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Abstract

Audio editing is applicable for various purposes, such as adding background sound
effects, replacing a musical instrument, and repairing damaged audio. Recently,
some diffusion-based methods achieved zero-shot audio editing by using a diffusion
and denoising process conditioned on the text description of the output audio.
However, these methods still have some problems: 1) they have not been trained on
editing tasks and cannot ensure good editing effects; 2) they can erroneously modify
audio segments that do not require editing; 3) they need a complete description of
the output audio, which is not always available or necessary in practical scenarios.
In this work, we propose AUDIT, an instruction-guided audio editing model based
on latent diffusion models. Specifically, AUDIT has three main design features:
1) we construct triplet training data (instruction, input audio, output audio) for
different audio editing tasks and train a diffusion model using instruction and input
(to be edited) audio as conditions and generating output (edited) audio; 2) it can
automatically learn to only modify segments that need to be edited by comparing
the difference between the input and output audio; 3) it only needs edit instructions
instead of full target audio descriptions as text input. AUDIT achieves state-of-the-
art results in both objective and subjective metrics for several audio editing tasks
(e.g., adding, dropping, replacement, inpainting, super-resolution). Demo samples
are available at https://audit-demopage.github.io/.

VAE
Encoder

VAE
Decoder

“Add horse hooves in the background”

“Drop the sound of duck quacking”

“Replace string instrument to drum kit”

“Inpaint”

“Increase resolution”

Diffusion

× 𝑻

𝝐 ~𝓝(𝟎, 𝑰)

AUDIT
T5 EncoderAdding

Dropping

Replacement

Inpainting

Super-Resolution

Figure 1: AUDIT consists of a VAE, a T5 text encoder, and a diffusion network, and accepts the
mel-spectrogram of the input audio and the edit instructions as conditional inputs and generates the
edited audio as output.
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1 Introduction

Audio editing is a crucial step in producing high-quality audio or video content, which involves
tasks like adding background sound effects, replacing background music, repairing incomplete audio,
and enhancing low-sampled audio. Typically, these tasks require professional software and manual
operations. However, if audio editing tools can be empowered to follow human instructions, it could
significantly reduce the need for manual intervention and benefit content creators. The utilization of
natural language instructions such as "add jazz music in the background" could enable more adaptable
editing in line with human expectations. In this work, we concentrate on designing audio editing
models that can follow human instructions.

Previous works on audio editing usually leverage traditional signal processing technologies. Later,
GAN-based methods [33, 10, 1] have achieved success in some audio editing tasks such as audio
inpainting and super-resolution. However, these methods are usually designed for a specific editing
task. Recently, the most advanced deep generative models, diffusion models, have achieved great
success in image editing. Some methods [18, 27] have attempted to apply diffusion models to the field
of audio editing. These diffusion-based audio editing methods are primarily based on a pre-trained
text-to-audio generation model. However, these methods still suffer from several issues: 1) they are
mainly based on a pre-trained model to noise and denoise an input audio conditioned on a target text
description, and in most cases, they offer no guarantee to achieve good editing effect since they are
not trained directly on audio editing tasks; 2) they can lead to erroneous modifications on some audio
segments that do not need to be edited, as it is difficult to restrict the editing area; 3) they require a
complete description of the output audio, which is not always available or necessary in real-world
editing scenarios. Instead, it is desirable to provide natural language editing instructions such as “add
a man whistling in the background” or “drop the sound of the guitar” for audio editing.

To solve the above issues, we propose AUDIT, to the best of our knowledge, the first audio editing
model based on human instructions. As shown in Figure 1, AUDIT is a latent diffusion model which
takes the audio to be edited and the editing instruction as conditions and generates the edited audio as
output. The core designs of AUDIT can be summarized in three points: 1) we generate triplet data
(instruction, input audio, output audio) for different audio editing tasks, and train an audio editing
diffusion model in a supervised manner; 2) we directly use input audio as conditional input to train
the model, forcing it to automatically learn to ensure that the audio segments that do not need to be
edited remain consistent before and after editing; 3) our method uses editing instructions directly
as text guidance, without the need for a complete description of the output audio, making it more
flexible and suitable for real-world scenarios. Our editing model achieves state-of-the-art results in
objective and subjective metrics.

Our contributions can be summarized as follows:

• We propose AUDIT, which demonstrates the first attempt to train a latent diffusion model condi-
tioned on human text instructions for audio editing.

