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1 Hardware Prototype

To create the captured dataset, we built a hardware prototype consisting of a pulsed laser (NKT
Photonics Katana 05HP) operating at 532 nm that emits 35 ps pulses of light at a repetition rate of 10
MHz. The output power of the laser is lowered to < 1 mW to keep the flux low enough (roughly
150, 000 counts per second on average) to prevent pileup, which is a non-linear effect that distorts
the SPAD measurements [1]. The laser emits polarized light that passes through a polarizing beam
splitter (Thorlabs PBS251), to a set of 2D scanning mirrors (Thorlabs GVS012). The mirrors are
controlled by a multifunction I/O device (NI-DAQ USB-6343) and are used to scan scenes at a spatial
resolution of 512×512 at a rate of 0.1 frames per second. The laser shares an optical path through the
beam splitter with a single pixel SPAD (Micro Photon Devices PDM series SPAD) with a 50 µm × 50
µm active pixel area. Photons detected by the SPAD are correlated with a sync signal from the laser
using a time-correlated single photon counter (TCSPC) to measure the photon arrival timestamps.

We place the scanned scenes on a rotation stage (Parker Motion/Parker 6K4 Compumotor) in front of
the scanning single-photon lidar, allowing us to capture different viewpoints by rotating the scene.

Each scan consists of 20 minutes of total exposure time, but we save out all collected photon
timestamps individually so that any desired exposure time can be emulated by accumulating photons
over the desired time window in post processing (i.e., for future applications of the dataset). We set
the bin width of the photon count histograms to 8 ps and the number of bins is 1500. The entire
data acquisition is controlled using custom-developed MATLAB software on a desktop PC, and we
capture six scenes with varying geometry, texture, and material properties. For each scene, we capture
views in 18 degree increments of the rotation stage, resulting in a 360 degree capture. We set aside 8
views for training, and 10 separate views sampled in 36 degree increments comprise the test split.
Prior to input into the network for training, we normalize the measurement values by the maximum
photon count observed across all views.

Ambient illumination. Our hardware setup is relatively robust to ambient illumination because we
place a laser-line spectral filter (Thorlabs FL532-10) in front of the SPAD, which attenuates ambient
illumination by a factor of 10,000. Under indoor lighting, we observe roughly 300-3,000 photon
counts per second, depending on the albedo of the target, which is < 2% of the detected laser photons
(150,000 counts per second). However, operation in much brighter environments (e.g., outdoors under
direct sunlight) would result in non-negligible background counts. In that case, it is possible to use
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other laser wavelengths (e.g., 1550 nm ), where sunlight is heavily attenuated because of absorption
by the atmosphere.

2 Calibration of the Hardware Prototype

Here we describe the method used to find the extrinsics and intrinsics defining the captured dataset.
An overview of the method can be found in the Algorithm 1.

Intrinsics. We calibrate the camera intrinsics of the system using the raxel model [2], which maps
each pixel to a 3D ray direction. To find the ray directions, we place a checkerboard on a translation
stage and use the lidar system to capture two images of this checkerboard before and after translating
17 cm by in the direction of the surface normal of the board (this was the maximum distance permitted
by the translation stage and our optical table layout).

Checkerboard corners are detected in the two images using OpenCV’s findChessboardCorners [3]
with subpixel refinement. In order to improve robustness to distortion, we further refine the corner
detection by fitting a second-order polynomial to corners along vertical lines (which we found to be a
good fit to model the observed distortion), and we use a first-order fit to horizontal lines, which we
found to fit the data well. We set the corner positions to the intersections of the set of fitted lines.

The pixel coordinates of the detected checkerboard corners are then used to define a 3D coordinate
system. We set the origin of the coordinate system to the upper-left corner of the nearest checkerboard,
and coordinates on the far checkerboard are calculated based on the known translation in z, with x
and y coordinates given using the size of the checkerboards (4.2 mm). We associate ray directions to
each pixel by finding the points of intersection of the ray with the two checkerboards. Specifically,
we linearly interpolate the mapping from pixel values to 3D coordinates at each checkerboard corner
to retrieve a dense mapping from pixels to 3D coordinates on each board. Then, for a given pixel the
ray direction is given by a simple subtraction of the 3D intersection points on each board.

Extrinsics. Our captured dataset consists of photon count histograms from six different scenes, each
with 20 different views. We use a rotation stage to move the scenes one full revolution in 18 degree
increments. The resulting views are equivalent to capturing a stationary scene with cameras that
are rotated about the center of rotation of the stage. Since all scenes are captured identically in this
fashion, we determine the camera extrinsics once for all scenes.

We also calibrate for an additional offset parameter to finetune the time-of-flight-delays recorded by
the lidar system. This accounts for the unknown time delay between the time that the time-correlated
single-photon counter receives the sync signal from the laser and the time that the laser pulse reaches
the center of projection of the scanning mirrors. In other words, this offset accounts for when “time
zero” should occur in the photon count histograms; we roughly calibrate for this value by placing a
target directly in front of the galvo mirrors, and we fine tune this offset via optimization as detailed
below.

