiers.595

E Extension from binary to multiclass classification596

In the main text, we provide the implementation of MinDRel for binary classification problem. In597

this section, we extend the method to the multiclass classification problem.598
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Algorithm 2: MinDRel for non-linear classifiers
input :A test sample x; training data D
output :A core feature set R and its representative label ỹ

1 µ← 1
|D|

∑
(x,y)∈D x

2 Σ← 1
|D|

∑
(x,y)∈D(x− µ)(x− µ)⊤

3 Initialize R = ∅
4 while True do
5 if R is a core feature set with repr. label ỹ then
6 return (R, ỹ)
7 else
8 foreach j ∈ U do
9 Compute Pr(Xj |XR = xR) (using Prop. 3)

10 Z ← sample(Pr(Xj |XR = xR)) T times
11 Compute Pr

(
fθ(Xj = z,XU\{j}XR = xR)

)
( using Theorem 1)

12 Compute F (Xj) (using Eq. (4))

13 j∗ ← argmaxj F (Xj)
14 R← R ∪ {j∗}
15 U ← U \ {j∗}

E.1 Estimating P (fθ(XU , XR = xR))599

In order to achieve our goals of determining if a subset is a core feature set for a given δ > 0, and600

computing the entropy in the scoring function, we need to estimate the distribution of fθ(XU , XR =601

xR). In this section, we first discuss the method of computing the distribution of f̃θ(XU , XR = xR)602

for both linear and non-linear models. Once this is done, we then address the challenge of estimating603

the hard label distribution P (fθ(XU , XR = xR)).604

It is important to note that, under the assumption that the input features X are normally distributed605

with mean µ and covariance matrix Σ, the linear classifier f̃θ = θ⊤x will also have a multivariate606

normal distribution. Specifically, if XU ∼ N (µpos
U ,Σpos

U ), then f̃θ(XU , XR = xR) ∼ N (θ⊤RxR +607

θTUµ
pos
U , θ⊤UΣθU ).608

For non-linear classifiers, the output fθ(XU , XR = xR) is not a Gaussian distribution due to the609

non-linear transformation. To approximate it, we use Theorem 1 which states that the non-linear610

function f̃θ(XU , XR = xR) can be approximated as a multivariate Gaussian distribution.611

Challenges when estimating P (fθ(XU , XR = xR)) For multi-class classification problems, the612

hard label fθ(XU , XR = xR) is obtained by selecting the class with the highest score, which613

is given by argmaxi∈[L] f̃
i
θ(XU , XR = xR). However, due to the non-analytical nature of the614

argmax function, even when f̃θ(XU , XR = xR) follows a Gaussian distribution, the distribution615

of fθ(XU , XR = xR) cannot be computed analytically. To estimate this distribution, we resort to616

Monte Carlo sampling. Specifically, we draw a number of samples from P (f̃θ(XU , XR = xR)), and617

for each class y ∈ Y we approximate the probability P (fθ(XU , XR = xR) = y) as the proportion618

of samples that fall in that class y.619

We provide experiments of MinDRel for multi-class classification cases in Section F.5.620

F Experiments details621

Datasets information To show the advantages of the suggested MinDRel technique for safeguard-622

ing feature-level privacy, we employ benchmark datasets in our experiments. These datasets include623

both binary and multi-class classification datasets. The following are examples of binary datasets that624

we use to evaluate the method:625
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1. Bank dataset [4]. The objective of this task is to predict whether a customer will subscribe626

to a term deposit using data from various features, including but not limited to call duration627

and age. There are a total of 16 features available for this analysis.628

2. Adult income dataset [4]. The goal of this task is to predict whether an individual earns629

more than $50,000 annually. After preprocessing the data, there are a total of 40 features630

available for analysis, including but not limited to occupation, gender, race, and age.631

3. Credit card default dataset [4]. The objective of this task is to predict whether a customer632

will default on a loan. The data used for this analysis includes 22 different features, such as633

the customer’s age, marital status, and payment history.634

4. Car insurance dataset [19]. The task at hand is to predict whether a customer has filed a635

claim with their car insurance company. The dataset for this analysis is provided by the636

insurance company and includes 16 features related to the customer, such as their gender,637

driving experience, age, and credit score.638

Furthermore, we also evaluate our method on two additional multi-class classification datasets:639

1. Customer segmentation dataset [22]. The task at hand is to classify a customer into one of640

four distinct categories: A, B, C, and D. The dataset used for this task contains 9 different641

features, including profession, gender, and working experience, among others.642

2. Children fetal health dataset [12]. The task at hand is to classify the health of a fetus into643

one of three categories: normal, suspect, or pathological, using data from CTG (cardiotocog-644

raphy) recordings. The data includes approximately 21 different features, such as heart rate645

and the number of uterine contractions.646

Settings: For each dataset, 70% of the data will be used for training the classifiers, while the647

remaining 30% will be used for testing. The number of sensitive features, denoted as |S|, will be648

chosen randomly from the set of all features. The remaining features will be considered as public.649