• To train AUDIT in a supervised manner, we design a novel data construction framework for each
editing task; AUDIT can maximize the preservation of audio segments that do not need to be
edited; AUDIT only requires simple instructions as text guidance, without the need for a complete
description of the editing target.

• AUDIT achieves state-of-the-art results in both objective and subjective metrics for several audio
editing tasks.

2 Related Works

2.1 Audio/Speech Editing

Previous work related to audio editing has primarily focused on human speech or music. [36, 5, 33, 55]
explored the task of speech/music inpainting based on the corresponding text or music score. Another
category of editing work is focused on style transfer for speech or music. Speech voice conversion
[2, 35, 44, 43] and singing voice conversion [7, 28] aim to modify the timbre without changing
the speech or singing content. Music style transfer [51, 9, 30, 40] aims to change the instrument
being played without modifying the music score. In addition, some methods using GANs [33, 10, 1]
have achieved success in some specific audio editing tasks, such as audio inpainting and audio
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super-resolution. However, there is still a lack of research on general audio editing following human
instructions.

2.2 Diffusion-based Editing

Diffusion-based editing tasks have received similar attention as diffusion-based generation tasks. We
summarize the common diffusion-based editing work into two types.

Zero-Shot Editing Some methods [34, 8, 4, 31, 14] use diffusion-based generate models to achieve
zero-shot editing. SDEdit [34] uses a pre-trained diffusion model to add noise to an input image
and then denoise the image with a new target text. These methods have difficulty in editing specific
regions and have poor controllability. To edit specific regions, [4] uses an additional loss gradient to
guide the sampling process, and [4, 31] replace unmodified parts with the noisy input image in each
sampling step, equivalent to only generating in the masked part. However, these methods are only for
inpainting tasks and also need a complete description of the editing target.

Supervised Training Another type of methods [47, 6, 54, 37] handle editing tasks in a supervised
manner. [47] train an image-to-image diffusion model which takes the image to be edited as a
condition. [47] uses paired image data generated by [14] to train a text-based image editing model.
ControlNet [54] and T2I-Adapter [37] add an adapter model to a frozen pre-trained generation
diffusion model and train the adapter model to achieve image editing. Our method follows the
supervised training paradigm, using the generated triplet data (instruction, input audio, output audio)
to train an audio editing model conditioned on the instruction and the audio to be edited, and can
handle different audio editing tasks by following human instructions.

2.3 Text-Guided Audio Generation

Currently, most diffusion-based audio editing methods [18, 27] are based on text-to-audio diffusion
generative models. Text-to-audio generation aims to synthesize general audio that matches the
text description. DiffSound [52] is the first attempt to build a text-to-audio system based on a
discrete diffusion model [13]. AudioGen [26] is another text-to-audio generation model based on
a Transformer-based decoder that uses an autoregressive structure. AudioGen directly predicts
discrete tokens obtained by compressing from the waveform [53]. Recently, Make-an-Audio [18] and
AudioLDM [27] have attempted to build text-guided audio generation systems in continuous space,
which use an autoencoder to convert mel-spectrograms into latent representation, build a diffusion
model that works on the latent space, and reconstruct the predicted results of the latent diffusion
model as mel-spectrograms using the autoencoder. Furthermore, MusicLM [3] and Noise2Music
[17] generate music that matches the semantic information in the input text. In our work, we focus on
editing the existing audio with human instructions.

3 Method

In this section, we present our method for implementing audio editing based on human instructions.
We provide an overview of our system architecture and training objectives in Section 3.1 and show
the details about how we generate triplet data (instruction, input audio, output audio) for each editing
task in Section 3.2. Lastly, we discuss the advantages of our method in Section 3.3.

3.1 System Overview

Our system consists of an autoencoder that projects the input mel-spectrograms to an efficient,
low-dimensional latent space and reconstructs it back to the mel-spectrograms, a text encoder that
encodes the input text instructions, a diffusion network for editing in the latent space, and a vocoder
for reconstructing waveforms. The overview of the system is shown in Figure 2.

Autoencoder The autoencoder contains an encoder E and a decoder G. The encoder E transforms
the mel-spectrogram x into a latent representation z, and the decoder G reconstructs x̂ from the
latent space. In our work, we employ a variational autoencoder (VAE) [23] model as the autoencoder.
We train our autoencoder with the following loss: 1) The L1 and L2 reconstruction loss. 2) The
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Figure 2: A high-level overview of our system.

