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A Detailed Proof of Corollary 11

In this work, we introduce a penalized gradient norm to the original loss function, which helps the2

adversarial examples to achieve a flat maximum. Then we randomly sample an example x′ in the3

neighborhood of the adversarial example xadv and simplify the objective function as follows:4

max
xadv∈Bϵ(x)

L(xadv, y; θ) = [J(x′, y; θ)− λ · ∥∇x′J(x′, y; θ)∥2] , s.t. x′ ∈ Bζ(x
adv). (1)

Gradient-based attacks require calculating the gradient of the objective function during practical5

optimization, thus the gradient of the current loss function (1) can be expressed as:6

∇xadvL(xadv, y; θ) = ∇x′J(x′, y; θ)− λ · ∇x′(∥∇x′J(x′, y; θ)∥2)

= ∇x′J(x′, y; θ)− λ · ∇2
x′J(x′, y; θ) · ∇x′J(x′, y; θ)

∥∇x′J(x′, y; θ)∥2
.

(2)

In practice, it is computationally expensive to directly optimize Eq. (2), since we need to calculate7

the Hessian matrix. In this work, we approximate the second-order Hessian matrix using the finite8

difference method to accelerate the attack process. Specifically, local Taylor expansion would be9

employed to approximate the operation results between the Hessian matrix and the gradient vector.10

A.1 Proof of Theorem 111

Proof. According to the Taylor expansion, we have12

∇xJ(x+∆x, y; θ) = ∇xJ(x, y; θ) +∇2
xJ(x, y; θ)∆x+O(∥∆x∥2), (3)

where ∆x = α · v, α is a small step size, v is a normalized gradient direction vector. Here, we denote13

v = − ∇xJ(x,y;θ)
∥∇xJ(x,y;θ)∥2

.14

Therefore, the second-order Hessian matrix can be approximated by the first-order gradient as follows:15

∇2
xJ(x, y; θ) ≈

∇xJ(x+ α · v, y; θ)−∇xJ(x, y; θ)

α · v
. (4)
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A.2 Proof of Corollary 117

Proof. From Eqs. (2) and (4), the gradient of the loss function L(·) can be expressed as:18

∇xadvL(xadv, y; θ) = ∇x′J(x′, y; θ)− λ · ∇2
x′J(x′, y; θ) · ∇x′J(x′, y; θ)

∥∇x′J(x′, y; θ)∥2

≈ ∇x′J(x′, y; θ)− λ · ∇x′J(x′ + α · v, y; θ)−∇x′J(x′, y; θ)

α · v
· (−v)

≈ ∇x′J(x′, y; θ) + λ · ∇x′J(x′ + α · v, y; θ)−∇x′J(x′, y; θ)

α

≈ (1− λ

α
) · ∇x′J(x′, y; θ) +

λ

α
· ∇x′J(x′ + α · v, y; θ).

(5)

We introduce a balanced coefficient δ and denote it as δ = λ
α . Hence, the gradient of the objective19

function (1) at the t-th iteration can be approximated as:20

∇xadv
t

L(xadv
t , y; θ) ≈ (1− δ) · ∇x′

t
J(x′

t, y; θ) + δ · ∇x′
t
J(x′

t + α · v, y; θ). (6)
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B Visualization of Loss Surfaces22

Implementation details. Given that the adversarial example xadv typically has a large number23

of dimensions, visualizing the loss function against all dimensions becomes infeasible. To this24

end, we randomly select two directions, denoted as r1 and r2, from a Gaussian distribution with25

the same dimension as xadv. Next, we calculate the loss change by varying the magnitudes of26

k1 and k2, representing the scaling factors applied to r1 and r2, respectively, which enables us to27

visualize the loss function using a two-dimensional plot. This approach provides a slice of the28

loss function, allowing us to analyze its behavior and understand the impact of perturbations along29

different directions.30

Visualization of loss surfaces for more adversarial examples. We visualize five randomly selected31

images in the ImageNet-compatible dataset. The adversarial examples are generated by various32

gradient-based attack methods on Inc-v3. As shown in Fig. 1, we can observe that our method33

generates visually similar adversaries as other attacks. However, our method demonstrates the34

capability to guide adversarial examples towards larger and smoother flat regions. This observation35

substantiates the effectiveness of our PGN method in generating adversarial examples that reside36

within flat regions, thereby shedding light on the potential role of flat local maxima in generating37

transferable adversarial examples.38

C Combined with Gradient-based Attacks39

Our PGN attack method can also be combined with various gradient-based attacks. The core of40

our method involves updating gradients by interpolating the first-order gradients from two samples41

to approximately minimize the gradient norm. In contrast, conventional gradient-based methods42

typically utilize a single example for gradient updates. To evaluate the efficacy of our strategy, we43

incorporate this interpolation approach into previous gradient-based methods, such as I-FGSM (BIM),44

