
A Compositional Tasks609

A.1 Multiplication610

Data Construction We exhaustively generate multiplication problems as question-answer pairs611

(e.g., Q: “What is 4 times 32?” A: “128”). We focus on multiplications of two numbers x =612

(x1, x2, . . . , xk) and y = (y1, y2, . . . , yk) where each number can have up to k digits, amounting to613

9 ⇥ 10(k�1) combinations per each number. We set k to 5 in our experiments. Figure 7 showcases614

an example prompt for performing few-shot learning without the inclusion of a scratchpad, while615

Figure 8 demonstrates an example prompt using a scratchpad. Throughout our experimentation,616

we explored various versions of the scratchpad, ranging from verbose and detailed to more concise617

alternatives. Among these variations, the scratchpad version depicted in Figure 8 ultimately produced618

the most favorable outcomes. Listing 1 shows the Python code for solving the task.619

To multiply two numbers, start by multiplying the rightmost digit of the
multiplicand by each digit of the multiplier, writing down the products and
carrying over any remainders. Repeat this process for each digit of the
multiplicand, and then add up all the partial products to obtain the final
result.

Questions: what's 22 times 2? Answer 44.

Figure 7: Example prompt for the multiplication task used for the few-shot setting.

Question: What is 35 times 90?

Scratchpad: Let's perform the multiplication step by step:

Let's multiply 35 by the digit in the ones place of 90, which is 0.

1. Multiply 0 by the digit in the ones place of 35, which is 5. This gives 5 x 0
= 0. Write down the result 0.
2. Multiply 0 by the digit in the tens place of 35, which is 3. This gives 3 x 0
= 0. Write down the result 0.
3. The partial product for this step is A=0 which is the concatenation of the
digits we found in each step.

Now, let's multiply 35 by the digit in the tens place of 90, which is 9.\n\n4.
Multiply 9 by the digit in the ones place of 35, which is 5. This gives 5 x 9 =
45. Write down the result 5 and carry over the 4 to the next step.

5. Multiply 9 by the digit in the tens place of 35, which is 3. Add the carryover
from the previous step to account for this. This gives (3 x 9) + 4 = 31. Write
down the result 31.
6. The partial product for this step is B=315 which is the concatenation of the
digits we found in each step.

Now, let's sum the 2 partial products A and B, and take into account the position
of each digit: A=0 (from multiplication by 0) and B=315 (from multiplication by 9
but shifted one place to the left, so it becomes 3150). The final answer is 0 x 1
+ 315 x 10 = 0 + 3150 = 3150.

Figure 8: A sample scratchpad for the multiplication task.

1 def multiply(x, y):620

2 summands = [0] * len(y)621

3 for i in range(len(y) - 1, -1, -1):622

16

4 digits = [0] * len(x)623

5 carry = 0624

6 for j in range(len(x) - 1, -1, -1):625

7 t = x[j] * y[i]626

8 t += carry627

9 carry = t // 10628

10 digits[j] = t % 10629

11 digits.insert(0, carry)630

12 summands[i] = sum(digits[-k] * (10 ** (k - 1)) for k in range631

(1, len(digits) + 1))632

13633

14 product = sum(summands[-i] * (10 ** (i - 1)) for i in range(1, len634

(y) + 1))635

15 return product636

Listing 1: Example Python code for solving the multiplication task.

A.2 Einstein’s Puzzle637

Data Construction In our experiments, we initially establish a set of properties, such as Color,638

PhoneModel, Pet, and so forth, along with their corresponding values expressed in natural language639

templates (e.g., “The house has a red color.”). We then devise a fundamental and straightforward640

set of clue types: 1) ‘found_at’, e.g., “Alice lives in House 2”, 2) ‘same_house’, e.g., “The person641

who is a cat lover lives in the house that has a red color.”, 3) ‘direct_left’, e.g., “The person who642

has a dog as a pet lives to the left of the person who lives in a red house.”, and 4) ‘besides’, e.g.,643

“The person who has a dog as a pet and the person who has a red house live next to each other.” In644

addition, we also set up harder clue types such as ‘not_at’, ‘left_of’ (not necessarily directly left of),645

‘two_house_between’, etc. which are only used in auxiliary experiments.646

The solution to the puzzle is a matrix of size K ⇥ M , where K represents the number of houses and647

M the number of attributes. During the puzzle generation, the M properties are randomly selected648

from the candidate pool, followed by the random sampling of K values for each property. The649

sampled values are then randomly permuted and assigned within the table to create the solution. It is650

important to note that we ensure one of the sampled properties is ‘Name’ to enhance the readability651

and comprehensibility of the puzzles. To construct the clues, we initially over-generate all valid clues652

based on the solution and subsequently remove redundant clues at random until we obtain a set with a653

Algorithm 1 Puzzle Solver
Input: Clues
Output: Reasoning path
1: function PuzzleSolver(Clues)
2: Path � []
3: LeftClues � clues
4: while |LeftClues| 6= 0 do
5: for i=1 to |LeftClues| do
6: CandidateClues =

�|LeftClues|
i

�

7: for clue in CandidateClues do
8: if solve any cell then
9: LeftClues.remove(clue)

10: Path.append(clue)

11: return Path

1

Reasoning Path Generation

General Unique Rules
There are 3 houses (numbered 1 on the left, 3 on the right). Each has a different person in them. They have different characteristics:
- Each person has a unique name: peter, eric, arnold
- People have different favorite sports: soccer, tennis, basketball
- People own different car models: tesla, ford, camry

Clues
1. The person who owns a Ford is the person who loves tennis.
2. Arnold is in the third house.
3. The person who owns a Camry is directly left of the person who owns a Ford.
4. Eric is the person who owns a Camry.
5. The person who loves basketball is Eric.
6. The person who loves tennis and the person who loves soccer are next to each other.

House Name Sports Car

1 Eric Basketball Camry

2 Peter Tennis Ford

3 Arnold Soccer Tesla

Ground-Truth Table

Clue #5

Clue #6

Clue #4

Name Sports Car

Eric Basketball Camry

Peter Tennis

Arnold Soccer

<UniqueValues>

…

Name Sports

Eric Basketball

Peter Tennis

Arnold Soccer

Name

Eric

Peter

Arnold

Clue #2

Figure 9: A sample of the puzzle task and the reasoning path to reach a solution.

17

This is a logic puzzle. There are 3 houses (numbered 1 on the left, 3 on the
right). Each has a different person in them. They have different characteristics:
- Each person has a unique name: peter, eric, arnold
- People have different favorite sports: soccer, tennis, basketball
- People own different car models: tesla model 3, ford f150, toyota camry

1. The person who owns a Ford F-150 is the person who loves tennis.
2. Arnold is in the third house.
3. The person who owns a Toyota Camry is directly left of the person who owns a
Ford F-150.
4. Eric is the person who owns a Toyota Camry.
5. The person who loves basketball is Eric.
6. The person who loves tennis and the person who loves soccer are next to each
other.