Given that each view is captured using a controlled rotation, the extrinsics can be determined by
identifying the 3D axis of rotation and 3D center of rotation. To estimate these parameters, we use
a two step procedure. First, we capture lidar scans of a checkerboard placed on the rotation stage
and rotated to 6 different positions in 9 degree increments. We convert the lidar scans to a point
cloud using the raxel model and lidar time of flight, and then a coarse solution is obtained by fitting
planes to the point clouds and finding the center and axis of rotation that align the plane normals.
Second, we detect corners of the checkerboards and find the corresponding 3D points. Then, we
optimize for the center of rotation, axis of rotation, and the 1D offset parameter that best align the 3D
checkerboard corners.

Specifically, we implement a routine in PyTorch [4] to align the 3D checkerboard corners using the
Rodrigues formula given below.

v′ = (v − c) cos θ + (a · (v − c))(1− cos θ)a+ (a× (v − c)) sin θ + c. (S1)

Here, v is the 3D point to be rotated, c is the center of rotation, a is the axis of rotation, and v′ is the
rotated point. We minimize the objective function given as

Lalign =
∑
p

∑
[i,j]∈C

∥v′(i)
p − v′(j)

p ∥22, (S2)
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where p indexes the checkerboard corner points and [i, j] index all pairs of checkerboards. Thus we
penalize the distance between corresponding points between all checkerboards. The optimization
is performed using LBFGS [5]. After optimization, we use the resulting center point and rotation
matrices (i.e., by rotating around a by increments of 18 degrees) to define the camera extrinsics for
each view.

Algorithm 1: Calibration overview.
Intrinsics Calibration
Data: Two scans of a checkerboard before and after translation.

1. Perform sub-pixel detection of checkerboard corners using OpenCV and polynomial line
fitting.

2. Use the detected checkerboard corners to initialize a 3D coordinate system.
3. Compute per-pixel 3D coordinates for each checkerboard scan by interpolating the mapping

from corner pixel coordinates to 3D coordinates.
4. Compute the ray directions by subtracting the per-pixel 3D coordinates obtained for the

checkerboard scan before and after translation.

Extrinsics Calibration
Data: Six scans of a checkerboard rotated using the rotation stage.

1. Convert lidar scans to point clouds using the time of flight and intrinsics.
2. Fit planes and determine initial center and axis of rotation to align the surface normals.
3. Detect 3D points corresponding to checkerboard corners.
4. Refine the initial center and axis of rotation via Equations S1 and S2.

3 Additional Implementation Details

Network Architecture. In this section we describe the main network architecture. We extend the
NerfAcc [6] framework and the provided implementation of Instant-NGP (INGP) [7]. All network
hyperparameters are shared between our proposed method and the baselines unless otherwise stated.
We set the number of hash feature grids for INGP to 16 and set the feature size to 2. The resolution
of the coarsest grid is set to 16 and each subsequent grid has 2 times finer resolution. The base MLP
has width 64 with 1 hidden layer to map to density and a latent vector. Another MLP with 2 hidden
layers and 64 hidden units maps from the latent vector and viewing direction to the view-dependent
radiance.

We use the occupancy grid from NerfAcc with a resolution of 1283. The occupancy grid is employed
to remove samples along the ray based on their density for the sake of efficiency. The grid is binarized
using a occupancy value of 10−3.

For the captured data, we find that setting the binarization threshold to 10−5 for the first 3,000
iterations before reverting back to the standard 10−3 value helps to avoid an overly aggressive
removal of density that erodes the surface of reconstructed objects. In addition, we incorporate
pruning based on transmittance, removing any samples that register a transmittance of 0 to speed up
rendering. Finally, all rays are rendered by sampling 4,096 points along each ray, and these points are
pruned according to their occupancy and transmittance values, as previously discussed.

We set the bounding box used in INGP as follows for the simulated and captured data. For the
simulated data the bounding box extents are set to -1.5 to 1.5 across all dimensions and methods. For
captured data, we use a -0.4 to 0.4 bounding box for Transient NeRF; we slightly shrink the bounding
box for baselines run on captured data to -0.3 to 0.3, which we find helps remove some spurious
regions of density and improves the baseline results.

Rendering Equation Given samples t1, t2, · · · tN along a camera ray, we render a histogram bin
τ [n] for the ray as
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τ [n] =
∑

i| ti+ti+1
2 ∈Tn

T 2
i (1− exp (−σiδi))

ci

( 12 (ti + ti+1))2
, where Ti = exp

−
i−1∑
j=1

σjδj

 ,

(S3)

where σi, ci are the density and radiance outputs of the network, δi = ti+1 − ti is the distance
between consecutive samples and Tn is the resolution of the histogram bin, in units of distance. The
sum is taken over all consecutive samples whose midpoints fall within Tn.