MI-FGSM, NI-FGSM, VMI-FGSM, EMI-FGSM, and RAP. To simplify the experimental setup, we45

omitted random sampling and directly substituted the gradient update process of these methods with46

our proposed strategy.47

The experimental results are presented in Table 1. Notably, when our gradient update strategy48

is integrated, there is a remarkable improvement in the adversarial transferability of the gradient-49

based attack methods within the black-box setting. For example, RAP alone achieves an average50

success rate of 67.51% across the seven models. However, when combined with our PGN method,51

the average success rate rises to 75.30%, exhibiting a significant improvement of 7.79%. This52

outcome underscores the robust scalability of our approach, as it seamlessly integrates with existing53

methodologies to further amplify the success rate of transfer-based attacks.54
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Figure 1: Visualization of adversarial examples with their corresponding loss surfaces along two
random directions. Here, we randomly sampled five images and generated the adversarial examples
on Inc-v3. The loss surfaces are also calculated on Inc-v3.
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Table 1: Untargeted attack success rates (%) of our PGN method, when it is integrated with I-FGSM
(BIM), MI-FGSM, NI-FGSM, VMI-FGSM, EMI-FGSM, and RAP, respectively. The adversarial
examples are generated on Inc-v3. * indicates the white-box model.

Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens Avg.
BIM 100.0* 26.8 19.8 38.7 11.7 11.7 5.9 31.22

PGN-BIM 100.0* 37.9 28.6 44.7 13.3 13.0 5.1 35.45
MI 100.0* 49.7 47.1 61.9 22.3 23.4 10.9 46.72

PGN-MI 100.0* 65.6 61.4 71.1 24.7 25.7 12.2 53.50
NI 100.0* 61.9 60.0 69.6 22.9 23.2 12.1 51.85

PGN-NI 100.0* 73.0 69.3 74.7 25.8 26.2 12.4 56.57
VMI 100.0* 74.8 70.2 75.8 41.1 40.7 24.4 62.50

PGN-VMI 100.0* 81.9 78.4 80.3 48.6 49.0 30.2 68.28
EMI 100.0* 81.1 76.9 80.4 33.4 32.7 16.4 62.45

PGN-EMI 100.0* 86.1 83.6 83.9 46.8 44.5 29.4 69.72
RAP 99.9 82.4 79.3 81.4 48.1 44.3 27.6 67.51

PGN-RAP 100.0* 90.3 88.6 86.7 58.2 54.8 37.3 75.30
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Figure 2: Untargeted attack success rates (%) on six black-box models with the different number of
sampled samples N . The adversarial examples are generated by PGN on Inc-v3.

In this study, we employ random sampling of multiple examples and calculate the average gradients56

of these examples to mitigate the variance resulting from random sampling during the iterative57

process. To investigate the influence of the number of sampled examples, denoted as N , we conduct58

ablation experiments to analyze this parameter. As illustrated in Figure 2, when N = 1, our59

method demonstrates the lowest level of transferability. However, as we increase the value of N ,60

the transferability exhibits rapid improvement until N = 12, after which it gradually converges for61

normally trained models. Notably, when N > 12, a slight performance improvement can still be62

achieved by increasing the number of sampled examples in our PGN method. To strike a balance63

between transferability and computational overhead, we set N = 20 in our work. This observation64

further substantiates that sampling random examples from the vicinity of the adversarial example65

effectively facilitates neighborhood exploration. Consequently, it stabilizes the gradient update66

process and encourages the discovery of flatter regions by the adversarial example.67
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E Attack Defense Models68

In this subsection, besides normally trained models and adversarially trained models, we further69

validate the effectiveness of our methods on other defenses, including Bit-Red [7], ComDefend70

[2], JPEG [1], HGD [4], R&P [6], and NIPS-r3 [5]. The adversarial examples are generated on an71

ensemble of Inc-v3, Inc-v4, and IncRes-v2, and the weight for each model is 1/3.72

The experimental results are displayed in Table 2. In the context of ensemble models, it is evident73

that our algorithm can considerably enhance existing attack methods. For instance, VMI, EMI, and74

RAP achieve average success rates of 57.65%, 65.65%, and 76.43% respectively, against the six75

defense models. In contrast, our proposed PGN method achieves an average success rate of 85.25%,76

surpassing them by 27.6%, 19.6%, and 8.82% respectively. This notable improvement demonstrates77

the remarkable effectiveness of our proposed method against adversarially trained models as well as78

other defense models. Consequently, it poses a more substantial threat to advanced defense models.79

These findings further validate that the discovery of adversarial examples within flat regions can80

significantly enhance the transferability of adversarial attacks.