100 repetition experiments will be performed for each choice of |S|, under different random seeds,650

and the results will be averaged. All methods that require Monte Carlo sampling will use 100 random651

samples. The performance of different methods will be evaluated based on accuracy and data leakage.652

Two different classifiers will be considered.653

1. Linear classifiers: We use Logistic Regression as the base classifier.654

2. Nonlinear classifiers: The nonlinear classifiers used in this study consist of a neural network655

with two hidden layers, using the ReLU activation function. The number of nodes in each656

hidden layer is set to 10. The network is trained using stochastic gradient descent (SGD)657

with a batch size of 32 and a learning rate of 0.001 for 300 epochs.658

For Bayesian NN, we employ the package bayesian-torch [10] with the default settings. The base659

regressor is a neural network with one hidden layer that has 10 hidden nodes and a ReLU activation660

function. We train the network in 300 epochs with learning rate of 0.001.661

Baseline models. We compare our proposed algorithms with the following baseline models:662

1. All features: This refers to the usage of original classifier which asks users to reveal all663

sensitive features.664

2. Optimal: This method involves evaluating all possible subsets of sensitive features (2|S| in665

total) in order to identify the minimum pure core feature set. For each subset, the verification666

algorithm is used to determine whether it is a pure core feature set. The minimum pure667

core feature set that is found is then selected. It should be noted that as all possible subsets668

are evaluated, all sensitive feature values must be revealed. Therefore, this approach is not669

practical in real-world scenarios. However, it does provide a lower bound on data leakage670

for MinDRel (when δ = 0).671

MinDRel models In MinDRel there are two important steps: (1) core feature set verification and672

(2) selection next feature to reveal. As additional baselines, we keep the core feature set verifiation673

and vary the selection process. We consider the following three feature selection methods:674
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Figure 7: Comparison between using (left) our proposed F-Score (left) with Importance (Middle) and
Random (Right) for different choices of number of sensitive features |S|. The baseline classifier is
Logistic Regression

1. F-Score: We choose the feature based on amount of information on model prediction we675

gain after revealing one feature as provided in Equation 3.676

2. Importance: We reveal the unknown sensitive features based on the descending order of677

feature importance until we find a core feature set. The feature importance is determined as678

follows. We firstly fit a Logistic Regression fθ(x) = 1{θTx ≥ 0} on the training dataset679

D using all features (public included). The importance of one sensitive feature i ∈ S is680

determined by ∥θi∥2.681

3. Random:We reveal the unrevealed sensitive feature in a random order until the revealed set682

is a core feature set.683

Metrics. We compare all different algorithms in terms of accuracy and data leakage:684

1. Accuracy. For algorithms that are based on the core feature set, such as our MinDRel and685

Optimal, the representative label is used as the model’s prediction. Again, the representative686

label for δ = 0 can be identified by using testing pure core feature set procedures. For δ > 0,687

the representative label is given by ỹ = argmaxy∈Y
∫
P (fθ(XU = xU , XR = xR) =688

y)P (XU |XR = xR)dxu. The accuracy is then determined by comparing this representative689

label to the ground truth.690

2. Data leakage. We compute the percentage of the number sensitive features that users need691

to provide on the test set. A small data leakage is considered better.692

F.1 Additional comparison between using Gaussian assumption and Bayesian NN693

We first show empirically the benefits of our proposed Gaussian assumption compared to using694

Bayesian NN which allows more flexilbity in modeling the conditional distribution P (XU |XR = xR).695
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Figure 8: Comparison between using (left) our proposed F-Score (left) with Importance (Middle) and
Random (Right) for different choices of number of sensitive features |S|. The baseline classifier is a
neural network classifier.

Table 1: Comparison between using Bayesian neural network and our Gaussian assumption in term
of training time (minutes) when |S| = 5 for various datasets.

Method Bank Income Credit Insurance
Bayesian NN 204 375 125 90

Gaussian assumption 0.01 0.02 0.02 0.01

We report both training and inference time between Bayesian NN and our Gaussian assumption on696

various datasets when the number of sensitive features |S| = 5 in Table 1 and Table 2. When |S| = 5697

the number of possible subsets U ∈ S is 25 = 32 which requires training 32 Bayesian NN models.698

This will be especially slow for datasets with large number of training samples (e.g., Income with 50K699

samples). In contrast, using Gaussian assumption we just need to precompute 32 inverse matrices700

Σ−1
R,R which is pretty fast for data that have small number features (less than 50 in our experiments).701

It is noted again that in this paper we focus on the case when the number of training samples is much702

more than number of features. Likwise, during inference time, with Gaussian assumption we can703

compute the distribution of model prediction in a closed form by simple matrix multiplication which704

takes O(d2). Instead, using Bayesian NN, it requires expensive Monte Carlo sampling, especially705

when |U | is large to obtain an accurate estimation of P (XU |XR = xR).706

We also report the performance in term of accuracy and data leakage between using Gaussian707

assumption and Bayesian NN in Figure 9. We see no much significant difference in term of accuracy708

and data leakage between two choices of modeling P (XU |XR = xR). In addition, as indicated above709

using Gaussian assumption reduces significantly the training and inference time, in the subsequent710

experiments we will use the Gaussian assumption in MinRDel with F-Score selection.711
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Table 2: Comparison between using Bayesian neural network and our Gaussian assumption in term
of inference time (minutes) on test set when |S| = 5, δ = 0 for various datasets.