Optimization settings and run time. The time required for training is strongly influenced by the
number of samples used for the spatial filter, as discussed in the main text. Specifically, each image
pixel is rendered by computing a weighted integral over the radiance for a particular region of space.
We compute this integral during training by stochastically sampling one or more ray directions per
pixel with probability determined by the weighting and support of the spatial filter [8]. For the
simulated dataset, we initially sample a single ray for the first 2000 iterations, then subsequently
double this number every 2000 iterations until we reach a maximum of 30 rays sampled per pixel.
For the captured dataset we use a single ray sample per pixel per iteration; we find that increasing the
number ray samples results in longer training times without significantly improved performance.

Training takes roughly eight hours to converge for the simulated dataset (250K iterations) and two
hours to converge for captured data (150K steps).

Depth calculation. We follow the NeRF convention in calculating depth for all baseline methods as

d =
∑
i

σ(ti)T (ti)
ti + ti+1

2
, (S4)

where ti is the distance from the ray origin to a sample along the ray, Ti is the transmittance, and σ is
the density. Intuitively, this equation calculates the expected ray termination distance.

Since our method incorporates a spatial filter to more accurately model the footprint of the illumination
spot, a single ray can result in measurements from multiple surfaces (e.g., if a pixel integrates over a
depth discontinuity). To avoid multiple depths in the measurement from skewing the estimate of the
expected ray termination distance, we use the following equation to compute depth.

d = argmax
ti

σ(ti)T (ti). (S5)

Thus, we find the depth at which the maximum probability of ray termination occurs.

We note that in the conventional NeRF depth rendering formula of Equation S4, regions of low
density become less visible in most visualizations because their depth tends towards zero (i.e., it is
weighted by the density, which is close to zero, but typically not uniformly zero for empty regions).
However, in Equation S5, no such weighting exists, resulting in visualizations that appear noisier
because depths for regions with low (but non-zero) density are not automatically suppressed. Thus
for visualization of the depth maps we weight the depth as follows.

d =

(∑
i

σ(ti)T (ti)

)
argmax

ti
σ(ti)T (ti). (S6)

We use this equation to visualize depth maps, as we find they are more comparable to those rendered
with the conventional NeRF formulation (though the density and transmittance weighting results in
them being slightly less accurate).

3.1 Baseline Implementation Details

Four different baselines are implemented to evaluate our proposed method. To isolate the impact of
different loss functions and speed up the training, we implemented the specific loss functions from
each of the following methods in the framework of NerfAcc with the Instant-NGP backbone.

For all baselines, we generate the ground truth intensity images by first integrating the transients over
the time dimension and normalization by a scale factor to shift the image values to lie close to within
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[0, 1]. We apply gamma correction to tonemap the resulting high dynamic range intensity images
prior to training.

Instant-NGP [7]. The Instant-NGP model is trained with photometric loss defined as the total
squared error between the rendered intensities and the pixel colors from the input images:

Lphoto =
∑
r∈R

∥C̃(r)−C(r)∥22, (S7)

where C̃ and C denote the ground-truth pixel color and the predicted value, respectively. R specifies
the set of active rays that have non-zero opacity values; this set of rays is updated as training
progresses to accelerate optimization by pruning rays that do not contribute to the rendering [6].

Depth-Supervised NeRF [9]. Following the depth supervision idea proposed in [9], we train a new
model that incorporates depth error loss in addition to the photometric loss above:

Ldepth =
1

|R′|
∑
r∈R′

(
d̃(r)− d(r)

)2
. (S8)

Here, d̃(r) denotes the lidar depth for ray r obtained from the captured transients using a log-matched
filter [10], d(r) is the predicted depth value computed from Equation S4, and R′ specifies the set of
rays that intersect with the object.

The final training loss is defined as L = Lphoto + λdepthLdepth. In the simulated and captured results,
λdepth is set to 0.005 and 0.0075, respectively.

Urban NeRF [11]. We further incorporated the line-of-sight lidar loss Lsight, proposed in [11], to
encourage the densities to be concentrated near the lidar points. This loss comprises two terms. The
first term penalizes any density between the ray origin and the lidar point:

Lempty =
1

|R′|
∑
r∈R′

[ ∫ d̃−ϵ

tn

w(t)2dt
]
. (S9)

In this equation, R′ is the set of rays that intersect with the object; w(t) is the volume rendering
integration weights defined as σ(t)T (t); tn denotes the near bound of the ray; and ϵ specifies a
neighbourhood around the surface point.

The second term, on the other hand, encourages the model to increase the densities in the bounded
region around the surface point:

Lnear =
1

|R′|
∑
r∈R′

[ ∫ d̃+ϵ

d̃−ϵ

(w(t)−Kϵ(t− d̃))2dt
]
, (S10)

where Kϵ is a truncated Gaussian defined as N (0, (ϵ/3)2) [12].

The final training loss for this model is defined as:

L = Lphoto + λdepthLdepth + λsightLsight, (S11)

where Lsight = Lempty + Lnear. The parameters (λdepth, λsight) are set to (0.0001, 0.005) for both the
simulations and captured experiments.