Let's think step by step. Please first briefly talk about your reasoning and show
your final solution by filling the blanks in the below table.

$ House: ___ $ Name: ___ $ Sports: ___ $ Car: ___
$ House: ___ $ Name: ___ $ Sports: ___ $ Car: ___
$ House: ___ $ Name: ___ $ Sports: ___ $ Car: ___

Reasoning:
Step 1: First apply clue <Arnold is in the third house.> We know that The Name in
house 3 is arnold.
Step 2: Then combine clues: <The person who loves tennis and the person who loves
soccer are next to each other.> <The person who loves basketball is Eric.>
Unique Values Rules and the fixed table structure. We know that The Name in house
1 is eric. The FavoriteSport in house 1 is basketball. The Name in house 2 is
peter.
Step 3: Then apply clue <Eric is the person who owns a Toyota Camry.> We know
that The CarModel in house 1 is toyota camry.
Step 4: Then apply clue <The person who owns a Toyota Camry is directly left of
the person who owns a Ford F-150.> and Unique Values We know that The CarModel in
house 2 is ford f150. The CarModel in house 3 is tesla model 3.
Step 5: Then apply clue <The person who owns a Ford F-150 is the person who loves
tennis.> and Unique Values We know that The FavoriteSport in house 2 is tennis.
The FavoriteSport in house 3 is soccer.
The puzzle is solved.

Final solution:
$ House: 1 $ Name: Eric $ Sports: Basketball $ Car: Camry
$ House: 2 $ Name: Peter $ Sports: Tennis $ Car: Ford
$ House: 3 $ Name: Arnold $ Sports: Soccer $ Car: Tesla

Figure 10: A sample scratchpad for the puzzle task.

unique solution, as previously sampled. This process ensures a coherent and engaging puzzle-solving654

experience. Refer to Figure 9 for an example.655

Graph Construction Algorithm To solve the complex compositional reasoning process for a656

logical grid puzzle, we use existing puzzle solvers [18] to generate the computation graph. It follows657

the basic greedy principle of applying the minimum number of rules to solve any cell, i.e., if using658

only one rule to solve any given cell, then apply this rule. This algorithm iterates through all clues in659

the clue set until one or a set of clue combinations can solve any cell in the table. While it may not be660

the most efficient way to solve the puzzle, it provides models with explicit scratchpad verbalization661

through an intuitive computation graph. Refer to Figure 9 for the pseudo-code of the process, and662

Figure 10 for a scratchpad example.663

18

A.3 Dynamic Programming Problem664

A.3.1 Solution to this problem665

Let a = [a1, . . . , an] be an input. Let dpi be the maximum sum of a subsequence that does not666

include adjacent elements, when considering only the elements of the input from the i-th position667

onwards.668

Trivially, dpn = max(an, 0) since we only want to choose a number if it is non-negative. Moreover,669

dpn�1 = max(an, an�1, 0) since we cannot choose adjacent numbers.670

For any given dpi with i  n � 2, we can express it in terms of dpi+1 and dpi+2. Concretely, the671

maximum sum of a subsequence starting at position i may or may not include the element in the i-th672

position, ai. If the subsequence includes ai, then the maximum sum is ai + dpi+2, since using ai673

blocks us from using the next element. If the subsequence does not include ai, then its sum is dpi+1.674

Moreover, the answer may never be less than zero, because otherwise we would select the empty675

sequence3. In summary,676

dpi = max(dpi+1, ai + dpi+2, 0)

We now have a recursion with its base cases dpn = max(an, 0) and dpn�1 = max(an, an�1, 0), and677

we can therefore compute all values in O(n). It now only rests to reconstruct the lexicographically678

smallest subsequence that maximizes the desired sum, based solely on the computed dp values.679

Starting from dp1 and iterating sequentially through dpn�2, we choose an item if and only if680

dpi = ai + dpi+2 (that is, the maximum sum comes from choosing the current element) and we have681

not chosen the previous element. This helps disambiguate cases where choosing or not choosing682

ai yields the same sum, but possibly only one of those will not incur in choosing adjacent numbers.683

Similarly, for positions i = n � 1 and i = n we choose the element if dpi = ai (that is, choosing the684

element yields the maximum sum) and we have not chosen the immediately previous element. See an685

example Python solution in 2.686

Given a sequence of integers, find a subsequence with the highest sum, such that
no two numbers in the subsequence are adjacent in the original sequence.

Output a list with "1" for chosen numbers and "2" for unchosen ones. If multiple
solutions exist, select the lexicographically smallest. input = [3, 2, 1, 5, 2].

Figure 11: Example prompt for the DP task, used for zero-shot and few-shot settings.
1 def maximum_sum_nonadjacent_subsequence(arr):687

2688

3 N = len(arr)689

4 dp = [0 for _ in range(N)]690

5691

6 dp[N - 1] = max(arr[N - 1], 0)692

7 dp[N - 2] = max(max(arr[N - 1], arr[N - 2]), 0)693

8694

9 for i in range(N - 3, -1, -1):695

10 dp[i] = max(max(dp[i + 1], arr[i] + dp[i + 2]), 0)696

11697

12 # reconstruct the answer with a fixed -size graph698

13 result = []699

14 can_use_next_item = True700

15701

16 for i in range(N - 2):702

17 if dp[i] == arr[i] + dp[i + 2] and can_use_next_item:703

18 result.append (1)704

19 can_use_next_item = False705

20 else:706

3We don’t need to explicitly check for this since dpn � 0. However, we include the condition to ease the
scratchpad logic.

19

21 result.append (2)707

22 can_use_next_item = True708

23709

24 if dp[N - 2] == arr[N - 2] and can_use_next_item:710

25 result.append (1)711

26 can_use_next_item = False712

27 else:713

28 result.append (2)714

29 can_use_next_item = True715

30716

31 if dp[N - 1] == arr[N - 1] and can_use_next_item:717

32 result.append (1)718

33 else:719

34 result.append (2)720

35721

36 return result722

Listing 2: Example Python code for solving the DP task. We chose this implementation because the
computation graph has always the same topology for any given input length.

Question: Let's solve input = [3, 2, 1, 5, 2].

Scratchpad: dp[4] = max(input[4], 0) = max(2, 0) = 2
dp[3] = max(input[3], input[4], 0) = max(5, 2, 0) = 5
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(5, 1 + 2, 0) = 5
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(5, 2 + 5, 0) = 7
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(7, 3 + 5, 0) = 8

Finally, we reconstruct the lexicographically smallest subsequence that fulfills
the task objective by selecting numbers as follows. We store the result on a list
named "output".