Kullback-Leibler loss LKL to regularize the latent representation z. We only assign a small weight
λKL to the KL loss following [45]; 3) The GAN loss LGAN . We employ a patch-based discriminator
D [19, 45] to distinguish between real and reconstructed mel-spectrograms. The total training loss of
the autoencoder can be expressed as LV AE = λ1L1 + λ2L2 + λKLLKL + λGANLGAN . λ1, λ2,
λKL, and λGAN are the weights of L1, L2, LKL, and LGAN respectively.

Text Encoder We use a pre-trained language model T5 [21] as our text encoder, which is used to
convert text input into embeddings that contain rich semantic information. The parameters of the text
encoder are frozen in the training stage.

Latent Diffusion Model Our text-guided audio editing model can be seen as a conditional latent
diffusion model that takes the latent representation zin of the input (to be edited) mel-spectrogram
xin and text embeddings as conditions. The model aims to learn p(zout|zin, ctext), where zout is
the latent representation of the output (edited) mel-spectrogram xout, and ctext is the embedding
of the editing instruction. Given the latent representation zin and the text instruction, we randomly
select a time step t and a noise ϵ to generate a noisy version zt of the latent representation zout by
using a noise schedule and then use the diffusion network ϵθ(zt, t,zin, ctext) to predict the sampled
noise. The training loss is LLDM = E(zin,zout,text)Eϵ∼N (0,I)Et||ϵθ(zt, t,zin, ctext)− ϵ||2.

Similarly to the original standard diffusion model [15, 49], we use a U-Net [46] with the cross-
attention mechanism [50] as the diffusion network. Our editing model takes zin as a condition by
directly concatenating zt and zin at the channel level. Therefore, the input channel number of the
first layer of the U-Net is twice the output channel number of the last layer.

Vocoder A vocoder model is required to convert the output mel-spectrogram into audio. In this
work, we use HiFi-GAN [24] as the vocoder, which is one of the most widely used vocoders in the
field of speech synthesis. HiFi-GAN uses multiple small sub-discriminators to handle different cycle
patterns. Compared with some autoregressive [38, 20] or flow-based [42] vocoders, it takes into
account both generation quality and inference efficiency.

3.2 Generating Triplet Training Data for Each Editing Task

We use generated triplet data (instruction, input audio, output audio) to train our text-guided audio
editing model. In this work, we focus on five different editing tasks, including adding, dropping,
replacement, inpainting, and super-resolution. Note that we train all the editing tasks in a single
editing model. Figure 3 provides an overview of how our data generation workflow for different
editing tasks works.

Adding We randomly select two audio clips A and B from the text-audio datasets, then combine A
and B to get a new audio clip C. We use A as the input audio and C as the output audio, and we
fill in the caption (or label) of B into the instruction template to get the instruction. For example,
as shown in Figure 3, the instruction template is “Add {} in the background” and the caption of B
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Figure 3: Examples about how to generate triplet training data for different audio editing tasks
(adding, dropping, replacement, inpainting, and super-resolution).

is “Baby crying”, so the instruction is “Add baby crying in the background”. Note that we design
multiple templates for different editing tasks.

Dropping We randomly select two audio clips A and B from the text-audio datasets, then combine
A and B to get a new audio clip C. We use C as the input audio and A as the output audio, and we
fill in the caption (or label) of B into the instruction template to get the instruction. For example, the
instruction template is “Drop {}” and the caption of B is “Dog barking”, so the instruction is “Drop
Dog barking”.

Replacement For the replacement task, we select three audio clips A, B, and C from the datasets,
then insert B and C separately into A (in roughly the same area) to obtain two new audio clips D
and E. We use D as the input audio and E as the output audio, and we fill in the captions (or labels)
of B and C into the instruction template to get the instruction. For example, the instruction template
is “Replace {} with {}”, the caption of B is “Someone clapping”, and the caption of C is “The sound
of guitar”, so the instruction is “Replace clapping with guitar”.

Inpainting and Super-Resolution For the inpainting tasks, we select an audio clip as the output
audio and randomly mask some parts of the audio to get a new audio clip as the input audio. We can
use instructions like “Inpaint” or “Inpaint the audio” directly or use the instructions like“Inpaint: a
cat meowing”. For the super-resolution tasks, we use down-sampled audio as the input audio. The
instructions are as “Increase resolution” or “Increase resolution: a bird singing”.

Extending Instructions with ChatGPT We design multiple instruction templates for each editing
task. In order to further expand the diversity of editing instructions, we use ChatGPT [39] to generate
more editing instruction templates for us. See more details in Appendix E.

