Appendix

A Impact of Demographic Group Classifier on Debiased Results

Table 3: Group sensitivities and sensitivity ratios (p) for demographic attributes predicted by different
classifiers on Occupation 1 - Gender and Occupation 2 - Race.

Gender Race
Method Male Sensitivity ~Female Sensitivity ~ p | Light skin Sensitivity =~ Dark skin Sensitivity ~ p
PBM - Supervised Learning 0.97 0.88 1.10 0.93 0.84 1.11
PBM - Word Embedding 0.98 0.94 1.04 0.84 0.78 1.08
PBM - Zero-shot Prompt 0.98 0.97 1.01 0.88 0.81 1.09

o
o

PBM AbsBias@100

o
o

PBM AbsBias@100

§ .-v".' Original CLIP AbsBias@100 § Original CLIP AbsBias@100
%0 4 ,-""'.' %0 A | Ratiop =1.12
E n"". E :': J
<02 . <02 Y

¢ Y

0.9 0.8 0.7 1 2 3 4

F1 - score (performance) Sensitivity ratio p
Figure 5: Relationship between the perfor- Figure 6: Relationship between the bias of the
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score) and the retrieval bias (AbsBias@ 100) sitivity to female sensitivity) and the retrieval
when utilizing PBM. bias (AbsBias @ 100) when utilizing PBM.

The demographic group classifier is an important module of our proposed method PBM. The
debiasing result is intricately linked to the demographic group classifier’s accuracy and prediction bias
towards different demographic groups. Figure 5 showcases the relationship between the demographic
group classifier’s performance and the ensuing retrieval bias, by artificially introducing noise to the
demographic group (logit) predictions via Gaussian noise with a standard deviation ranging from 0
(no noise) to 1. These results underscore that better group classifier performance yields lower bias,
that bias converges to that of the original CLIP as the group classifier gets worse, and importantly,
that the bias after PBM will be no worse than that of the original CLIP.

Further, Table 3 shows the individual demographic group sensitivities under three different scenarios,
from which we can sce that the group classifier is i) able to achieve good classification sensitivity (no
lower than 0.81 and 0.90 in average), likely because demographic image attributes (gender and skin
tone) are typically captured in images, and ii) that different scenarios exhibit different degrees of bias
as measured by the group sensitivity ratio, which must be close to 1 for the model to be unbiased.
Table 3 reveals sensitivity discrepancies among different attributes. To delve deeper into the influence
of classifier bias on PBM outcomes, we present the retrieval bias as a function of the sensitivity ratio
in Figure 6. This is achieved by altering the gender classification threshold from 0 (maximizing male
sensitivity) to 1 (minimizing male sensitivity). From Figure 6, we can conclude that the classifier
bias does affect retrieval bias, however, only severely for more extreme sensitivity ratios, which is
fortunately not the case in our results as shown in Table 3.

B Bias-recall Trade-off Strategies

In Figure 4, we exhibit the bias-recall trade-off curves for MI-clip, Adversarial Training, and various
PBM methods. Here, we outline the missing details to achieve these trade-offs.

For adversarial learning, the trade-off is controlled by adjusting the adversarial loss weights between
0 and 1.0. In MI-clip, we modify the clipped dimensions from 10 to 500 (CLIP output dimension
is 512). Regarding PBM methods, a trade-off parameter is introduced via a stochastic variable 6,
which denotes the likelihood of choosing a fair subset at any given time, instead of simply opting
for the image with the top similarity score. Each curve is plotted by interpolating 10 points of the
corresponding trade-off parameters.
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C Datasets

Occupation 1 (Kay et al., 2015) Occupation 1 comprises the top 100 Google Image Search results
for 45 gender-neutral occupation terms, such as “chef”, “librarian”, “primary school teacher”, efc.
Each image within this dataset is annotated with a crowd-sourced gender attribute (either Male or
Female) that characterizes the person depicted in the image. The entire Occupation 1 dataset is

exclusively utilized for evaluating gender debiasing effect, as shown in Table 1.

Occupation 2 (Celis and Keswani, 2020) Occupation 2 includes the top 100 Google Image Search
results for 96 occupations. Each image in the dataset comes annotated with a gender attribute
and a race attribute (represented by skin-tone, namely, Fair Skin and Dark Skin). Notably, the
gender attribute and race attribute also include a N/A category, where the annotators have chosen the
option of “Not applicable” or “Cannot determine” for the gender or skin-tone depicted in the image.
Consequently, we treat the image labeled with N/A as a neutral example that does not contribute
to the bias of retrieval, since the user cannot perceive gender or racial information from the image.
Different from Occupation 1, gender attributes in Occupation 2 are categorized as {Male, Female,
N/A}, while race attributes are classified as {Fair Skin, Dark Skin, N/A}. The enitre Occupation 2
dataset is only used for evaluation on mitigating gender and race bias, as the results shown in Table 1.