Let can_use_next_item = True.
Since dp[0] == input[0] + dp[2] (8 == 3 + 5) and can_use_next_item == True, we
store output[0] = 1. We update can_use_next_item = False.
Since dp[1] != input[1] + dp[3] (7 != 2 + 5) or can_use_next_item == False, we
store output[1] = 2. We update can_use_next_item = True.
Since dp[2] != input[2] + dp[4] (5 != 1 + 2) or can_use_next_item == False, we
store output[2] = 2. We update can_use_next_item = True.
Since dp[3] == input[3] (5 == 5) and can_use_next_item == True, we store
output[3] = 1. We update can_use_next_item = False.
Since dp[4] != input[4] (2 != 2) or can_use_next_item == False, we store
output[4] = 2.

Reconstructing all together, output=[1, 2, 2, 1, 2].

Figure 12: A sample scratchpad for the DP task used for fine-tuning with few-shot settings.

Data Construction We exhaustively generate data for this DP task. For question-answer setting,723

we include a thorough explanation of the task before asking to generate a solution (see Figure 11).724

We use all lists up to 5 elements as training, and we consider only lists where elements are in the725

range [�5, 5] (giving a total of 11n lists for an input list of size n). For out-of-domain evaluation, we726

use lists of sizes 6 to 10 inclusive. Example scratchpads and zero-shot prompts are shown in Figure727

12 and 11 respectively. The scratchpad is generated automatically through templates. We considered728

five exemplars for the few-shot setup.729

20

B Experimental Setups & Empirical Results730

B.1 Models731

For our experiments, we evaluate the performance of 6 LLMs: GPT4 (gpt-4) [42], ChatGPT732

(GPT3.5-turbo) [41], GPT3 (text-davinci-003) [8], FlanT5 [13] and LLaMa [58]. The evalua-733

tions were conducted from January 2023 to May 2023 using the OpenAI API. We perform fine-tuning734

on GPT3 (text-davinci-003) for the three tasks, observing faster convergence when training on735

question-scratchpad pairs rather than question-answer pairs. For question-answer pairs fine-tuning,736

we train separately the model for {12, 12, 4} epochs for multiplication, puzzle, and DP respectively,737

saving the best model based on the validation set. Regarding training on question-scratchpad pairs,738

we train the model for {4, 8, 2} epochs for multiplication, puzzle, and DP. The batch size is set739

to approximately 0.2% of the number of examples in the training set. Generally, we observe that740

larger batch sizes tend to yield better results for larger datasets. For the learning rate multiplier, we741

experiment with values ranging from 0.02 to 0.2 to determine the optimal setting for achieving the742

best results and chose 0.2. During inference, we set nucleus sampling p to 0.7 and temperature to 1.743

For each task, we evaluate the performance of each model on 500 test examples.744

B.2 Limits of Transformers in Zero- and Few-shot Settings745

Figure 14, Figure 16 and Figure 18 show the zero-shot performance of GPT4, ChatGPT, LLaMA and746

FlanT5 on the three tasks. Overall, there is a notable decline in performance as the task complexity747

increases (measured by graph parallelism for multiplication and DP, and propagation steps for puzzles748

as shown in Figure13). The few-shot performance with question-answer pairs results in minimal749

improvement over the zero-shot setting as depicted in Figure 15 and Figure 18 for the multiplication750

and DP tasks. In contrast, the few-shot setting did not lead to any improvement in the puzzle task.751

Figure 13: Graph parallelism vs accuracy. The accuracy decreases as the complexity increases.

Figure 14: Zero-shot accuracy. Performance of ChatGPT, GPT3, LLaMA and FlanT5 on the multiplication

task.

B.3 Limits of Transformers with question-answer Training752

Figure 17 and Figure 19 show the performance of GPT3 finetuned on question-answer pairs. The753

model was trained on various splits, considering the problem size, depth, and width of the computation754

graph. Specifically, for the multiplication task, the model was fine-tuned on a range of multiplication755

problems, spanning from 1-digit by 1-digit multiplication to 4-digit by 2-digit multiplication amount-756

ing to 1.8M pairs. As for the puzzle task, the model was fine-tuned on puzzles of sizes ranging from757

2x2 to 4x4 resulting in a total of 142k pairs. Additionally, for the DP task, the model was fine-tuned758

on problems with a sequence length of 5 resulting in 41K pairs. In an additional setup, we divided759

21

Figure 15: Few-shot accuracy with question-answer pairs. Performance of GPT4, ChatGPT, GPT3, LLaMA
and FlanT5 on the multiplication task.

Figure 16: Zero-shot accuracy. Performance of ChatGPT, GPT3, LLaMA and FlanT5 on the puzzle task.
Few-shot performance led to worse performance.

those datasets based on the depth and width of the computation graph for all the tasks and finetuned760

on different splits. The results indicate a lack of generalization for out-of-domain (OOD) examples761

while showcasing near-perfect performance for in-domain examples.762

Figure 17: GPT3 finetuned on the puzzle task using question-answer pairs. The training data
consisted of puzzles of size 4x4, and the model was subsequently evaluated on larger puzzle sizes for
OOD testing.

GPT3 finetuning cost We will discuss here the approximate cost of fine-tuning GPT3 for the763

multiplication task. When fine-tuning with question-answer pairs, each example typically consists764

of around 20 tokens, and 250 tokens for question-scratchpad pairs. The cost for utilizing the765

text-davinci-003 model amounts to $0.02 (USD) per 1,000 tokens. With this particular setup,766

the total number of training examples required for multiplication up to 5 digits by 5 digits reaches767

an astonishing figure of approximately 9.1 billion examples. Should we choose to fine-tune GPT3768

for 4 epochs on question-answer pairs, the cost would amount to $12 million and $700 million for769

question-scratchpad training. For a more comprehensive breakdown of the cost per problem size,770

please refer to Table 1.771

B.4 Limits of Transformers with Explicit Scratchpad Training772

Figure 21, 22, 20 show the performance of GPT3 finetuned on different splits773

of the tasks using question-scratchpad pairs. Specifically, for the multiplica-774

22

Figure 18: Zero-shot and Few-shot accuracy using question-answer pairs. Performance of GPT4, ChatGPT,
and GPT3 on the dynamic programming task. LLaMA and FlanT5 results are near zero for all problem sizes.

Figure 19: GPT3 finetuned on the dynamic programming task using question-answer pairs. We
consider different data splits: problem size, depth, and width of the graph. Specifically, the model
was trained with a problem size of 5, and the graph’s depth and width were set to 18.