Following the instructions from the original paper, we applied exponential decay to the value of
ϵ throughout the optimization, which encourages the density of the radiance field to fall within a
progressively smaller support, improving convergence. We initialize ϵ to a value ϵmax, and every
7000 steps we multiply by a factor of 0.8, until it decays to ϵmin. Parameters (ϵmax, ϵmin) are set to
(1.5, 0.025) and (4.0, 0.05) for the captured and simulated results, respectively.

Urban NeRF with Masking. The depth-related loss terms Ldepth and Lsight used in the previous
two models are evaluated only for the rays that intersect with the object; however, we find that the
included regularization terms do not prevent spurious regions of density that appear for pixels that
fall outside the support of the object on the image plane.

We attempt to improve the baseline results further by using modified versions of Lphoto and Lsight
which sum over active rays R. Specifically we use an oracle object mask (i.e., a ground truth mask
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segmenting the object in each training view) and set the ground truth depth of all background pixels
to zero. This loss encourages the density to be uniformly zero along background rays and helps
to remove spurious clouds of density that tend to materialize in the other baseline results during
training. We note that this masking loss is directly analogous to the sky modeling loss proposed in
Urban-NeRF [11], which penalizes density along rays that intersect with the sky as determined using
a semantic segmentation network.

For both the simulated and captured results, we hand-annotate the oracle object masks by carefully
thresholding the intensity images and applying morphology operations to fill in holes in the mask.

4 Supplemental Results

4.1 Dataset

Simulated dataset. To create the simulated multiview lidar dataset, we modify the non-line-of-sight
Mitsuba 2 rendering codes of Royo et al. [13]. While the original codebase enables one to simulate the
effect of illuminating a single point in the scene with a laser and imaging other points, our approach
requires rendering a frame where each pixel images an area of the scene that is illuminated with
a coaxial, collimated light source. To this end, introduce a new light source as well as additional
rendering options such that each pixel is rendered independently with its own coaxial light source.
We also incorporate a Gaussian reconstruction filter [8] along the time dimension to avoid aliasing or
stair-stepping artifacts in regions with fine variations in depth.

We choose the variance of the Gaussian temporal filter and spatial filters to produce transients that
measure a laser pulse with similar temporal and spatial support as the captured results. Specifically,
we set the variance of the temporal and spatial filters to 3 and 0.15 respectively. We simulate photon
count histograms 1200 bins and each bin has a width of approximately ∼ 30ps.

We subsample 8 training viewpoints from the simulated lidar measurements rendered at 36 degree
increments along a circle centered at the origin. Specifically, we sample 2 views separated by 180
degrees; 3 views separated by 90 and 180 degrees (i.e., a superset of the 2 views), and 5 views
uniformly separated by 72 degrees. Note that the 5 views are not a superset of the viewpoints used
when training on 2 or 3 lidar measurements. For testing, we use 6 viewpoints from the NeRF Blender
test set that surround the object.

Captured dataset. The captured dataset consists of 20 multiview single-photon lidar scans of
six scenes. The scenes consist of everyday objects and figurines (see Fig. S1). We record photon
timestamps at 4 ps resolution for each scene, with measurements of each view being captured during
an exposure period of 20 minutes. While we use all photon timestamps in the photon count histograms
used for the proposed method, access to the photon timestamps also allows synthesizing histograms
with arbitrary exposure time, which will make the dataset useful for a wide array of follow-on work.

We use raw photon count histograms with 4096 bins and bin widths of 4 ps. To decrease the memory
required for training, we crop and downsample the histograms to 1500 bins with 8 ps resolution.

Measurements are captured in the low-flux regime to avoid non-linear distortions due to pile-up.
A detailed breakdown of the photon counts and acquisition parameters for each captured scene is
provided in Table S1.

Table S1: Photon counts per scene for the captured dataset.

scene name spatial resolution histogram bins exposure time/view avg. counts/view avg. counts/sec

baskets 512× 512 1500 20 min 9.04×107 7.53×104

boots 7.39×107 6.16×104

carving 5.60×107 4.66×104

chef 2.56×108 2.13×105

cinema 1.51×108 1.26×105

food 1.44×108 1.20×105
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carving

chef

boots cinema

food baskets

Figure S1: The captured dataset. The captured datset consists of 20 multiview single-photon lidar
scans of six scenes.

4.2 Depth Evaluation

DS-NeRF and Urban NeRF calculate depth differentiably using the integral along the ray (i.e., the
expected ray termination distance) and incorporate this in their loss functions. Since the baseline
methods are supervised with this depth estimate, we opted to use the same approach for evaluation.

For completeness, we provide an updated version of the L1 depth in Table S2 calculated for all
methods using the maximum ray termination probability as described in Equation S5. Baseline
performance using this method of depth estimation is indeed improved for most of the methods,
though Transient NeRF still performs best.

Table S2: Depth evaluation using maximum probability of ray termination for simulated and captured
scenes.