3.3 Advantages of AUDIT

We analyze the advantages of our methods over previous works on three key points. 1) We generated
triplet data (instruction, input data, output data) to train a text-guided audio editing model instead of
performing zero-shot editing, which can ensure good edit quality. 2) We directly use the input audio
as a condition for supervised training of our diffusion model, allowing the model to automatically
learn to preserve the parts that do not need to be edited before and after editing. Specifically, we
concatenate the latent representations zin of the input audio and zt on the channel dimension and
input them into the latent diffusion model, so that the model can "see" zin (rather than its noisy
version) during both training and inference. 3) Instead of using a full description of the output audio,
we use human instructions as the text input, which is more in line with real-world applications.
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4 Experimental Settings

4.1 Dataset

The datasets used in our work consist of AudioCaps [22], AudioSet [12], FSD50K [11], and ESC50
[41]. AudioSet is the largest audio-label pairs dataset; however, each audio clip in AudioSet only
has a corresponding label and no description. Because of the presence of a large number of human
speech and some audio clips that are only weakly related to their labels in AudioSet, we use a subset
of AudioSet (AudioSet96) that includes approximately 149K pairs with 96 classes. AudioCaps is a
dataset of around 44K audio-caption pairs, where each audio clip corresponds to a caption with rich
semantic information. The length of each audio clip in AudioSet and AudioCaps is around 10 seconds.
FSD50K includes around 40K audio clips and 200 audio-label pairs of variable lengths ranging from
0.3 to 30 seconds. We split FSD50K training set into two datasets, FSD50K-L (19K) and FSD50K-S
(22K), comprising audio clips of length less than and greater than 5 seconds, respectively. ESC50 is a
smaller dataset with 50 classes, each containing four audio clips of around 5 seconds, for a total of
2000 audio clips.

We use AudioCaps, AudioSet96, FSD50K-S, and ESC50 to generate triplet training data for five
audio editing tasks. We use a total of about 0.6M triplet data to train our audio editing model. More
details about datasets and data processing are shown in Appendix A.

4.2 Baseline Systems

Text-to-Audio Generation Since we compare with generative model-based audio editing baseline
methods, we use AudioCaps, AudioSet96, FSD50K, and ESC50 to train a text-to-audio latent
diffusion model and use the test set of AudioCaps to evaluate the text-to-audio model. To demonstrate
the performance of our generative model, we compare it with some state-of-the-art text-to-audio
generative models [52, 26, 27, 18].

Adding, Dropping, and Replacement We use methods like SDEdit[34] as baselines. SDEdit
uses a pre-trained text-to-image diffusion model to noise and then denoise an input image with the
editing target description. In our work, we directly use SDEdit in the adding task, dropping task,
and replacement task. We use our own trained text-to-audio latent diffusion model. We test different
total denoising steps N for N = 3/4T , N = 1/2T , and N = 1/4T , where T is the total step in
the forward diffusion process. The three baselines are called: 1) SDEdit-3/4T; 2) SDEdit-1/2T; 3)
SDEdit-1/4T.

Inpainting For the inpainting task, we designed four baselines derived from SDEdit but with some
differences between each other. 1) SDEdit. We directly use SDEdit, we first add noise to the input
audio, then denoise the audio with the description (caption or label) of the output audio as text
guidance. 2) SDEdit-Rough and 3) SDEdit-Precise. Only a part of the input audio (the part that is
masked) needs to be edited in the inpainting task, we call the part that does not need to be edited
the “observable” part, and we call the masked part the “unobservable” part. In each step of the
denoising process, we can replace the “observable” part with the ground truth in the latent space. The
difference between SDEdit-Rough and SDEdit-Precise is that in SDEdit-Rough, the “unobservable”
part is a rough region, while in SDEdit-Precise, the “unobservable” part is a precise region. 4)
SDEdit-wo-Text. SDEdit-wo-Text is similar to SDEdit-Precise, however, it has no text input. An
example of the difference of the “unobservable” part between SDEdit-Rough and SDEdit-Precise is
shown in Appendix F. We also compared our methods with two task-specific methods GACELA [32]
and DAS [10]. GACELA is a generative adversarial network for restoring missing musical audio data.
The publicly available checkpoint was trained solely on music data; hence, we trained the model
using our own dataset. DAS is another GAN-based audio editing model, we also trained it on our
dataset.