Figure 20: GPT3 finetuned on the dynamic programming task using question-scratchpad pairs.
We consider different data splits: problem size, depth, and width of the graph. Specifically, the model
was trained with a problem size of 5, and the graph’s depth and width were set to 18.

tion task, the model was fine-tuned on a range of multiplication problems, span-775

ning from 1-digit by 1-digit multiplication to 3-digit by 2-digit multiplication.776

Figure 21: GPT3 finetuned exhaustively on task-
specific data up to a certain problem size. In partic-
ular, we train on examples up to 3-digit by 2-digit
multiplication (left) and on examples that have up
to 5 digits in the output response (right). The blue

region represents the in-distribution examples and
the red region refers to OOD examples.

777

As for the puzzle task, the model was fine-tuned on778

puzzles of sizes ranging from 2x2 to 4x4. Addition-779

ally, for the DP task, the model was fine-tuned on780

problems with a sequence length of 5. Furthermore,781

different data splits were considered, including varia-782

tions based on the number of hours, number of prop-783

erties, depth and width of the graph, and the number784

of digits in the multiplication output. On all tasks,785

we can see that the model fails to generalize to OOD786

data while achieving perfect accuracy on in-domain787

data, indicating that it cannot learn the underlying788

computational rules.789

23

Problem size # examples
GPT3 Cost

without scratchpad with scratchpad

1 x 1 81 $0.12 $7.44
2 x 1 810 $1.28 $74.4
2 x 2 8100 $12.96 $744
3 x 1 8100 $12.96 $744
3 x 2 81000 $129.6 $7440
3 x 3 810000 $1296 $74,404
4 x 1 81000 $129.6 $7440
4 x 2 810000 $1296 $74,404
4 x 3 8100000 $12,960 $744,040
4 x 4 81000000 $129,600 $7,440,400
5 x 1 810000 $1296 $74,404
5 x 2 8100000 $12,960 $744,040
5 x 3 81000000 $129,600 $7,440,400
5 x 4 810000000 $1,296,000 $70,440,400
5 x 5 8100000000 $12,960,000 $700,440,400

Table 1: Finetuning cost of GPT3 model on the multiplication data.

Figure 22: GPT3 finetuned on the puzzle task using question-scratchpad pairs. The training data
consisted of puzzles of size 4x4, and the model was subsequently evaluated on larger puzzle sizes for
OOD testing.

790

24

C Surface Patterns791

C.1 Relative Information Gain Predictions for792

Multiplication793

Relative Information Gain

Input
variable

Output
variable 2x2 3x3 4x4 5x5

xn z2n 0.223 0.223 0.223 0.223
yn z2n 0.223 0.223 0.223 0.223

x1 z1 0.198 0.199 0.199 0.199
y1 z1 0.198 0.199 0.199 0.199

xn yn z2n 1.000 1.000 1.000 1.000
xn�1 xn z2n 0.223 0.223 0.223 0.223
yn�1 yn z2n 0.223 0.223 0.223 0.223

xn yn z2n�1 0.110 0.101 0.101 0.101
yn�1 yn z2n�1 0.032 0.036 0.036 0.036
xn�1 xn z2n�1 0.032 0.036 0.036 0.036
xn�1 yn�1 z2n�1 0.018 0.025 0.025 0.025

x1 y1 z2 0.099 0.088 0.088 0.088
x2 y2 z2 0.025 0.016 0.016 0.016

x1 y1 z1 0.788 0.792 0.793 0.793
y1 y2 z1 0.213 0.211 0.211 0.211
x1 x2 z1 0.213 0.211 0.211 0.211

Table 2: Highest Relative Information Gain Elements and Pairs of Elements, for multiplications
between x = (x1, . . . , xn) and y = (y1, . . . , yn), with 2  n  5. We define z := x · y, which
will always have size 2n (with possibly a leading zero). z2n denotes the least-significant digit of
z, and z1 denotes the left-most digit. Only (input, output) pairs above 0.01 are shown. Note that
since multiplication is commutative, several pairs of input variables (e.g. a0 and b0) exhibit the same
relative information gain.

25

C.2 Empirical Surface Pattern Analysis for Multiplication with GPT4, ChatGPT and GPT3794

Figure 23: GPT4 zero-shot accuracy in predicting partially correct responses. This evidences surface
pattern learning, since the accuracy of full answer prediction is significantly lower–and often near
zero (see Figure 2). Specifically, ‘accuracy trailing zeros’ pertains to accurately predicting the number
of zeros in the output number, which is known to be relatively easy to predict based on arithmetic
calculations.

Figure 24: ChatGPT zero-shot accuracy in predicting partially correct responses. We observe the
same trend for GPT3 predictions.

26

Figure 25: GPT4 five-shot accuracy in predicting partially correct responses. We observe the same
trend for ChatGPT, GPT3 few-shot predictions.

Figure 26: GPT3 finetuned on question-scratchpad pairs. Accuracy of predicting partially correct
responses.

C.3 Relative Information Gain Predictions for Dynamic Programming Task795

Let ai be the i-th element of the input sequence, and let oi be the i-th element of the output sequence.796

As shown in Table 3, ai is a good predictor of oi, and this is especially true for a1 and an�1, the797

first and last elements of the sequence. This matches the task intuition, since one would never pick798

an element ai < 0 and decrease the final sum (one may pick ai = 0 if it makes a lexicographically799

smaller output sequence).800

ai weakly helps to predict its neighbors. The only case of this behavior with RelativeIG>0.1 is at801

the start of the sequence, where the first element helps predict the value of the second. This again802

matches intuition, since a very high a1 indicates that with high probability o2 will not be selected for803

the final subsequence.804

27

Relative Information Gain for each problem size

Input
variable

Output
variable 2 3 4 5 6 7 8 9 10

a1 o2 0.15 0.13 0.14 0.14 0.14 0.14 0.14 0.14 0.14

a1 o1 0.64 0.71 0.69 0.69 0.69 0.69 0.69 0.69 0.69
a2 o2 0.53 0.42 0.45 0.44 0.45 0.44 0.44 0.45 0.44
a3 o3 0.64 0.49 0.53 0.52 0.52 0.52 0.52 0.52
a4 o4 0.60 0.46 0.50 0.49 0.49 0.49 0.49
a5 o5 0.62 0.47 0.51 0.50 0.50 0.50
a6 o6 0.61 0.47 0.51 0.49 0.50
a7 o7 0.61 0.47 0.51 0.50
a8 o8 0.61 0.47 0.51
a9 o9 0.61 0.47
a10 o10 0.61

an�1 on�1 0.64 0.60 0.62 0.61 0.61 0.61 0.61 0.61
an�2 on�2 0.46 0.47 0.47 0.47 0.47 0.47
an�3 on�3 0.51 0.51 0.51 0.51
an�4 on�4 0.49 0.50

Table 3: Highest Relative Information Gain Elements, for DP problems of size 2  n  10.
We only show the (input, output) pairs where at least three problem sizes have RelativeIG>0, and
at least one with RelativeIG>0.1. an�1 refers to the last element of the sequence, regardless of its
actual id in the sequence.