Simulated ↓ Captured ↓
Method 2 views 3 views 5 views 2 views 3 views 5 views

Instant NGP [30] 0.151 0.202∗ 0.184∗ 0.021 0.021 0.024
DS-NeRF [26] 0.102 0.124∗ 0.136∗ 0.024 0.026 0.033
Urban NeRF [4] 0.128 0.124 0.100 0.017 0.016∗ 0.013
Urban NeRF w/mask† 0.039 0.038 0.020 0.014 0.006 0.004
Proposed 0.015 0.011 0.013 0.006 0.006 0.010

∗ Using maximum probability of ray termination is worse than the expected termination distance (Equation S4).
† Requires ground truth segmentation mask.

4.3 Intermediate Rendering Results

In Fig. S2, we show intermediate results from the rendering pipeline: the density from the network
and the raw radiance output. We plot all these quantities versus the histogram bin number, which we
find by simply discretizing the distances of the samples along the rays and allocating the quantities to
the appropriate bin.

The rendered densities are very dissimilar from the rendered transients, partly due to the transients
being effected by the transmittance, but also because these values are visualized before applying the
temporal filter.

Note these plots show renders for a single ray, and we are not integrating over multiple rays to account
for the pixel footprint. Also, we plot the normalized density and radiance along the ray since these
quantities vary significantly across different pixels in the image.
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Figure S2: Rendered transients, densities, and radiance plotted versus bin number for rays represented
in the rendered image of the hotdog scene trained on three views. We normalize the densities and
radiance values for visualiation and plot the unnormalized transients.

4.4 Ablation Studies

Space carving, temporal filter and normals. In Table S3 we show ablation studies of our method
calculated on the captured cinema scene. Specifically, we include quantitative results of our method
without the space carving loss (w/o SC), without accounting for the laser profile (w/o TF) and the
proposed method while accounting for normals (w/ normals).

The space carving loss appears to especially improve performance in the five view case. It helps
eliminate spurious clouds of density, which improves reconstruction quality for held-out test views.

We also note the importance of explicitly accounting for the laser pulse width and system jitter. This
is especially noticeable for the two view results, where the depth becomes highly skewed without this
component. We attribute this effect to a thickening of the density representing the object surface; the
optimization appears to converge to this solution to explain the temporal spread of the returning light
captured in the photon count histograms. Properly accounting for the laser pulse and system jitter
essentially deconvolves the temporal response of the lidar system, resulting in thin sheets of density
that accurately localize the object surface.

We also ablate using the normals by adding cosine factors to the rendering equation (Eq. 3) for the
Cinema scene. Estimating the normals requires a noisy finite-difference operation on the predicted
density values, which we found results in speckle-like artifacts in the novel views. Instead, we model
the effects of incidence angle by conditioning the neural representation on view direction.

Table S3: Ablation studies on the proposed method for the captured cinema scene. We present results
while omitting any temporal filtering (w/o TF), omitting the space carving loss (w/o SC) and with
modelling normals using cosine factors (w/ normals).

PSNR (dB) ↑ LPIPS ↓ SSIM ↑ L1 (depth) ↓
Method 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views

Proposed w/o TF 16.55 20.85 20.02 0.346 0.225 0.209 0.589 0.837 0.823 0.022 0.007 0.009
Proposed w/o SC 20.63 21.09 20.12 0.207 0.200 0.217 0.855 0.855 0.840 0.007 0.009 0.020
Proposed w/ normals 20.88 20.41 24.62 0.332 0.268 0.216 0.825 0.815 0.867 0.006 0.007 0.007
Proposed 21.61 21.66 25.12 0.281 0.245 0.178 0.850 0.812 0.879 0.006 0.006 0.007

Pixel footprint. We ablate modelling the pixel footprint (see Table S4). When the laser spot and
sensor footprint pass over a depth discontinuity, we observe two peaks in the resulting photon count
histogram (corresponding to the two depths across the discontinuity). Assuming an ideal spot (i.e.,
using a single ray) completely fails to model this effect. Training and rendering the lego scene (which
has many depth discontinuities) with the ideal spot model results in much worse performance across
novel views.
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Table S4: Simulated results comparing the proposed approach on the Lego scene with and without
modeling the laser spatial footprint (w/o SF).

PSNR (dB) ↑ LPIPS ↓ L1 (depth) ↓
Method 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views

Proposed w/o SF 20.01 23.39 25.08 0.195 0.147 0.170 0.119 0.065 0.041
Proposed 20.64 23.63 25.18 0.190 0.161 0.192 0.023 0.011 0.008

HDR-informed loss function. We provide an ablation study of the HDR-informed loss function
in Table S5 on the chef and food scenes. Incorporating this loss provides some improvement by
preventing very bright regions from dominating the loss. Moreover, in the case of 5 input views,
performance without the HDR-informed loss drops due to specular highlights appearing in one view,
but not an overlapping nearby training view (e.g., on the globe in the chef scene or the bag of chips
in the food scene). Without the HDR-informed loss, the network has difficulty modeling the large
variation in radiance between views, and so the optimization produces spurious patches of density to
model this view-dependent effect (despite regularization with the space carving loss).