Super-Resolution Super-resolution can be seen as inpainting in the frequency domain. We use
three baselines similar to the inpainting task: 1) SDEdit; 2) SDEdit-Precise; 3) SDEdit-wo-Text. We
also conducted a comparison with the NU-Wave2 [51] model, which is a task-specific model designed
for super-resolution. We utilized the provided open-source checkpoint for NU-Wave2; however, note
that NU-Wave2 was originally trained on speech data. To adapt it to our specific task, we trained it
on our own dataset.
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4.3 Evaluation Metrics

Objective Metrics We use log spectral distance (LSD), frechet distance (FD), and kullback–leibler
divergence (KL) to evaluate our text-guided audio editing model and use inception score (IS), FD,
and KL to evaluate our text-to-audio generation model following [52, 26, 27, 18]. LSD measures
the distance between frequency spectrograms of output samples and target samples. FD measures
the fidelity between generated samples and target samples. IS measures the quality and diversity of
generated samples. KL measures the correlation between output samples and target samples. FD,
IS, and KL are based on the state-of-the-art audio classification model PANNs [25]. We use the
evaluation pipeline 2 provided by [27] for objective evaluation for fairer comparisons.

Subjective Metrics We use overall quality (Quality) to measure the sound quality and naturalness of
the output audio compared to the input audio and use relevance to the editing instruction (Relevance)
to measure how well the output audio matches the input human instruction. Each sample will be
scored from 1 to 100 based on Quality and Relevance. See more details about the evaluation in
Appendix D.

4.4 Model Configurations

Our autoencoder compresses a mel-spectrogram of size 1×H ×W into a latent representation of
size 4 × H

4 × W
4 . Our models are trained on 8 NVIDIA V100 GPUs for 500K steps with a batch

size of 2 on each device. We use the weights of our pre-trained text-to-audio model to initialize
our audio editing model. Our HiFi-GAN vocoder is trained on AudioSet96 and AudioCaps datasets
using 8 NVIDIA V100 GPU for 200 epochs. More details about model configurations are shown in
Appendix B.

5 Results

5.1 Objective Evaluation

Adding Table 1 shows the objective evaluation results of the adding task. Our method achieves the
best performance, with LSD of 1.35, KL of 0.92, and FD of 21.80. Compared with the best baseline
method, our method reduces FD by 6.45 and KL by 0.38.

Table 1: Objective evaluation results of the adding task.

Model Text LSD(↓) KL(↓) FD(↓)

SDEdit-3/4T caption 1.54 1.68 28.87
SDEdit-1/2T caption 1.43 1.38 28.75
SDEdit-1/4T caption 1.38 1.30 28.25

AUDIT instruction 1.35 0.92 21.80

Dropping Table 2 shows the objective evaluation results of the dropping task. Our method achieves
the best performance, with LSD of 1.37, KL of 0.95, and FD of 22.40. Compared with the best
baseline method, our method reduces FD by 5.79 and KL by 0.10.

Table 2: Objective evaluation results of the dropping task.

Model Text LSD(↓) KL(↓) FD(↓)

SDEdit-3/4T caption 1.54 1.14 29.66
SDEdit-1/2T caption 1.43 1.05 28.19
SDEdit-1/4T caption 1.40 1.30 31.31

AUDIT instruction 1.37 0.95 22.40

2https://github.com/haoheliu/audioldm_eval
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Replacement Table 3 shows the objective evaluation results of the replacement task. Our method
achieves the best performance, with LSD of 1.37, KL of 0.84, and FD of 21.65. Compared with the
best baseline method, our method reduces FD by 5.07 and KL by 0.31.

Table 3: Objective evaluation results of the replacement task.

Model Text LSD(↓) KL(↓) FD(↓)

SDEdit-3/4T caption 1.63 1.58 28.78
SDEdit-1/2T caption 1.52 1.27 27.71
SDEdit-1/4T caption 1.46 1.15 26.72

AUDIT instruction 1.37 0.84 21.65

Inpainting Table 4 shows the objective evaluation results of the inpainting task. Our method
achieves the best performance, with LSD of 1.32, KL of 0.75, and FD of 18.17. We find that for
baseline methods, not providing a text input (the caption of the audio) as guidance leads to a large
performance drop, SDEdit-wo-Text gets the worst performance in terms of KL and FD among the
baseline methods. However, AUDIT-wo-Text which only uses instructions like “inpaint” achieves
performance close to AUDIT which uses instructions like “inpaint + caption”. We also discovered
that AUDIT’s performance on inpainting tasks can surpass that of task-specific baseline methods.
One possible explanation for this is that during training, GACELA and DAS do not have access to
any textual information, whereas our model requires explicit instructions to edit the audio. As a result,
our model is better able to learn the semantic information of the audio, which likely contributes to its
improved performance in inpainting tasks.