Similar behaviors, but with higher relative information gains overall, are observed when analyzing805

triples of consecutive elements in the list. Table 4 shows that oi is highly predicted by (ai�1, ai, ai+1).806

Moreover, oi is highly predicted by both (ai�2, ai�1, ai) and (ai, ai+1, ai+2), with the former807

generally having higher scores than the latter. This again matches the task intuitions, since the value808

of the neighbors helps determine whether to select a number for the subsequence; and asking for the809

lexicographically smallest sequence biases the output subsequence to care more about the previous810

numbers rather than the following ones. We believe that this last point is the cause of the weakly811

predictive power of (ai�3, ai�2, ai�1) to predict oi; whereas (ai+1, ai+2, ai+3) is not shown, since812

all the relative information gain values were below 0.1.813

28

Relative Information Gain for each problem size

Input
variable

Output
variable 3 4 5 6 7 8 9 10

an�3 an�2 an�1 on�1 0.95 0.95 0.95 0.95
an�3 an�2 an�1 on�2 0.87 0.87 0.87 0.87
an�3 an�2 an�1 on�3 0.64 0.64 0.64 0.64

a1 a2 a3 o1 1.00 0.96 0.97 0.97 0.97 0.97 0.97 0.97
a1 a2 a3 o2 1.00 0.91 0.92 0.91 0.92 0.91 0.92 0.91
a2 a3 a4 o2 0.56 0.55 0.55 0.55 0.55 0.55 0.56
a1 a2 a3 o3 1.00 0.66 0.73 0.71 0.72 0.72 0.72 0.72
a2 a3 a4 o3 0.86 0.77 0.78 0.78 0.78 0.78 0.78
a3 a4 a5 o3 0.67 0.66 0.66 0.66 0.66 0.66
a2 a3 a4 o4 0.94 0.64 0.7 0.68 0.69 0.69 0.69
a3 a4 a5 o4 0.88 0.79 0.81 0.8 0.8 0.8
a4 a5 a6 o4 0.63 0.62 0.62 0.62 0.62
a3 a4 a5 o5 0.95 0.65 0.71 0.69 0.7 0.7
a4 a5 a6 o5 0.87 0.78 0.79 0.79 0.79
a5 a6 a7 o5 0.64 0.63 0.63 0.64
a4 a5 a6 o6 0.94 0.64 0.71 0.69 0.7
a5 a6 a7 o6 0.87 0.78 0.8 0.8
a6 a7 a8 o6 0.64 0.62 0.63
a5 a6 a7 o7 0.95 0.64 0.71 0.69
a6 a7 a8 o7 0.87 0.78 0.8
a6 a7 a8 o8 0.95 0.64 0.71

a1 a2 a3 o4 0.12 0.1 0.11 0.11 0.11 0.11 0.11
a2 a3 a4 o5 0.1 0.09 0.1 0.09 0.1 0.1
a3 a4 a5 o6 0.11 0.1 0.1 0.1 0.11
a4 a5 a6 o7 0.11 0.09 0.1 0.11
a5 a6 a7 o8 0.11 0.09 0.11

Table 4: Highest Relative Information Gain Contiguous Triples, for DP problems of size
3  n  10. We only show the (input, output) pairs where at least three problem sizes
have RelativeIG>0, and at least one with RelativeIG>0.1. an�1 refers to the last element of the
sequence, regardless of its actual id in the sequence.

C.4 Empirical Surface Pattern Results for Dynamic Programming Task814

We observe that all analyzed models match the Relative Information Gain prediction that o1 (whether815

the first element goes into the output sequence or not) should be the easiest value to predict (see816

Figures 27, 28, and 29). However, since GPT3 often predicts shorter output sequences than the817

required size, the analysis of the predictive power of on�1 is only done for GPT4. In GPT4, we818

observe that on�1 is among the easiest values to predict as expected by Relative Information Gain.819

Problem size (input list length)

A
cc

ur
ac

y

0.70

0.80

0.90

1.00

2 4 6 8 10

o_1 o_2 o_3 o_4 o_5

Problem size (input list length)

A
cc

ur
ac

y

0.70

0.80

0.90

1.00

2 4 6 8 10

o_{n-1} o_{n-2} o_{n-3} o_{n-4} o_{n-5}

Problem size (input list length)

A
cc

ur
ac

y

0.60

0.70

0.80

0.90

1.00

2 4 6 8 10

Output size is correct Model never chooses negatives
Model respects the non-adjacent condition

Figure 27: GPT4 five-shot with scratchpad accuracy in predicting output elements oi in the DP task.
All oi are predicted with high accuracy with o1 and on�1 being consistently among the highest. These
observations go in line with the Relative Information Gain prediction.

29

Problem size (input list length)

A
cc

ur
ac

y

0.35

0.45

0.55

0.65

0.75

6 7 8 9 10

o_1 o_2 o_3 o_4 o_5

Problem size (input list length)

A
cc

ur
ac

y

0.00

0.25

0.50

0.75

1.00

6 7 8 9 10

Output size is correct Model never chooses negatives
Model respects the non-adjacent condition

Figure 28: GPT3 few-shot without scratchpad accuracy in predicting output elements oi in the DP
task. As predicted by Relative Information Gain, the model predicts o1 correctly with the highest
probability. However, because GPT3 often does not produce the correct output size, it hinders us
from analyzing on�1.

Problem size (input list length)

A
cc

ur
ac

y

0.7

0.8

0.9

1.0

6 7 8 9

o_1 o_2 o_3 o_4 o_5

Problem size (input list length)

A
cc

ur
ac

y

0.00

0.25

0.50

0.75

1.00

6 7 8 9

Output size is correct Model never chooses negatives
Model respects the non-adjacent condition

Figure 29: GPT3 fine-tuned without scratchpad accuracy in predicting output elements oi in the DP
task. As predicted by Relative Information Gain, the model predicts o1 correctly with the highest
probability. However, because GPT3 often does not produce the correct output size, it hinders us
from analyzing on�1.