Table S5: Ablation study of the HDR-informed loss function for the captured Chef and Food scenes.

PSNR (dB) ↑ LPIPS ↓ SSIM ↑ L1 (depth) ↓
Scene/Method 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views

Chef w/o HDR 18.19 18.09 13.54 0.360 0.324 0.345 0.767 0.773 0.643 0.004 0.005 0.025
Chef w/ HDR 19.27 18.14 19.55 0.334 0.338 0.276 0.775 0.747 0.811 0.006 0.007 0.013

Food w/o HDR 23.08 23.98 16.93 0.305 0.184 0.263 0.827 0.881 0.722 0.007 0.006 0.032
Food w/ HDR 23.40 23.78 22.09 0.286 0.205 0.154 0.826 0.879 0.873 0.006 0.007 0.013

4.5 Simulated Results

The paper focuses on results for sparse views (i.e., 2, 3, and 5 views) since this is the regime where
depth supervision improves the most over only using 2D supervision. However in Table S6 we show
results of the proposed method and the baselines trained on 10 simulated training views sampled at
equal angles around the Lego scene, and our approach still outperforms the baselines when evaluated
on the same test views.

Table S6: Simulated results for 2, 3, 5, and 10 training views on the Lego scene.

PSNR (dB) ↑ LPIPS ↓ L1 (depth) ↓
Method 2 views 3 views 5 views 10 views 2 views 3 views 5 views 10 views 2 views 3 views 5 views 10 views

Instant NGP [30] 16.04 17.46 16.46 21.73 0.591 0.544 0.479 0.216 0.224 0.236 0.195 0.101
DS-NeRF [26] 17.66 19.45 17.21 22.83 0.500 0.476 0.482 0.302 0.136 0.127 0.193 0.068
Urban NeRF [4] 19.59 19.75 16.19 21.36 0.519 0.522 0.503 0.368 0.105 0.100 0.151 0.074
Urban NeRF w/mask 20.48 21.50 19.48 25.02 0.471 0.442 0.421 0.317 0.040 0.049 0.057 0.019
Proposed 20.64 23.63 25.18 31.74 0.190 0.161 0.192 0.084 0.023 0.011 0.008 0.005

In Figs. S3, S4, and S5 we show further renders from our method and baseline methods trained on
the simulated dataset. The same trends as in the main text persist. Our method qualitatively produces
images more faithful to the ground-truth. Our rendered images suffer less from floating artifacts and
display finer details, for example in the lego scene. Some artifacts in the depth maps (i.e., the "holes"
that appear) result from how we visualize depth in low occupancy areas. Depths in these regions can
be become biased as described by Equation S6.

We show a breakdown across all simulated scenes of the evaluation metrics (see Table S7, S8, S9,
S10). In addition to the metrics reported in the main text (PSNR, LPIPS, L1 depth) we add the
structural similarity (SSIM) metric. Again, our method outperforms the baselines in the quantitative
metrics. Since the 2, 3, and 5 view results do not include viewpoints that are strict supersets of each
other, the performance of some metrics does not always increase for every scene in every case with
increasing views (though this is a trend we observe on average).
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Table S7: Breakdown of PSNR (dB) across all 5 simulated scenes.

Instant NGP [7] ↑ DS-NeRF [9] Urban NeRF [12] Urban NeRF w/Mask [12] Proposed
Scene 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views

lego 16.04 17.46 16.46 17.66 19.45 17.21 19.59 19.75 16.19 20.48 21.50 19.48 20.64 23.63 25.81
chair 13.40 15.42 24.95 16.51 16.72 25.49 17.53 16.14 24.28 20.39 18.69 28.23 20.75 21.99 34.48
hotdog 14.95 14.72 13.80 18.93 17.47 19.12 15.75 16.37 18.04 18.90 18.71 19.53 20.74 22.64 32.36
bench 16.85 19.33 15.58 19.87 20.34 15.69 19.12 19.52 14.56 20.64 21.55 17.57 20.20 23.06 21.57
ficus 21.87 21.40 27.50 23.44 22.75 27.85 22.32 21.88 25.91 24.12 23.58 26.87 24.57 26.10 27.70

average 16.62 17.67 19.66 19.28 19.35 21.07 18.86 18.73 19.80 20.91 20.81 22.34 21.38 23.48 28.39

Table S8: Breakdown of LPIPS metric across all 5 simulated scenes.