MS-COCO (Lin et al., 2014) The first large-scale image-text dataset is MS-COCO captions dataset,
which is partitioned into 113,287 training images, 5,000 validation images, and 5,000 test images.
Each image is accompanied by five corresponding captions. Our experimental setup aligns with
the methodology detailed by Wang et al. (2021a). Only the first caption of each image is used
for evaluation. Further, they ensure all captions are gender-neutral by identifying and replacing or
removing gender-specific words with corresponding neutral terms, with the help of predefined word
banks (Zhao et al., 2017; Hendricks et al., 2018).

Flickr30k (Plummer et al., 2015) The second large-scale image-text dataset employed in our
experiment is Flickr30K, which contains 31,000 images obtained from Flickr. Adhering to the
partitioning scheme presented in Plummer et al. (2015), we allocate 1,000 images each for validation
and testing, with the remaining images designated for training. We obtain the ground truth of gender
attributes of images in Flickr30k in the same way as MS-COCO (Wang et al., 2021a), as we detect the
gender-specific words in the caption to determine the gender attributes of its corresponding image.

D Baseline Models

Random Select To simulate an ideal scenario, where image features bear no dependency to gender
(and race) attributes, for a neutral query ¢, we randomly select K candidates from the true relevant
image set V, with replacement . As for each query c, the size of the relevant image set |V}| is at most
100. Using sampling with replacement simulate the situation that the gender attribute distribution is
fixed, and irrelevant to retrieval algorithm. We report AbsBias@K for reference. The Recall@K is
omitted since the value is meaningless, as we only sample from the true relevant image set V...

CLIP (Radford et al., 2021) We consider OpenAI’s CLIP ViT-B/16 (Radford et al., 2021) as the
VL model for all debiasing methods. Specifically, the image encoder f(-) is a Vision Transformer
(ViT) (Dosovitskiy et al., 2020) comprising 12 transformer blocks of width 768, with 12 self-attention
heads in each block. ViT processes images of size 224 x 224 by dividing them into 16 X 16 patches
and outputs 512-dimensional image features by linear projection. The text encoder f, (-) is a standard
text transformer (Vaswani et al., 2017) with masked self-attention, consisting of 12 transformer blocks
of width 512 and 8 self-attention heads in each block, with a linear projection layer at the end as well.
The CLIP ViT-B/16 model is loaded with pre-trained weights provided by OpenAl (Radford et al.,
2021). All the following debiasing methods use this pre-trained CLIP ViT-B/16.

MIl-clip (Wang et al., 2021a) MI-clip (Wang et al., 2021a) clips the fixed number of output
dimensions of the image encoder in CLIP to reduce the mutual information between image features
and demographic attribute distribution. For MI-clip in Table 1, we clip 312 dimensions of output
image features. These 312 dimensions were chosen by examining the reduction in bias and while
maintaining retrieval performance. We also show a trade-off between bias reduction and retrieval
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performance of MI-clip with the number of clipped dimensions from 100 to 500 on the Occupation 1
dataset in Figure 4.

Adversarial Training (Edwards and Storkey, 2015) For adversarial training, we use the same
minimax problem setup as in (Edwards and Storkey, 2015). The encoder is the original CLIP image
encoder. The decoder is realized by a ViT with 8 vision transformer blocks, and the adversarial
predictor is a 3-layer MLP. Training employs the same loss function in Edwards and Storkey (2015),
where the final loss is the sum of the cost of reconstructing v from f(v), a measure of dependence
between f,(v) and g(v) and the error of target task (i.e., image-text aligning loss £NT.xent (Radford
et al., 2021)). We assign different weights to the loss of dependence measuring loss, in order to
demonstrate the trade-off between bias reduction and retrieval performance. We report the adversarial
learning results when the weight of measuring dependence loss is 0.7, and the weights for the other
two losses are both 0.15. Additional weight combinations were considered and shown in Figure 4.

Debias Prompt (Berg et al., 2022) The Debias Prompt method (Berg et al., 2022) also leverages
an adversarial learning framework. However, instead of just fine-tuning the image and text encoders,
they also prepended zero-initialized learnable prompts before inputting query tokens. Considering
that their debias-prompt model is already debiased for gender and race attributes, we directly
evaluate their pre-trained model (sourced from their github repository https://github.com/
oxai/debias-vision-1lang) on the Occupation 1 and Occupation 2 datasets.

CLIP-FairExpec (Mehrotra and Celis, 2021) We tailor FairExpec (not originally proposed for
TBIR) to our task by integrating it with CLIP and our proposed gender predictor g(-). We refer to
this adaptation as CLIP-FairExpec in our experiments.