820

30

D Derivations821

D.1 Transformers struggle with problems with increasingly larger parallelism (width)822

Proposition D.1. Let fn(x) = hn(g(x, 1), g(x, 2)), . . . , g(x, n)). Let bhn, bg, bfn be estimators of823

hn, g, fn respectively. Assume P(hn = bhn) = 1 and P(hn(X) = hn(Y) | X 6= Y) < �↵n824

for some ↵ 2 (0, 1) and � > 0 (i.e. bhn perfectly estimates hn, and hn is almost injective). If825

P(g 6= bg) = ✏ > 0 and errors in bg are independent, then lim
n!+1

P(fn 6= bfn) = 1.826

Proof. For ease of writing, let Xi = g(X, i) and Yi = bg(X, i), and let X = (X1, . . . , Xn) and827

Y = (Y1, . . . , Yn). We will compute some auxiliary probabilities, and then upper bound P(f = bf),828

to finally compute its limit.829

P(X = Y) = P(X1 = Y1, X2 = Y2, . . . , Xn = Yn)

= P(X1 = Y1) · P(X2 = Y2) . . . · P(Xn = Yn) = P(g = bg)n = (1 � ✏)n (2)

Since by hypothesis we know P(hn(Y) = bhn(Y)) = 1, we have that:830

P(hn(X) = bhn(Y) | X 6= Y) = P(hn(X) = bhn(Y) \ hn(Y) = bhn(Y) | X 6= Y)

= P(hn(X) = hn(Y) = bhn(Y) | X 6= Y)

 P(hn(X) = hn(Y) | X 6= Y)

< �↵n (3)

We will now estimate P(fn = bfn) using the law of total probability w.r.t. the event X = Y .831

P(fn = bfn) = P(hn(X) = bhn(Y))

= P(hn(X) = bhn(Y) | X = Y) ·P(X = Y) +P(hn(X) = bhn(Y) | X 6= Y) ·P(X 6= Y)

= P(hn(X) = bhn(X)) ·P(X = Y) +P(hn(X) = bhn(Y) | X 6= Y) · (1�P(X = Y))

= 1 · (1� ✏)n +P(hn(X) = bhn(Y) | X 6= Y) · (1� (1� ✏)n) (using 2 and hypothesis)
< (1� ✏)n + �↵n · (1� (1� ✏)n) (using 3)
< �↵n + (1� ✏)n · (1� �↵n)

To conclude our proof, we will show that lim
n!+1

P(fn = bfn) exists and compute its value. Note that832

since 1 � ✏ 2 [0, 1) and ↵ 2 (0, 1), trivially lim
n!+1

�↵n + (1 � ✏)n · (1 � �↵n) = 0.833

0  lim inf
n!+1

P(fn = bfn)  lim sup
n!+1

P(fn = bfn)  lim sup
n!+1

�↵n + (1 � ✏)n · (1 � �↵n) = 0

Then, limn!+1P(fn = bfn) = 0 and we conclude limn!+1P(fn 6= bfn) = 0.834

Corollary D.1. Assume that a model M solves shifted addition perfectly, but it incorrectly solves at835

least one m digit by 1 digit multiplication for some fixed m. Then, the probability that M will solve836

any m digit by n digit multiplication using the long-form multiplication algorithm tends to 0.837

Proof. We define s : Zm+n
10 ⇥ N ! N ⇥ N, d : N ⇥ Z10 ! N, hn : Nn ! N, and fn : Zm+n

10 ! N838

as follows.839

s([x1, . . . , xm, xm+1, . . . , xm+n], j) := (x_
1 x_

2 . . ._ xm, xm+j)

where x_
1 x_

2 . . ._ xm denotes concatenating digits xi

d(x, y) := x · y
g := d � s

hn(x1, . . . , xn) :=
nX

i=1

xi10n�i

fn(x) := hn(g(x, 1), g(x, 2)), . . . , g(x, n))

31

Note that g defines the base-10 multiplication between m-digit numbers (x1x2 . . . xm) and 1-digit840

numbers (xm+j), where s denotes the selection of the numbers to multiply and d denotes the actual841

multiplication. Note that hn describes the shifted addition used at the end of long-form multiplication842

to combine n m-digit by 1-digit multiplications. Therefore, fn describes the long-form multiplication843

of m-digit by n-digit numbers.844

By hypothesis, P(g 6= bg) = ✏ > 0 and P(hn = bhn) = 1, where bg and bhn denote estimators using845

model M. It can be shown that P(hn(X) = hn(Y) | X 6= Y) < �↵n for ↵ = 0.1 and � = 10m.846

Using Lemma D.1, lim
n!+1

P(fn 6= bfn) = 1, which concludes our proof.847

848

Note that Lemma D.1’s proofs gives us empirical bounds once ✏ and ↵ are approximated. Also849

note that our definition of g in the proof of Corollary D.1 highlights two possible sources of850

exponentially-accumulating error: errors in the selection of the numbers to multiply s, and errors851

in the actual m-digit by 1-digit multiplication d.852

D.2 Transformers struggle with problems that require increasingly larger iterative853

applications of a function (depth)854

Proposition D.2. Let fn(x) = gn(x). Assume P(g(X) = bg(Y) | X 6= Y)  c (i.e. recovering from855

a mistake due to the randomness of applying the estimator on an incorrect input has probability at856

most c). If P(g 6= bg) = ✏ > 0 with c + ✏ < 1, then lim inf
n!+1

P(fn 6= bfn) = 1 � c

c + ✏
.857

Proof. We first derive a recursive upper bound using the law of total probability, and then prove a858

non-recursive upper bound by induction.859

sn := P(fn = bfn) = P(g(gn�1(Z)) = bg(bgn�1(Z)))

= P(g(X) = bg(Y)) where X := gn�1(Z) and Y := bgn�1(Z)

= P(g(X) = bg(Y) | X = Y) ·P(X = Y) +P(g(X) = bg(Y) | X 6= Y) ·P(X 6= Y)

= P(g(X) = bg(X)) ·P(X = Y) +P(g(X) = bg(Y) | X 6= Y) · (1�P(X = Y))

= P(g(X) = bg(X)) · sn�1 +P(g(X) = bg(Y) | X 6= Y) · (1� sn�1)

 (1� ✏) · sn�1 + c · (1� sn�1)

 (1� ✏� c) · sn�1 + c

We know s1 = (1 � ✏) since s1 = P(f1 = bf1) = P(g = bg). Let b := 1 � ✏ � c for ease of writing.860

Then, we have861

sn  b · sn�1 + c (4)

It can be easily shown by induction that sn  bn�1(1 � ✏) + c
Pn�2

i=0 bi:862

• The base case n = 2 is true since we know s2  b · s1 + c, and b · s1 + c = b(1 � ✏) + c =863

b2�1(1 � ✏) + c
P2�2

i=0 bi, thus showing s2  b2�1(1 � ✏) + c
P2�2

i=0 bi864

• The inductive step yields directly using Equation 4,865

sn  b · sn�1 + c

 b ·
⇣
bn�2(1 � ✏) + c

n�3X

i=0

bi
⌘

+ c  bn�1(1 � ✏) + c
n�2X

i=1

bi + c  bn�1(1 � ✏) + c
n�2X

i=0

bi

We can rewrite the geometric series
Pn�2

i=0 bi in its closed form 1�bn�1

1�b , and recalling b := 1 � ✏ � c,866

sn  bn�1(1 � ✏) + c
1 � bn�1

1 � b
= bn�1(1 � ✏) + c

1 � bn�1

c + ✏

= bn�1(1 � ✏) +
c

c + ✏
� bn�1 c

c + ✏

= bn�1
⇣
1 � ✏ � c

c + ✏

⌘
+

c

c + ✏

32

Recalling that sn = P(fn = bfn), we compute the limit inferior of P(fn 6= bfn) = 1 � sn �867

