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Abstract

Ensuring safety is important for the practical deployment of reinforcement learning
(RL). Various challenges must be addressed, such as handling stochasticity in the
environments, providing rigorous guarantees of persistent state-wise safety satis-
faction, and avoiding overly conservative behaviors that sacrifice performance. We
propose a new framework, Reachability Estimation for Safe Policy Optimization
(RESPO), for safety-constrained RL in general stochastic settings. In the feasible
set where there exist violation-free policies, we optimize for rewards while main-
taining persistent safety. Outside this feasible set, our optimization produces the
safest behavior by guaranteeing entrance into the feasible set whenever possible
with the least cumulative discounted violations. We introduce a class of algo-
rithms using our novel reachability estimation function to optimize in our proposed
framework and in similar frameworks such as those concurrently handling multiple
hard and soft constraints. We theoretically establish that our algorithms almost
surely converge to locally optimal policies of our safe optimization framework.
We evaluate the proposed methods on a diverse suite of safe RL environments
from Safety Gym, PyBullet, and MuJoCo, and show the benefits in improving both
reward performance and safety compared with state-of-the-art baselines.

1 Introduction

Safety-Constrained Reinforcement Learning is important for a multitude of real-world safety-critical
applications [1, 2]. These situations require guaranteeing persistent safety and achieving high perfor-
mance while handling environment uncertainty. Traditionally, methods have been proposed to obtain
optimal control by solving within the Constrained Markov Decision Process (CMDP) framework,
which constrains expected cumulative violation of the constraints along trajectories to be under
some threshold. Trust-region approaches [3, 4, 5] follow from the Constrained Policy Optimization
algorithm [6] which tries to guarantee monotonic performance improvement while satisfying the
cumulative constraint requirement. However, these approaches are generally very computationally
expensive, and their first or second order Taylor approximations may have repercussions on perfor-
mance [2]. Several primal-dual approaches [7, 8, 9] have been proposed with better computational
efficiency and use multi-timescale frameworks [10] for asymptotic convergence to a local optimum.
Nonetheless, these approaches inherit CMDP’s lack of crucial rigorous safety guarantees that ensure
persistent safety. Particularly, maintaining a cost budget for hard constraints like collision avoidance is
insufficient. Rather, it’s crucial to prioritize obtaining safe, minimal-violation policies when possible.
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There have been a variety of proposed control theoretic functions that provide the needed guarantees
on persistent safety for such hard constraints, including Control Barrier Functions (CBFs) [11] and
Hamilton-Jacobi (HJ) reachability analysis [12, 13]. CBFs are energy-based certification functions,
whose zero super-level set is control invariant [14, 15]. The drawbacks are the conservativeness of
the feasible set and the lack of a systematic way to find these functions for general nonlinear systems.
Under certain assumptions, approximate energy-based certificates can be learned with sufficient
samples [16, 17, 18, 19, 20, 21]. HJ reachability analysis focuses on finding the set of initial states
such that there exists some control to avoid and/or reach a certain region. It computes a value function,
whose zero sub-level set is the largest feasible set, together with the optimal control. The drawback
is the well known ‘curse of dimensionality,’ as HJ reachability requires solving a corresponding
Hamilton-Jacobi-Bellman Partial Differential Equation (HJBPDE) on a discrete grid recursively.
Originally, both approaches assume the system dynamics and environment are known, and inputs are
bounded by some polytopic constraints, while recent works have applied them to model-free settings
[22, 23, 24]. For both CBF and HJ reachability, controllers that optimize performance and guarantee
safety can be synthesized in different ways online [25]. There also exist hard-constraint approaches
like [26] have theoretical safety guarantees without relying on control theory; however, they require
learning or having access to the transition-function dynamics.

Consequently, it can be beneficial to combine CMDP-based approaches to find optimal control and
the advantages of control-theoretic approaches to enable safety. The recent framework of Reachability
Constrained Reinforcement Learning (RCRL) [27] proposed an approach that guarantees persistent
safety and optimal performance when the agent is in the feasible set. However, RCRL is limited to
learning deterministic policies in deterministic environments. In the general RL setting, stochasticity
incurs a variety of challenges including how to define membership in the feasible set since it is no
longer a binary question but rather a probabilistic one. Another issue is that for states outside optimal
feasible set, RCRL optimization cannot guarantee entrance into the feasible set when possible. This
may have undesirable consequences including indefinitely violating constraints with no recovery.

In light of the above challenges, we propose a new framework and class of algorithms called
Reachability Estimation for Safe Policy Optimization (RESPO). Our main contributions are:

• We introduce reachability estimation methods for general stochastic policies that predict the
likelihood of constraint violations in the future. Using this estimation, a policy can be optimized such
that (i) when in the feasible set, it maintains persistent safety and optimizes for reward performance,
and (ii) when outside the feasible set, it produces the safest behavior and enters the feasible set if
possible. We also demonstrate how our optimization can incorporate multiple hard and soft constraints
while even prioritizing the hard constraints.