Method Bank Income Credit Insurance
Bayesian NN 40 254 220 34

Gaussian assumption 15 78 66 9
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Figure 9: Comparison between using Bayesian NN with our Gaussian assumption in term of (1):
accuracy and (2) data leakage for different choices of number of sensitive features |S| on different
datasets using a Logistic Regression classifier.

F.2 Additional experiments on linear binary classifiers712

Additional experiments were conducted to compare the performance of MinDRel to that of the713

baseline methods using linear classifiers on the Bank, Adult income, Credit and Insurance datasets, as714

shown in Figure 7. As in the main text, a consistent trend in terms of performance is observed. As the715

number of sensitive attributes, |S|, increases, the data leakage introduced by MinDRel with various716

values of δ increases at a slower rate. With different choices of |S|, MinDRel (with δ = 0) requires717

the revelation of at most 50% of sensitive information. To significantly reduce the data leakage of718

MinDRel, the value of δ can be relaxed. As mentioned in the main text, δ controls the trade-off719

between accuracy and data leakage here. The larger δ is, the greater uncertainty the model prediction720

has, which implies the fewer number of sensitive features users need to reveal and the lower accuracy721

on model prediction. By choosing an appropriate value for the failure probability, such as δ = 0.1,722

only minimal accuracy is sacrificed (at most 0.002%), while the data leakage can be reduced to as723

low as 5% of the total number of sensitive attributes.724

F.3 Additional experiments on non-linear binary classifiers725

Additional experiments were conducted to compare the performance of MinDRel to that of the726

baseline methods using non-linear classifiers on the Bank, Adult income, Credit and Insurance727

datasets, as shown in Figure 8. As seen, while the baseline All features method requires the728

revelation of all sensitive attributes, MinDRel with different values of δ only requires the revelation of729

a much smaller number of sensitive attributes. The accuracy difference between the Baseline method730
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Figure 10: Comparison between using (left) our proposed F-Score (left) with Importance (Middle)
and Random (Right) for different choices of number of sensitive features |S|. The baseline classifier
is a logistic regression classifier.

and MinDRel is also minimal (at most 2%). These results demonstrate the effectiveness of MinDRel731

in protecting privacy while maintaining a good prediction performance for test data.732

F.4 Sclability of MinDRel for large |S|733

We demonstrate the performance of MinDRel when we have a large number of sensitive feaures |S|.734

Note that to reduce the runtime we did not run Optimal method which performs an exponential search735

over all possible choices of subset of S.736

We first report the accuracy and data leakage of MinDRel when using F-Score or using either two737

heuristic rules Importance and Random in case of logistic regression classifiers in Figure 10.738

Finally, we report the average testing time (in seconds) to get the model prediction per user of739

MinDRel in Figure 11. It is noted that in this case, we assume the time taken by users to release740

sensitive features is negligible. It is evident that when when |S| > 15, our proposed MinDRel with741

F-Score can take slightly more than 1 second to get the model prediction per user. This demonstrates742

the applicability of the models in practices.743

F.5 Evaluation of MinDRel on multi-class classifiers744

Linear classifiers We also provide a comparison of accuracy and data leakage between our proposed745

MinDRel and the baseline models for linear classifiers. These metrics are reported for the Customer746

and Children Fetal Health datasets in Figures 12a and 12b, respectively. The figures clearly shows747

the benefits of MinDRel in reducing data leakage while maintaining a comparable accuracy to the748

baseline models.749
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Figure 11: Comparison in term of average prediction time (seconds) among F-Score, Importance and
Random method in MinDRel (δ = 0) for different |S|.
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Figure 12: Comparison between using our proposed F-Score (left) with Importance (Middle) and
Random (Right) for different choices of number of sensitive features |S|. The baseline classifier is a

multinomial Logistic Regression

Nonlinear classifiers Similarly, we present a comparison of our proposed algorithms with the750

baseline methods when using non-linear classifiers. These metrics are reported for the Customer and751

Children Fetal Health datasets in in Figures 13a and 13b, respectively. The results show that using752

MinDRel with a value of δ = 0 results in a minimal decrease in accuracy, but significantly reduces753

the amount of data leakage compared to the Baseline method.754
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Figure 13: Comparison between using our proposed F-Score (left) with Importance (Middle) and
Random (Right) for different choices of number of sensitive features |S|. The baseline classifier is a

neural network classifier.
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