1 � bn�1(1 � ✏ � c
c+✏) � c

c+✏ .868

lim inf
n!+1

P(fn 6= bfn) � lim
n!+1

1 � bn�1
⇣
1 � ✏ � c

c + ✏

⌘
� c

c + ✏
= 1 � c

c + ✏

that concludes our proof.869

We can generalize the proof in Lemma 4.2 to tasks where there are potentially many valid reasoning870

chains with the following alternative state-transition framing.871

Lemma D.2. Let S denote the set of all possible states a language model can generate, and let872

z : S ! {0, 1} defines if a state is valid (0 = invalid). Let bg : S ! ⇧(S) be a state-transition873

function representing a language model’s probability distribution of generating each possible next874

state when attempting to perform a single reasoning step. Assume P(z(bg(X)) = 1 | z(X) = 0)  c875

and P(z(bg(X)) = 0 | z(X) = 1) = ✏ > 0 with c+ ✏ < 1. Then, lim inf
n!+1

P(z(bgn) = 0) = 1� c

c + ✏
.876

If for task T we know that all valid reasoning chains to arrive at a correct result have at least length877

n (i.e., the equivalent of defining fn = gn in Lemma D.1) then the probability of solving task T878

correctly tends to at most c
c+✏ .879

Corollary D.3. The recursions for dynamic programming tasks, the m-by-1 digit multiplication, and880

the puzzle’s elimination function are all tasks where there is a fixed reasoning step g being repeatedly881

applied. Therefore, we can directly apply Proposition 4.2 to these tasks.882

Proof. Let’s analyze the three tasks separately below.883

m-by-1 digit multiplication may be viewed as fm(x) Let x = (x1, . . . , xm) be the m-digit884

number that we multiply by the 1-digit number y (0  y < 10). Let z = (z1, . . . , zm+1) denote885

z = x · y, which is guaranteed to have exactly m + 1 digits (with possibly leading zeros). We define886

f as:887

f(x1, . . . , xm, y, i, c) := (x1, . . . , xi�1, x
0
i, xi+1, . . . xm, y, i � 1, c0)

where x0
i := (xi · y + c) mod 10 and c0 := b(xi · y + c)/10c. Note that x0

i = zi+1 since f is888

performing one step of the long-form multiplication algorithm.889

Let the initial input be x := (x1, . . . , xm, y,m, 0). Then, it can be easily shown that890

fm(x) = (z2, . . . , zm+1, y, 0, c). Since c is the left-most carry, it is the leading digit891

of z, i.e. c = z1 (possibly zero) . Thus, the value of z can be directly extracted from892

fm(x) = (z2, . . . , zm+1, y, 0, z1).893

In the DP task, dp’s computation may be viewed as fm�2(x) for a list of size m See §A.3.1894

for details on the solution to this problem. We will use identical notation. Let a1, . . . , am895

be an input list. Let x = (a1, . . . , am�2, a0
m�1, a

0
m,m � 2), where a0

m := max(am, 0) and896

a0
m�1 := max(am�1, am, 0). Intuitively, this means that we have applied the first two steps of897

the dp computation, and stored the results in a0
m�1 and a0

m. Let f be a function representing the898

recursive computation of dpi:899

f(a1, . . . , ai, a
0
i+1, . . . , a

0
m, i) = (a1, . . . , ai�1, a

0
i, . . . , a

0
m, i � 1)

where a0
i := max(a0

i+1, ai + a0
i+2, 0).900

Note that since a0
i+1 stores the value of dpi+1 and a0

i+2 stores the value of dpi+2, it can be easily901

shown that fm�2(x) = (a0
1, . . . , a

0
m, 0) = (dp1, . . . , dpm, 0). Therefore, fm�2 computes all902

recursive values of dpi when given the base cases.903

In the DP task, the reconstruction of the desired subsequence given already computed dp values904

may be viewed as fm(x) for an input list of size m. This case is similar to the previous one. Let905

r = (r1, . . . , rm) be the result, where ri = 1 if ai was selected for the desired subsequence, and906

ri = 2 otherwise. Let x := (dp1, . . . , dpm, 0, 0, a1, . . . , am, 1, 1). Let f be defined as follows:907

33

f(dp1, . . . , dpm, 0, 0, a0
1, . . . , a

0
i�1, ai, . . . , am, i, u) = (dp1, . . . , dpm, 0, 0, a0

1, . . . , a
0
i, ai+1, . . . , am, i+ 1, u0)

where a0
i := 2 � 1{dpi = ai + dpi+2 and u = 1} and u := 1 � 1{dpi = ai + dpi+2 and u = 1}.908

Intuitively, a0
i stores whether the i-th element of the list should be selected for the final subsequence,909

assigning 1 if the element should be taken, and 2 otherwise (i.e., a0
i = ri). Moreover, if the i-th910

element has been selected, we mark that the next item will not be available using u0. Therefore, f911

performs one step of the final output reconstruction as defined in §A.3.1.912

It can be easily shown that fm(x) := (dp1, . . . , dpm, 0, 0, a0
1, . . . , a

0
m,m + 1, u0) =913

(dp1, . . . , dpm, 0, 0, r1, . . . , rm,m + 1, u0). Note that the extra two elements in the input state914

allow lifting the special cases m � 1 and m in the solution shown in §A.3.1 without falling out of915

bounds.916

Solving the puzzle task may be seen as fm
for some m, where f is the elimination function Let917

c1, . . . , cn be the list of clues, let H be the number of houses, and let A be a partially filled solution918

of size K ⇥ M as defined in §2.4. Each cell Aij can take H + 1 values: the H options for the cell919

and the value ø, implying this cell has not been filled. An elimination step f may be defined as:920

f(c1, . . . , cn, A11, . . . A1M , . . . , AK1, . . . AKM) = (c1, . . . , cn, A
0
11, . . . A

0
1M , . . . , A0

K1, . . . A
0
KM)

where A0 is also a partially filled matrix, with Aij = A0
ij for every Aij 6=ø and where A0 has at least921

one more filled cell.922

Let x = (c1, . . . , cn, E) where E is an empty matrix of size K ⇥ M (all cell values of E are ø).923

Then, a full solution is computed as fm(x) for some value of m that increases with the problem size.924