Table 4: Objective evaluation results of the inpainting task.

Model Text LSD(↓) KL(↓) FD(↓)

SDEdit caption 2.91 1.47 25.42
SDEdit-Rough caption 1.64 0.98 21.99
SDEdit-Precise caption 1.54 0.94 21.07
SDEdit-wo-Text - 1.55 1.63 27.63

GACELA - 1.41 0.78 20.49
DAS - 1.57 0.89 21.97

AUDIT-wo-Text instruction 1.37 0.81 19.03
AUDIT instruction + caption 1.32 0.75 18.17

Super-Resolution Table 5 shows the objective evaluation results of the super-resolution task. Our
method achieves the best performance, with LSD of 1.48, KL of 0.73, and FD of 18.14. Similar
to the inpainting task, SDEdit-wo-Text gets the worst performance in terms of KL and FD among
the baseline methods. Our method can achieve significantly better results than baselines using only
simple instructions like “Increase resolution”, which shows that our method can learn sufficient
semantic information from low-frequency information. The results also indicate that our AUDIT
model outperforms the NU-Wave2 model trained on speech and is comparable to or even better than
the NU-Wave2 model trained on our dataset.

Text-to-Audio Generation We also present the comparison results of our text-to-audio latent
diffusion model with other text-to-audio models in Table 6. Our model achieves the best performance,
with FD of 20.19, KL of 1.32, and IS of 9.23, outperforming AudioLDM-L-Full with FD of 23.31, KL
of 1.59, and IS of 8.13. This demonstrates that our generation model can serve as a strong baseline
model for generation-based editing methods.

5.2 Subjective Evaluation

The results of the subjective evaluation are shown in Table 7. We choose the best results in the baseline
to report. Our method clearly outperforms the baseline methods in both Quality and Relevance across
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Table 5: Objective evaluation results of the super-resolution task.

Model Text LSD(↓) KL(↓) FD(↓)

SDEdit caption 3.14 1.50 25.31
SDEdit-Precise caption 1.75 1.17 27.81
SDEdit-wo-Text - 1.78 1.56 32.66

NU-Wave2 (origin) - 1.66 0.89 22.61
NU-Wave2 - 1.42 1.78 19.57

AUDIT-wo-Text instruction 1.53 0.92 21.97
AUDIT instruction + caption 1.48 0.73 18.14

Table 6: The comparison between our text-to-audio generative model and other baseline models on
the AudioCaps test set.

Model Dataset FD(↓) IS(↑) KL(↓)

DiffSound [52] AudioSet+AudioCaps 47.68 4.01 2.52
AudioGen [26] AudioSet+AudioCaps - - 2.09

Make-an-Audio[18] AudioSet+AudioCaps+13 others - - 2.79
AudioLDM-L [27] AudioCaps 27.12 7.51 1.86

AudioLDM-L-Full [27] AudioSet+AudioCaps+2 others 23.31 8.13 1.59

AUDIT AudioSet96+AudioCaps+2 others 20.19 9.23 1.32

all five tasks. In the dropping task, our method achieves the highest scores with Quality of 78.1 and
Relevance of 81.0. We find that compared with the baseline methods, our method improves more
significantly on the adding, dropping, and replacement tasks. The possible reason is that compared
with the inpainting and super-resolution tasks, which have explicit positioning of the editing area
(the masked part and the high-frequency area), the adding, dropping, and replacement tasks need to
first locate the region to be edited, and also need to ensure that other regions cannot be modified,
which is more difficult for the baseline method. Our model has learned this ability through supervised
learning.

Table 7: Subjective evaluation. For each audio editing task, we report the results of the best baseline
method and the results of our method.

Method Task Quality(↑) Relevance(↑)

Baseline Adding 60.2 56.7
AUDIT 75.5 77.3
Baseline Dropping 54.4 48.2
AUDIT 78.1 81.0
Baseline Replacement 57.7 47.6
AUDIT 72.5 74.5
Baseline Inpainting 65.8 66.3
AUDIT 75.2 78.7
Baseline Super-Resolution 61.8 59.9
AUDIT 74.6 76.3

5.3 Case Study

In order to more specifically show the difference between the performance of our model and the
baseline methods, we also give some case studies in Appendix G.
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6 Conclusions