• We provide a novel class of actor-critic algorithms based on learning our reachability estimation
function, and prove our algorithm converges to a locally optimal policy of our proposed optimization.

• We perform comprehensive experiments showing that our approach achieves high performance in
complex, high-dimensional Safety Gym, PyBullet-based, and MuJoCo-based environments compared
to other state-of-the-art safety-constrained approaches while achieving small or even 0 violations. We
also show our algorithm’s performance in environments with multiple hard and soft constraints.

2 Related Work
2.1 Constrained Reinforcement Learning
Safety-constrained reinforcement learning has been addressed through various proposed learning
mechanisms solving within an optimization framework. CMDP [28, 29] is one framework that
augments MDPs with the cost function: the goal is to maximize expected reward returns while
constraining cost returns below a manually chosen threshold. Trust-region methods [3, 4, 5, 6] and
primal-dual based approaches [7, 9, 30, 31] are two classes of CMDP-based approaches. Trust-region
approaches generally follow from Constrained Policy Optimization (CPO) [6], which approximates
the constraint optimization problem with surrogate functions for the reward objective and safety
constraints, and then performs projection steps on the policy parameters with backtracking line
search. Penalized Proximal Policy Optimization [32] improves upon past trust-region approaches
via the clipping mechanism, similar to Proximal Policy Optimization’s [33] improvement over Trust
Region Policy Optimization [34]. Constraint-Rectified Policy Optimization [35] takes steps toward
improving reward performance if constraints are currently satisfied else takes steps to minimize
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constraint violations. PPO Lagrangian [30] is a primal-dual method combining Proximal Policy
Optimization (PPO) [33] with lagrangian relaxation of the safety constraints and has relatively low
complexity but outperforms CPO in constraint satisfaction. [7] uses a penalized reward function like
PPO Lagrangian, and demonstrates convergence to an optimal policy through the multi-timescale
framework, introduced in [10]. [36] proposes mapping the value function constraining problem as
constraining densities of state visitation. Overall, while these algorithms provide benefits through
various learning mechanisms, they inherit the problems of the CMDP framework. Specifically, they
do not provide rigorous guarantees of persistent safety and so are generally unsuitable for state-wise
constraint optimization problems.

2.2 Hamilton-Jacobi Reachability Analysis

HJ reachability analysis is a rigorous approach that verifies safety or reachability for dynamical
systems. Given any deterministic nonlinear system and target set, it computes the viscosity solution
for the HJBPDE, whose zero sub-level set is the backward reachable set (BRS), meaning there exists
some control such that the states starting from this set will enter the target set in future time (or
stay away from the target set for all future time). However, the curse of dimensionality and the
assumption of knowing the dynamics and environment in advance restrict its application, especially
in the model-free RL setting where there is no access to the entire observation space and dynamics
at any given time. Decomposition [37], warm-starting [38], sampling-based reachability [39], and
Deepreach [40] have been proposed to solve the curse of dimensionality. [23, 24] proposed methods
to bridge HJ analysis with RL by modifying the HJBPDE. The work of [27] takes framework into a
deterministic hard-constraint setting. There are additionally model-based HJ reachability approach
for reinforcement learning-based controls. [41] is a model-based extension of [27]. Approaches
like [42, 43, 44] use traditional HJ reachability for RL control while learning or assuming access to
the system dynamics model. In stochastic systems, finding the probability of reaching a target while
avoiding certain obstacles are key problems. [45, 46] constructed the theoretic framework based
on dynamic programming and consider finite and infinite time reach-avoid problems. [47, 48, 49]
propose computing the stochastic reach-avoid set together with the probability in a tractable manner
to address the curse of dimensionality.

3 Preliminaries

3.1 Markov Decision Processes

Markov Decision Processes (MDP) are defined as M := ⟨S,A, P, r, h, γ⟩. S and A are the state
and action spaces respectively. P : S × A × S 7→ [0, 1] is the transition function capturing the
environment dynamics. r : S ×A 7→ R is the reward function associated with each state-action pair,
h : S 7→ R+

0 is the safety loss function that maps a state to a non-negative real value, which is called
the constraint value, or simply cost. Hmin is the minimum non-zero value of function h; Hmax is
upper bound on function h. γ is a discount factor in the range (0, 1). SI is initial state set, d0 is initial
state distribution, and π(a|s) is a stochastic policy that is parameterized by the state and returns an
action distribution from which an action can be sampled and affects the environment defined by the
MDP. In unconstrained RL, the goal is to learn an optimal policy π∗ maximizing expected discounted
sum of rewards, i.e. π∗ = argmaxπ Es∼d0 V π(s), where V π(s) := Eτ∼π,P (s)[

∑
st∈τ γ

tr(st, at)].
Note: τ ∼ π, P (s) indicates sampling trajectory τ for horizon T starting from state s using policy π
in MDP with transition model P , and st ∈ τ is the tth state in trajectory τ .