In contrast to other tasks, the value of m is not fixed, and depends on the task instance, but using925

solvers we know that m increases with problem size.926

D.3 Discussing c ⌧ ✏ in the context of Proposition 4.2927

Note that in Proposition 4.2, if c ⌧ ✏ then lim inf
n!+1

P(fn 6= bfn) ⇡ 1. This is because assuming928

✏ = m · c for some m > 0, we have 1 � c

c + ✏
= 1 � c

c + m · c = 1 � 1

m + 1
=

m

m + 1
, and929

m

m + 1
is a monotonically increasing function for all m > 0 that tends to 1 when m goes to infinity.930

Therefore, large m’s (or alternatively, c ⌧ ✏) imply
m

m + 1
will be close to 1.931

It is reasonable to assume c⌧ ✏ when g has low collision, since c represents the probability of the932

estimator bg(y) arriving at the correct output g(x) by chance when given the wrong input y 6= x.933

If g is discrete, it can take |Im(g)| values, where |Im(g)| denotes the cardinal of the image space of934

g.Assuming approximately uniform errors, c ⇡ ✏/|Im(g)|, which in turn implies c ⌧ ✏ since g being935

low collision implies |Im(g)| is large.936

If g is continuous, then assuming approximately uniform errors we have c ⇡ 0.937

Summarizing both cases, if errors are approximately evenly distributed we obtain that938

lim inf
n!+1

P(fn 6= bfn) ⇡ 1.939

34

D.4 Error rates in repeated applications of a function may be unbounded940

Time series analysis studies series (yt)t where each yt linearly depends on the immediately previous941

p � 1 time steps, and potentially including an error component. We will focus on the vectorial case,942

defined as follows.943

Definition D.1 (Hamilton 1994, p-th order vector autorregressions, VAR(p)). Let

yt = c + �1yt�1 + �2yt�2 + . . . + �pyt�p + ✏t

where c denotes a n ⇥ 1 vector of constants and �i denotes an n ⇥ n matrix of autoregressive944

coefficients. The n ⇥ 1 ✏t vector is a generalization of white noise: E(✏t) = 0, E(✏t, ✏0�) = 0 for945

t 6= �, and E(✏t, ✏t) = ⌦ with ⌦ symmetric positive definite matrix.946

947

We say a process is covariance-stationary if its first and second moments (E[yt] and E[y0
t�j]) are948

independent of the time t. Intuitively, this implies that the consequences of any ✏t must eventually949

die out. Such a process may also be referred to as a stable process (e.g., in Lütkepohl 2005). The950

following necessary and sufficient condition for stableness can be derived:951

Proposition D.3 (Hamilton 1994, Proposition 10.1). Let F be an np ⇥ np matrix defined as follows.

F =

2

6664

�1 �2 �3 . . . �p�1 �p

In 0 0 . . . 0 0
0 In 0 . . . 0 0
0 0 In . . . 0 0
0 0 0 . . . In 0

3

7775

The eigenvalues of matrix F satisfy

|In�
p � �1�

p�1 � �2�
p�2 � �p| = 0

Hence, a VAR(p) is covariance-stationary as long as |�| < 1 for all values of � satisfying this952

equation.953

In our case, repeated iterations only involve considering the immediately previous step, i.e. p = 1.954

Then, a V AR(1) process yt = c + �1yt�1 + ✏t is covariance-stationary (or stable) if and only if the955

eigenvalues of F = �1 lie inside the unit circle. F will be unstable if at least one eigenvalue lies956

outside the unit circle, which in turn usually means an explosive system.957

Intuition For VAR(1) (i.e., yt = c + �1yt�1 + ✏t), we can intuitively see why large eigenvalues
are problematic. If yt is VAR(1), then it can be rewritten as

yt = �t
1y0 +

t�1X

i=1

�i
1✏t�i +

⇣
In +

t�1X

i=0

�i
1

⌘
c

Intuitively, large eigenvalues are problematic because if we diagonalize �1 = PDP�1, then958

�t
1 = PDtP�1, with Dii = �t

i. Thus, a component of �t
1 will diverge if |�i| > 1. If �1 is959

not diagonalizable, a similar argument holds for its Jordan decomposition. See Lütkepohl 2005,960

Section 2.1.1 for details.961

35

E Societal impact962

Our work on analyzing the limitations of current Transformers in compositional tasks can have a963

positive societal impact in several ways. By shedding light on these limitations, we contribute to a964

deeper understanding of the capabilities and constraints of these models. This knowledge is essential965

for researchers, developers, and policymakers in making informed decisions regarding the application966

of Transformers in various domains.967

Understanding the limitations of Transformers in compositional reasoning is crucial for developing968

more reliable and robust AI systems. By identifying these shortcomings, we can direct future research969

efforts toward addressing these limitations and developing models that exhibit improved performance970

in handling complex tasks requiring compositional reasoning.971

We do not foresee any negative societal impacts, as our analysis aims to understand the reasons972

behind transformers’ failures and successes, but does not introduce any new model or dataset that973

future work may leverage.974

36

	Introduction
	Measuring Limitations of Transformers in Compositional Tasks
	Computation Graph Definition
	Quantifying Compositional Complexity using Graph Metrics
	Predicting Surface Patterns through Relative Information Gain
	Exploring Three Representative Compositional Tasks: Definitions

	Testing the Limits of Transformers: Empirical Evidence
	Testing the Limits of Transformers with Zero-shot, Few-shot and Finetuning
	Breaking Down Successes and Failures of Transformers
	Information Gain Explains Where Transformers Partially Excel
	Transformers Reduce Multi-Step Compositional Reasoning to Linearized Subgraph Matching
	What Types of Errors do Transformers Make at Different Reasoning Depths?

	Error Propagations: the Theoretical Limits
	Discussion
	Related Work
	Conclusions
	Limitations
	Compositional Tasks
	Multiplication
	Einstein's Puzzle
	Dynamic Programming Problem
	Solution to this problem

	Experimental Setups & Empirical Results
	Models
	Limits of Transformers in Zero- and Few-shot Settings
	Limits of Transformers with question-answer Training
	Limits of Transformers with Explicit Scratchpad Training

	Surface Patterns
	Relative Information Gain Predictions for Multiplication
	Empirical Surface Pattern Analysis for Multiplication with GPT4, ChatGPT and GPT3
	Relative Information Gain Predictions for Dynamic Programming Task
	Empirical Surface Pattern Results for Dynamic Programming Task

	Derivations
	Transformers struggle with problems with increasingly larger parallelism (width)
	Transformers struggle with problems that require increasingly larger iterative applications of a function (depth)
	Discussing c«ε in the context of Proposition 4.2
	Error rates in repeated applications of a function may be unbounded

	Societal impact