Instant NGP [7] ↑ DS-NeRF [9] Urban NeRF [12] Urban NeRF w/Mask [12] Proposed
Scene 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views

lego 0.591 0.544 0.479 0.500 0.476 0.482 0.519 0.522 0.503 0.471 0.442 0.421 0.190 0.161 0.192
chair 0.501 0.466 0.296 0.482 0.461 0.306 0.494 0.474 0.326 0.359 0.357 0.275 0.138 0.138 0.037
hotdog 0.583 0.615 0.523 0.456 0.470 0.390 0.580 0.553 0.433 0.533 0.466 0.395 0.242 0.241 0.118
bench 0.538 0.442 0.398 0.444 0.422 0.459 0.502 0.473 0.483 0.400 0.368 0.375 0.194 0.139 0.159
ficus 0.387 0.311 0.238 0.272 0.352 0.244 0.403 0.400 0.286 0.287 0.278 0.229 0.094 0.079 0.069

average 0.520 0.476 0.387 0.431 0.436 0.376 0.500 0.484 0.406 0.410 0.382 0.339 0.172 0.151 0.115

Table S9: Breakdown of SSIM metric across all 5 simulated scenes.

Instant NGP [7] ↑ DS-NeRF [9] Urban NeRF [12] Urban NeRF w/Mask [12] Proposed
Scene 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views

lego 0.456 0.519 0.576 0.600 0.624 0.631 0.592 0.580 0.590 0.646 0.710 0.722 0.860 0.897 0.899
chair 0.545 0.632 0.767 0.653 0.659 0.760 0.582 0.624 0.766 0.774 0.756 0.897 0.901 0.899 0.977
hotdog 0.508 0.448 0.534 0.736 0.636 0.687 0.503 0.534 0.664 0.567 0.686 0.761 0.882 0.875 0.963
bench 0.537 0.591 0.588 0.703 0.664 0.618 0.554 0.615 0.580 0.717 0.769 0.747 0.856 0.884 0.870
ficus 0.682 0.819 0.851 0.831 0.789 0.873 0.734 0.711 0.844 0.819 0.840 0.913 0.925 0.934 0.942

average 0.546 0.602 0.663 0.705 0.675 0.714 0.593 0.613 0.689 0.705 0.752 0.808 0.885 0.898 0.930

Table S10: Breakdown of L1 (depth) metric across all 5 simulated scenes.

Instant NGP [7] ↑ DS-NeRF [9] Urban NeRF [12] Urban NeRF w/Mask [12] Proposed
Scene 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views

lego 0.224 0.236 0.195 0.136 0.127 0.193 0.105 0.100 0.151 0.040 0.049 0.057 0.023 0.011 0.008
chair 0.166 0.198 0.117 0.123 0.146 0.097 0.130 0.132 0.066 0.034 0.057 0.009 0.006 0.005 0.003
hotdog 0.344 0.254 0.271 0.131 0.151 0.115 0.301 0.270 0.089 0.126 0.040 0.008 0.007 0.006 0.003
bench 0.166 0.137 0.198 0.082 0.076 0.142 0.060 0.047 0.168 0.011 0.007 0.038 0.006 0.005 0.003
ficus 0.291 0.147 0.107 0.072 0.074 0.048 0.059 0.073 0.034 0.043 0.034 0.032 0.034 0.033 0.048

average 0.238 0.195 0.178 0.109 0.115 0.119 0.131 0.124 0.101 0.051 0.038 0.029 0.015 0.011 0.013
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Figure S3: Rendered images and depths on the simulated dataset for 2 views.
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Figure S4: Rendered images and depths on the simulated dataset for 3 views.
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Figure S5: Rendered images and depths on the simulated dataset for 5 views.
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4.6 Captured Results

In Figs. S6, S7, and S8 we show further renders from our model and the baselines on our captured
dataset. The proposed method produces images more faithful to the ground truth.

We note that the quality of the reconstructions is lower than the simulation results. We attribute this
to small imperfections in the calibration of the camera extrinsics, which register the multiview lidar
scans to an accuracy of approximately 1 mm. Achieving precise, sub-mm alignment of the multiview
lidar scans is a highly non-trivial problem and is outside the scope of our current work. The captured
results bear out the trends observed in simulation and demonstrate Transient NeRF and novel view
synthesis of lidar measurements for the first time in practice.

We show a breakdown across all captured scenes of the evaluation metrics (see Tables S11, S12,
S13, and S14). In addition to the metrics reported in the main text (PSNR, LPIPS, L1 depth) we add
the SSIM metric. Again our method outperforms the baselines in the quantitative metrics.

Table S11: Breakdown of PSNR (dB) across all 6 captured scenes.

Instant NGP [7] ↑ DS-NeRF [9] Urban NeRF [12] Urban NeRF w/Mask [12] Proposed
Scene 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views

cinema 14.73 15.18 15.21 13.18 13.87 12.58 17.27 15.11 17.30 14.13 17.22 17.80 21.61 21.66 25.12
boots 16.54 18.32 18.09 16.97 15.65 16.59 16.54 14.54 16.59 13.93 18.70 21.87 22.38 22.29 24.94
baskets 18.73 19.78 18.17 16.47 17.43 17.54 16.68 15.88 13.42 17.17 16.51 14.26 22.48 20.93 19.90
carving 17.96 17.30 16.70 17.41 16.36 15.44 18.71 17.97 17.36 16.07 21.41 22.28 23.52 24.20 24.70
chef 13.04 11.72 13.76 12.32 12.27 11.51 13.34 13.71 13.15 14.06 15.25 16.72 19.27 18.14 19.55
food 17.64 16.83 16.45 15.68 14.70 15.48 18.86 18.27 17.77 17.37 20.45 21.72 23.40 23.78 22.09

average 16.44 16.52 16.39 15.34 15.05 14.86 16.90 15.91 15.93 15.45 18.26 19.11 22.11 21.83 22.72

Table S12: Breakdown of LPIPS across all 6 captured scenes.