3.2 Constrained Markov Decision Process

CMDP attempts to optimize the reward returns V π(s) under the constraint that the cost return is
below some manually chosen threshold χ. Specifically:

max
π

E
s∼d0

[V π(s)], subject to E
s∼d0

[V πc (s)] ≤ χ, (CMDP)

where cost return function V πc (s) is often defined as V πc (s) := Eτ∼π,P (s)[
∑
st∈τ γ

th(st)].

While many approaches have been proposed to solve within this framework, CMDPs have several
difficulties: 1. cost threshold χ often requires much tuning while using prior knowledge of the
environment; and 2. CMDP often permits some positive average cost which is incompatible with
state-wise hard constraint problems, since χ is usually chosen to be above 0.
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4 Stochastic Hamilton-Jacobi Reachability for Reinforcement Learning

Classic HJ reachability considers finding the largest feasible set for deterministic environments. In
this section, we apply a similar definition in [45, 46] and define the stochastic reachability problem.

4.1 Persistent Safety and HJ Reachability for Stochastic Systems

The instantaneous safety can be characterized by the safe set Ss, which is the zero level set of the
safety loss function h : S 7→ R+

0 . The unsafe (i.e. violation) set Sv is the complement of the safe set.

Definition 1. Safe set and unsafe set: Ss := {s ∈ S : h(s) = 0},Sv := {s ∈ S : h(s) > 0}.

We will write 1s∈Sv
as the instantaneous violation indicator function, which is 1 if the current state

is in the violation set and 0 otherwise. Note that the safety loss function h is different from the
instantaneous violation indicator function since h captures the magnitude of the violation at the state.

It is insufficient to only consider instantaneous safety. When the environment and policy are both
deterministic, we easily have a unique trajectory for starting from each state (i.e. the future state is
uniquely determined) under Lipschitz environment dynamics. In classic HJ reachability literature [13],
for a deterministic MDP’s transition model Pd and deterministic policy πd, the set of states that
guarantees persistent safety is captured by the zero sub-level set of the following value function:

Definition 2. Reachability value function V πh : S 7→ R+
0 is: V πh (s) := maxst∈τ∼πd,Pd(s) h(st).

However, when there’s a stochastic environment with transition model P (·|s, a) and policy π(·|s),
the future states are not uniquely determined. This means for a given initial state and policy, there
may exist many possible trajectories starting from this state. In this case, instead of defining a
binary function that only indicates the existence of constraint violations, we define the reachability
estimation function (REF), which captures the probability of constraint violation:

Definition 3. The reachability estimation function (REF) ϕπ : S 7→ [0, 1] is defined as:

ϕπ(s) := E
τ∼π,P (s)

max
st∈τ

1(st|s0=s,π)∈Sv
.

In a specific trajectory τ , the value maxst∈τ 1(st|s0=s,π)∈Sv
will be 1 if there exist constraint

violations and 0 if there exists no violation, which is binary. Taking expectation over this binary value
for all the trajectories, we get the desired probability. We define optimal REF based on an optimally
safe policy π∗ = argminπ V

π
c (s) (note that this policy may not be unique).

Definition 4. The optimal reachability estimation function ϕ∗ : S 7→ [0, 1] is: ϕ∗(s) := ϕπ
∗
(s).

Interestingly, we can utilize the fact the instantaneous violation indicator function produces binary
values to learn the REF function in a bellman recursive form. The following will be used later:

Theorem 1. The REF can be reduced to the following recursive Bellman formulation:

ϕπ(s) = max{1s∈Sv
, E
s′∼π,P (s)

ϕπ(s′)},

where s′ ∼ π, P (s) is a sample of the immediate successive state (i.e., s′ ∼ P (·|s, a ∼ π(·|s))) and
the expectation is taken over all possible successive states. The proof can be found in the appendix.

Definition 5. The feasible set of a policy π based on ϕπ(s) is defined as: Sπf := {s ∈ S : ϕπ(s) = 0}.

Note, the feasible set for a specific policy is the set of states starting from which no violation is
reached, and the safe set is the set of states at which there is no violation. We will use the phrase
likelihood of being feasible to mean the likelihood of not reaching a violation, i.e. 1− ϕπ(s).