Table 2: Untargeted attack success rates (%) on six defense models. The adversarial examples are
crafted on the ensemble models, i.e. Inc-v3, Inc-v4 and IncRes-v2.

Attack HGD R&P NIPs-r3 Bit-Red JPEG ComDefend AVG.
MI 24.8 22.2 29.9 23.8 49.5 54.9 34.18
NI 22.3 23.1 29.3 23.9 50.8 56.9 34.38

VMI 54.3 50.6 58.1 39.0 71.5 72.4 57.65
EMI 64.8 60.1 69.1 47.6 74.1 78.2 65.65
RAP 72.3 73.1 81.0 54.6 88.1 89.5 76.43
PGN 82.5 83.6 88.3 72.1 91.3 93.7 85.25

81

F Attack Success Rates on CIFAR-1082

To further illustrate the effectiveness of our PGN method on different datasets, we conduct experiments83

on CIFAR-10 [3]. we set the hyperparameters as follows: maximum perturbation ϵ = 8/255, number84

of iterations T = 10, and step size α = 1/255. We compare our PGN method with various gradient-85

based attacks, including MI-FGSM, NI-FGSM, VMI-FGSM, EMI-FGSM, and RAP. The adversarial86

examples are generated on VGG-16, ResNet-50, and DenseNet-121 models, respectively. The results,87

presented in Table 3, clearly demonstrate that our PGN method can enhance the attack transferability88

on the CIFAR-10 dataset. This outcome supports our motivation that adversarial examples located in89

flat local regions tend to exhibit better transferability across diverse models. Moreover, our attack90

method showcases superior performance when applied to other datasets, reinforcing its versatility91

and effectiveness.92
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Table 3: Untargeted attack success rates (%) on the CIFAR-10 dataset for the attack methods in the
single model setting. The adversarial examples are crafted on VGG-16, ResNet-50 (Res-50), and
DenseNet-121, respectively.

Attack MobileNet VGG-19 GoogLeNet Inc-v3 DenseNet-121 DenseNet-169 Res-34 Res-50
MI 52.18 57.56 47.29 52.74 40.96 42.40 41.72 41.93
NI 56.13 61.36 49.19 54.87 37.61 39.74 38.74 38.90

VMI 66.14 68.05 60.89 65.63 55.62 57.21 55.35 56.46
EMI 70.69 74.36 66.78 70.56 59.98 63.04 60.47 61.83
RAP 77.98 78.43 73.41 77.86 68.30 69.74 65.48 66.27
PGN 85.97 86.73 82.82 85.59 72.48 74.66 71.62 72.95

(a) Untargeted attack success rates (%) for the adversarial examples crafted on VGG-16.

Attack MobileNet VGG16 VGG19 GoogLeNet Inc-v3 DenseNet-121 DenseNet-169 Res-34
MI 70.42 67.37 65.8 63.06 69.02 72.39 73.34 67.78
NI 71.97 65.57 63.76 63.28 69.13 71.03 72.78 65.02

VMI 77.60 74.27 73.26 71.11 75.99 76.80 77.68 73.54
EMI 80.11 78.66 77.43 76.34 78.12 79.68 80.12 77.24
RAP 86.92 84.24 83.46 80.68 81.75 83.54 84.98 81.36
PGN 90.88 88.68 88.07 85.79 89.53 89.93 90.91 87.19

(b) Untargeted attack success rates (%) for the adversarial examples crafted on Res-50.

Attack MobileNet VGG16 VGG19 GoogLeNet Inc-v3 DenseNet-169 Res-34 Res-50
MI 63.47 60.64 60.08 57.39 63.35 71.09 61.99 67.37
NI 66.86 61.80 60.85 60.30 66.54 75.92 61.57 69.25

VMI 71.28 68.49 68.01 65.40 70.62 75.51 68.42 72.50
EMI 74.36 75.66 73.54 70.41 75.23 78.94 73.64 77.45
RAP 79.98 80.22 78.68 76.39 80.55 84.25 78.65 80.03
PGN 86.73 85.12 84.66 81.82 86.26 88.35 83.30 86.21

(c) Untargeted attack success rates (%) for the adversarial examples crafted on DenseNet-121.
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