Using binary gender as an example for simplicity, our CLIP-FairExpec treats the image-text similarity
output as the utility score for each image. Then, the objective of the optimization is to maximize
the total similarity scores for selecting K images corresponding to a query c. The noise estimate g
in the original FairExpec is derived from the probability output of our attribute predictor g(v). We
use the probability output from the attribute predictor g(v) as the noise estimate g. Also, there is a
constraint on the sum of the noise estimates ¢ such that the sum is at least L — 6K and at most U — 6K,
where L and U is the lower bound and upper bound for the sum of the noise estimate, respectively.
6 € (0, 1) is a noise tolerance level, that controls how much the constraints can be violated due to
the presence of noise. Since our fairness objective is equal representation for each gender attribute
class, we wish the sum of noise estimate for each class of gender attribute is equal. Hence, we
set the L = U = K /2. In order to force our model to prioritize minimizing bias over maintaining
performance, we choose a very small 6 = 0.001. We select K images from V with respect to a neutral
query ¢ based on the above constrained optimization problem. Further, each selection is solved by
the GUROBI solver (Gurobi Optimization, LLC, 2023). Upon solving for all selections for queries in
C, we compute the AbsBias@K and Recall@K presented in Table 1.

SCAN (Lee et al., 2018) We consider the Stacked Cross Attention Network (SCAN) (Lee et al.,
2018) as an alternative VL model to CLIP. SCAN is a specialized in-domain training model, so it is
trained on the MS-COCO training dataset and tested on the MS-COCO test dataset. Similarly, for
the experiments with Flickr30k, the model is trained on the Flickr30k training set and then tested
on the Flickr30k test set. We use official implementation of SCAN from https://github.com/
kuanghuei/SCAN.

FairSample (Wang et al., 2021a) To mitigate bias during the training of SCAN, we implement the
FairSample approach as recommended by Wang et al. (2021a). We maintain the same hyperparameters
settings as Lee et al. (2018). To address the bias arising from the unbalanced gender distribution
within training batches, FairSample is proposed in the following way: for every positive image-text
pair (v, ¢) within a training batch, we first identify if the query ¢ is gender-neutral or gender-specific.
If the training query c is gender-neutral, a negative image is sampled from either the male or female
image sets, each with a probability of 1/2. However, if the query is gender-specific, we maintain the
original negative sampling strategy, thereby preserving the model’s ability to generalize effectively
on such queries.
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E Post-hoc Bias Mitigation (PBM)

E.1 Engineering Details

PBM - Supervised Classifier We can determine the gender attributes with a pre-trained image
classifier. Here, the image classifier is pre-trained on MS-COCO training set with gender attribute
annotations from Zhao et al. (2021). The image classifier is a 3-layer multi-layer perceptron (MLP) as
shown in Table 5, that takes the image representation from the original CLIP as input. We empirically
show that the image classifier can be highly accurate even using a light-weight classification MLP.
The F1-score for gender attribute prediction is 92.8%.

PBM - Zero-Shot Embedding We describe the first of the two types of zero-shot inference
described in Section 3.5. For zero-shot inference based on the embedding approach, we choose the
text embeddings for {“Unknown Gender”, “Man”, “Woman”} tokens to classify the gender attributes
of images, and {*“Unknown Skin”, “Fair Skin”, “Dark Skin”} for categorizing race attributes. The
gender or race attribute of an image v is determined by which text embedding has the maximum
similarity score to the image representation fg (V).

PBM - Zero-Shot Prompt For the second zero-shot inference described in Section 3.5, namely,
the prompt method, we prepend adjectives to the text query c. We use {*”, “Male”, “Female”} for
gender attributes and {*”, “Fair-skinned”, “Dark-skinned”} for race attributes. The gender attributes
for each image retrieved by the query c is determined by which prompted query has the maximum
similarity score to the image representation f (V).

PBM - Ground-Truth Attribute (Gender or Skin-tone) We use the annotations in the dataset as
the predicted attributes g (v) for reference. This shows the upper-bound performance of our method if
all gender predictions are correct (known).

E.2 Additional PBM Results

In Table 4, we showcase the results of applying PBM to CLIp models that has been debiased by other
approaches, such as MI-clip, Adversarial Learning, and Debias Prompt. When PBM is utilized in
conjunction with other debiasing strategies, it exhibits a unique bias-recall trade-off, thus catering to
a variety of application scenarios.

Table 4: Results of applying PBM - Supervised Learning on modified or fine-tuned CLIP.