Instant NGP [7] ↑ DS-NeRF [9] Urban NeRF [12] Urban NeRF w/Mask [12] Proposed
Scene 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views

cinema 0.445 0.374 0.314 0.396 0.364 0.429 0.369 0.350 0.273 0.457 0.295 0.244 0.281 0.245 0.178
boots 0.251 0.253 0.181 0.193 0.225 0.192 0.386 0.332 0.163 0.525 0.245 0.135 0.221 0.182 0.155
baskets 0.399 0.298 0.252 0.256 0.244 0.268 0.444 0.311 0.220 0.433 0.300 0.195 0.269 0.165 0.164
carving 0.174 0.167 0.183 0.168 0.186 0.225 0.357 0.217 0.146 0.436 0.170 0.125 0.232 0.138 0.103
chef 0.580 0.443 0.401 0.498 0.434 0.467 0.513 0.468 0.362 0.473 0.373 0.270 0.334 0.338 0.276
food 0.299 0.310 0.313 0.354 0.417 0.369 0.351 0.290 0.221 0.425 0.232 0.174 0.286 0.205 0.154

average 0.358 0.307 0.274 0.311 0.312 0.325 0.403 0.328 0.231 0.458 0.269 0.191 0.271 0.212 0.172

Table S13: Breakdown of SSIM across all 6 captured scenes.

Instant NGP [7] ↑ DS-NeRF [9] Urban NeRF [12] Urban NeRF w/Mask [12] Proposed
Scene 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views

cinema 0.545 0.628 0.717 0.620 0.666 0.591 0.602 0.673 0.768 0.509 0.728 0.807 0.850 0.812 0.879
boots 0.804 0.810 0.866 0.853 0.822 0.851 0.587 0.687 0.871 0.414 0.777 0.894 0.912 0.909 0.914
baskets 0.555 0.715 0.749 0.737 0.750 0.738 0.499 0.689 0.751 0.517 0.691 0.771 0.846 0.850 0.826
carving 0.852 0.853 0.843 0.858 0.841 0.804 0.620 0.827 0.877 0.526 0.854 0.906 0.913 0.929 0.929
chef 0.414 0.586 0.647 0.544 0.608 0.574 0.450 0.559 0.686 0.488 0.651 0.780 0.775 0.747 0.811
food 0.731 0.720 0.733 0.677 0.586 0.671 0.654 0.737 0.808 0.528 0.775 0.855 0.826 0.879 0.873

average 0.650 0.719 0.759 0.715 0.712 0.705 0.569 0.695 0.793 0.497 0.746 0.836 0.854 0.854 0.872

Table S14: Breakdown of L1 (depth) metric across all 6 captured scenes.

Instant NGP [7] ↑ DS-NeRF [9] Urban NeRF [12] Urban NeRF w/Mask [12] Proposed
Scene 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views

cinema 0.141 0.052 0.041 0.067 0.040 0.050 0.023 0.017 0.015 0.018 0.005 0.006 0.006 0.006 0.007
boots 0.034 0.076 0.048 0.029 0.023 0.022 0.017 0.014 0.011 0.013 0.003 0.003 0.001 0.002 0.002
baskets 0.138 0.141 0.040 0.038 0.033 0.029 0.015 0.017 0.004 0.016 0.008 0.003 0.008 0.008 0.026
carving 0.029 0.032 0.031 0.031 0.024 0.026 0.008 0.011 0.014 0.009 0.004 0.003 0.006 0.005 0.006
chef 0.199 0.100 0.124 0.062 0.056 0.055 0.023 0.020 0.025 0.017 0.011 0.009 0.003 0.006 0.006
food 0.146 0.057 0.035 0.058 0.041 0.035 0.017 0.013 0.014 0.013 0.006 0.005 0.006 0.007 0.016

average 0.115 0.076 0.053 0.048 0.036 0.036 0.017 0.015 0.014 0.014 0.006 0.005 0.005 0.006 0.010
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Figure S6: Rendered images and depths on the captured dataset for 2 views.
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Figure S7: Rendered images and depths on the captured dataset for 3 views.
16



Ground Truth Instant-NGP

ba
sk
et
s

ch
ef

ca
rv
in
g

ci
ne
m
a

fo
od

bo
ot
s

DS-NeRF Urban NeRF Urban NeRF-M Proposed

Figure S8: Rendered images and depths on the captured dataset for 5 views.
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