In this work, we propose an audio editing model called AUDIT, which can perform different
editing tasks (e.g., adding, dropping, replacement, inpainting, super-resolution) based on human
text instructions. Specifically, we train a text-guided latent diffusion model using our generated
triplet training data (instruction, input audio, output audio), which only requires simple human
instructions as guidance without the need for the description of the output audio and performs audio
editing accurately without modifying audio segments that do not need to be edited. AUDIT achieves
state-of-the-art performance on both objective and subjective metrics for five different audio editing
tasks. For future work, we will explore more editing audio tasks with our framework, and achieve
more precise control for audio editing. We also discuss some limitations and broader impacts of our
work in Appendix H.
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A Datasets and Data Processing

Table 8 presents some details about the datasets we used and generated. All audio data have a
sampling rate of 16KHz. For AudioSet, AudioCaps, and AudioSet96, we pad or truncate all audio to
10s. For FSD50K, we pad audio shorter than 5s to 5s, and truncate or pad audio longer than 5s to 10s.
All generated audio data have a length of 10 seconds. We convert 10s of audio into mel-spectrograms
with a size of 80 × 624, using a hop size of 256, a window size of 1024, and mel-bins of size 80,
covering frequencies from 0 to 8000. The autoencoder compresses the mel-spectrograms to a latent
representation of size 4× 10× 78.

Table 8: Details about audio-text datasets we use and our generated audio editing datasets

Dataset Hours Number Text

AudioSet 5800 2M label
AudioSet96 414 149K label
AudioCaps 122 44K caption
FSD50K 108 51K label

FSD50K-S 31 22K label
FSD50K-L 53 19K label

ESC50 3 2K label

Task Datasets Number Text

Generation AudioCaps, AudioSet96, FSD50K, ESC50 243K label or caption
Adding AudioCaps, AudioSet96, FSD50K-S,ESC50 71K Instruction

Dropping AudioCaps, AudioSet96, FSD50K-S,ESC50 71K Instruction
Replacement AudioSet96, FSD50K-S, ESC50 50K Instruction

Inpainting AudioSet96, AudioCaps 193K Instruction
Super-resolution AudioSet96, AudioCaps 193K Instruction

B Model Details

Table 9 shows more details about our audio editing and audio generative models. We train our
autoencoder model with a batch size of 32 (8 per device) on 8 NVIDIA V100 GPUs for a total of
50000 steps with a learning rate of 7.5e − 5. For both audio editing and U-Net audio generative
diffusion, we train with a batch size of 8 on 8 NVIDIA V100 GPUs for a total of 500000 steps with a
learning rate of 5e− 5. Both the autoencoder and diffusion models use AdamW[29] as the optimizer
with (β1, β2) = (0.9, 0.999) and weight decay of 1e− 2. We follow the official repository to train
the HiFi-GAN vocoder.

C Classifier-free Guidance

[16] proposed using classifier-free guidance to trade off diversity and sample quality. The classifier-
free guidance strategy has been widely used in conditional diffusion models. Our model has two
additional conditions, ctext and zin. However, during training, we only consider helping the model
learn the marginal distribution of p(zt|zin) (without explicitly learning p(zt|ctext)). Therefore,
during training, we mask the text with a certain probability (replacing it with an empty text ∅) to
learn the no-text condition score ϵθ(zt, t,zin). Then, according to Bayes’ formula p(zt|ctext) ∝
p(zt|ctext,zin)
p(zin|zt,ctext)

, we can derive the score relationship in Equation 1, which corresponds to the classifier-
free guidance Equation 2. Here, the parameter s ≥ 1 is the guidance coefficient used to balance the
diversity and quality of the samples.

∇zt
log p(zin|zt, ctext) = ∇zt

log p(zt|ctext, zin)−∇zt
log p(zt|zin) (1)

ϵ̃θ(zt, t,zin, ctext) = ϵθ(zt, t,zin, ∅) + s · (ϵθ(zt, t,zin, ctext)− ϵθ(zt, t,zin, ∅)) (2)
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Table 9: Details about our audio editing and audio generative models

Model Configuration

Autoencoder

Number of Parameters 83M
In/Out Channels 1
Latent Channels 4

Number of Down/Up Blocks 4
Block Out Channels (128, 256, 512, 512)
Activate Function SiLU

T5 Text Encoder
Number of Parameters 109M

Output Channels 768
Max Length 300

Editing Diffusion U-Net

Number of Parameters 859M
In Channels 8

Out Channels 4
Number of Down/Up Blocks 4

Block Out Channels (320, 640, 1280, 1280)
Attention Heads 8

Cross Attention Dimension 768
Activate Function SiLU

Generative Diffusion U-Net

Number of Parameters 859M
In Channels 4

Out Channels 4
Number of Down/Up Blocks 4

Block Out Channels (320, 640, 1280, 1280)
Attention Heads 8

Cross Attention Dimension 768
Activate Function SiLU

HiFi-GAN

Sampling Rate 16000
Number of Mels 80

Hop Size 256
Window Size 1024

D Human Evaluation

For each audio editing task, our human evaluation set comprises ten samples randomly selected from
the test set. Ten raters score each sample according to two metrics, Quality and Relevance, using a
scale of 1 to 100.