Method Occupation 1 - Gender Occupation 2 - Race
AbsBias@100 (}) Recall@100(7) | AbsBias@100(]) Recall@100(1)
PBM .1404 50.3 .0955 37.9
MI-clip - PBM 0780 42.1 0737 29.1
Adversarial Training - PBM .1000 39.6 .0997 35.7
Debias Prompt - PBM 1711 52.1 .1035 40.6

F Neural Network Architectures

We summarize the details of the neural networks employed in our experiments in Table 5. For the
Image Encoder, the Patch Extraction (dimensions: 16,16) extracts 196 non-overlapping 16 x 16
patches from the 224224 image. These extracted patches are subsequently flattened. The subsequent
Positional and Linear Embedding (768) maps these patch vectors onto a 768-dimensional space
and adds 2D positional embeddings of patches to the 768-dimensional vectors. Next, 12 Vision
Transformer Blocks (768, 12) processes the 768-dimensional embeddings. Each of these blocks
features 12 self-attention heads. Lastly, the output embedding is obtained from a unique classification
token ([CLS]) that we add to the input sequence of patch embeddings. The output from [CLS] Token
1 x 768 is then reduced from 768 dimensions to 512 dimensions using a Linear Projection (512).

Similarly in the Text Encoder, the initial phase involves Positional and Token Embedding (512). This
step maps each token in the input text onto a 512-dimensional vector space and integrates positional
embeddings into these vectors. Following this, the text encoder employs 12 Transformer Blocks
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Table 5: The architecture of each component of CLIP and the MLP used in our experiments.

ImageEncoder(-)
Layer Type
1 Patch Extraction(16, 16)
2 Positional and Linear Embedding(768)
4-15 Vision Transformer Blocks(768, 12)

16 [CLS] Token 1 x 768
17 Linear Projection (512)
TextEncoder(-)
Layer Type
1 Positional and Token Embedding (512)
2-13 Transformer Blocks (512, 8)
14 [CLS] Token 1 x 512
15 Linear Projection (512)
MLP(+)
Layer Type
1 fc-512 + BatchNorm + ReLU()
2 fc-512 + BatchNorm + ReLU()
3 fc-512 + BatchNorm + ReLLU()
4 fc-n_class + Softmax()

(512, 8) to process these 512-dimensional embeddings. Each of these blocks contains 8 self-attention
heads. Finally, the output embedding is derived from [CLS] Token 1 x 512. The subsequent Linear
Projection (512) then maps the extracted text representation onto the multi-modal embedding space
that aligns with the image embeddings.

G Computation Resources

All of our experiments ran on one NVIDIA TITAN Xp 12GB GPU with CUDA version 11.5.

H Code and Data Availability

Occupation 1 dataset is available at https://github.com/mjskay/gender-in-image-search.

Occupation 2 dataset can be downloaded from https://drive.google.com/drive/folders/
1j9I5ESc-7NRCZ-zSDOC6LHjeNp42R jkJ.

MS-COCO dataset can be access through https://cocodataset.org/#home, and its
crowd-sourced gender/racial annotations from https://princetonvisualai.github.io/
imagecaptioning-bias/.

Flickr30k dataset can be access viahttps://shannon.cs.illinois.edu/DenotationGraph/.
And the gender word banks to identify the gender attributes of Flickr30k’s images is avaliable in the
Appendix of the paper by Wang et al. (2021a).

I Broader Impact

The recent years constituting what can be called the model architecture unifying era, witnessed a
seismic shift from small task-specific models to foundation models containing billions of parameters,
with numerous applications deployed based on such large models. However, as artificial intelligence
(AI) systems become more prevalent, the challenging question of fairness becomes more urgent. The
concept of fairness in machine learning revolves around creating algorithms and models that DO
NOT discriminate against certain groups based on gender, race, socioeconomic status, or any other
potentially biasing factors. As machine learning algorithms are increasingly used in decision-making
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processes, from job applications, college admissions, to criminal justice and healthcare, subsets of the
population who represent minorities may see unfavoring model performance compared to individuals
in majority groups. Therefore it is imperative to develop unbiased machine learning systems such that
decisions are made fairly and equitably. Our study concerning fair image retrieval, among many other
fairness research works, can be used to inform policymakers about the potential risks and benefits of
Al systems, potentially enacting new laws and regulations to ensure that these systems are utilized
responsibly and ethically.

Specifically, the biased performance of a model is possibly caused by statistical skewness both in
the training and testing sets. Existing methods mainly focus on enforcing independence between the
model’s output and sensitive attributes during training. However, much less effort has been made
to mitigate bias during test-time, a potentially vital component of the debiasing procedure. Many
machine learning systems are deployed in a setting where the biased testing set is almost guaranteed,
and as such, may suffer from fairness concerns. Importantly, PBM is able to dissociate the ranking
similarity from sensitive/protected attributes (e.g., gender) thus reducing bias, meaning that image
candidates share an equal chance to be retrieved even in an unbalanced testing set. We do not claim
that PBM guarantees fairness, and there is always the risk that it may be misinterpreted or exploited,
but we hope that PBM encourages a more inclusive approach to Al development.
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