E Extending Instructions with ChatGPT

Some examples of instruction templates designed by ourselves:

“Add {} in the beginning”

“Add {} at the beginning”

“Add {} in the end”

“Add {} in the middle”

“Add {} in the background”

“Drop {}”

“Remove {}”

“Replace {} to {}”

“Replace {} with {}”

16



“Inpaint”

“Inpainting”

“Inpaint {}”

“Inpaint: {}”

“Increase resolution”

“Increase resolution: {}”

“Perform super-resolution”

“Perform super-resolution: {}”

We use ChatGPT to extend editing templates, specifically, we submit the editing instruction templates
we designed to ChatGPT and let it generate more instruction templates with the same semantic
information. Below are some examples.

“Mix {} into the background”

“Blend {} with existing audio”

“Incorporate {} as a new element at the end of the audio”

“Place {} in the foreground”

“Erase {} from the track”

“Subtract {} from the audio”

“Take out {} from the foreground”

“Exchange {} for {} in the mix”

“Use {} to replace {} in the audio”

“Interchange {} and {} in the track”

“Replace missing audio with synthesized sound”

“Fill in the gaps in track {}”

“Upscale audio to higher resolution”

“Apply super-resolution to the audio to improve clarity”

F Baseline Methods

For the inpainting task, only a part of the input audio (the part that is masked) needs to be edited,
we call the part that does not need to be edited the “observable” part, and we call the masked part
the “unobservable” part. In each step of the denoising process, we can replace the “observable” part
with the ground truth in the latent space. The difference between SDEdit-Rough and SDEdit-Precise
is that in SDEdit-Rough, the “unobservable” part is a rough region, while in SDEdit-Precise, the
“unobservable” part is a precise region. Figure 4 gives an example.

The “unobservable” part in SDEdit-Precise. The “unobservable” part in SDEdit-Rough.

Figure 4: The difference between SDEdit-Rough and SDEdit-Precise.
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G Case Study

We show case studies. Figure 5 shows a case for the adding task. The caption of the input audio is
“The sound of machine gun”, and the editing target is adding a bell ringing in the beginning. AUDIT
performs audio editing accurately in the correct region without modifying audio segments that do not
need to be edited. Figure 6 shows a case for the dropping task. The caption of the input audio is “A
bird whistles continuously, while a duck quacking in water in the background”, and the editing target
is dropping the sound of the duck quacking. Our method successfully removes the background sound
and preserves the sound of the bird whistling, but the sound of the bird whistling in the SDEdit editing
result is incorrectly modified. It shows that our method can better ensure that the audio segments that
do not need to be edited are not modified. Figure 7 shows a case for the inpainting task. The caption
of the input audio is “A person is typing computer”. While both AUDIT and the baseline method
generate semantically correct results, the result generated by AUDIT is more natural and contextual.

Input Generate by AUDIT Generate by SDEdit

Figure 5: A case for the adding task. The caption of the input audio is “The sound of machine gun”,
and the editing target is adding a bell ringing in the beginning.

Input Generate by AUDIT Generate by SDEdit

Figure 6: A case for the dropping task. The caption of the input audio is “A bird whistles continuously,
while a duck quacking in water in the background”, and the editing target is dropping the sound of
the duck quacking.

Input Generate by AUDIT Generate by SDEdit-Precise

Figure 7: A case for the inpainting task. the caption of the input audio is “A person is typing
computer”.

H Limitations and Broader Impacts

Our work still has some limitations. For example, the sampling efficiency is low since our model is a
diffusion-based model. In the future, we will try to improve the generation efficiency of our model
using efficient strategies like consistency models [48]. In addition, we will also explore the use of
more data and more diverse editing instructions to achieve more kinds of editing tasks. AUDIT can
edit existing audio based on natural language instructions, which may be used inappropriately, such
as synthesizing fake audio for fraud. Therefore, we urge everyone not to abuse this technology and
develop synthetic audio detection tools.
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