4.2 Comparison with RCRL

The RCRL approach [27] uses reachability to optimize and maintain persistent safety in the feasible
set. Note, in below formulation, Sf is the optimal feasible set, i.e. that of a policy argminπ V

π
h (s).

The RCRL formulation is:

max
π

E
s∼d0

[V π(s) · 1s∈Sf
− V πh (s) · 1s/∈Sf

], subject to V πh (s) ≤ 0,∀s ∈ SI ∩ Sf . (RCRL)

The equation RCRL considers two different optimizations. When in the optimal feasible set, the
optimization produces a persistently safe policy maximizing rewards. When outside this set, the

4



optimization produces a control minimizing the maximum future violation, i.e. argminπ V
π
h (s).

However, this does not ensure (re)entrance into the feasible set even if such a control exists.

RCRL performs constraint optimization on V πh with a neural network (NN) lagrange multiplier with
state input [9]. When learning to optimize a Lagrangian dual function, the NN lagrange multiplier
should converge to small values for states in the optimal feasible set and converge to large values
for other states. Nonetheless, learning Vh provides a weak signal during training: if there is an
improvement in safety along the trajectory not affecting the maximum violation, V πh remains the
same for all states before the maximum violation in the trajectory. These improvements in costs can
be crucial in guiding the optimization toward a safer policy. And optimizing with Vh(s) can result in
accumulating an unlimited number of violations smaller than the maximum violation. Also, a major
issue with this approach is that it’s limited to deterministic MDPs and policies because its reachability
value function in the Bellman formulation does not directly apply to the stochastic setting. However,
in general stochastic settings, estimating feasibility cannot be binary since for a large portion of
the state space, even under the optimal policy, the agent may enter the unsafe set with a non-zero
probability, rendering such definition too conservative and impractical.

5 Iterative Reachability Estimation for Safe Reinforcement Learning

In this paper, we formulate a general optimization framework for safety-constrained RL and propose
a new algorithm to solve our constraint optimization by using our novel reachability estimation
function. We present the deterministic case in Section 5.1 and build our way to the stochastic case
in Section 5.2. We present our novel algorithm to solve these optimizations, involving our new
reachability estimation function, in Section 5.3. We introduce convergence analysis in Section 5.4.

5.1 Iterative Reachability Estimation for Deterministic Settings

All state transitions and policies happen with likelihood 0 or 1 for the deterministic environment.
Therefore, the probability of constraint violation for policy π from state s, i.e., ϕπ(s), is in the
set {0, 1}. According to Definition 4, if there exists some policy π such that ϕπ(s) = 0, we have
ϕ∗(s) = 0. Otherwise, ϕ∗(s) = 1. Notice that this captures definitive membership in the optimal
feasible set ϕ∗(s) = 1s∈Sπs

f
, which is the feasible set of some safest policy πs = argminπ V

π
c (s).

Now, we divide our optimization in two parts: the infeasible part and the feasible part.

For the infeasible part, we want the agent to incur the least cumulative damage (discounted sum
of costs) and, if possible, (re)enter the feasible set. Different from previous Reachability-based
RL optimizations, by using the discounted sum of costs V πc (s) we consider both magnitude and
frequency of violations, thereby improving learning signal. The infeasible portion takes the form:

max
π

E
s∼d0

[−V πc (s)]. (1)

For the feasible part, we want the policy to ensure the agent stays in the feasible set and maximize
reward returns. This produces a constraint optimization where the cost value function is constrained:

max
π

E
s∼d0

[
V π(s)

]
, subject to V πc (s) = 0,∀s ∈ SI . (2)

The following propositions justify using V πc as the constraint. Both proofs are in the appendix.
Proposition 1. The cost value function V πc (s) is zero for state s if and only if the persistent safety is
guaranteed for that state under the policy π.
We define here Sf := Sπs

f , the feasibilty set of some safest policy. Now, the above two optimizations
can be unified with the use of the feasibility function ϕ∗(s):

max
π

E
s∼d0

[
V π(s) · (1− ϕ∗(s))− V πc (s) · ϕ∗(s)

]
, subject to V πc (s) = 0,∀s ∈ SI ∩ Sf . (3)

Unlike other reachability based optimizations like RCRL, one particular advantage in Equation 3 is,
with some assumptions, the guaranteed entrance back into feasible set with minimum cumulative
discounted violations whenever a possible control exists. More formally, assuming infinite horizon:
Proposition 2. If ∃π that produces trajectory τ = {(si), i ∈ N, s1 = s} in deterministic MDP
M starting from state s, and ∃m ∈ N,m < ∞ such that sm ∈ Sπf , then ∃ϵ > 0 where if
discount factor γ ∈ (1 − ϵ, 1), then the optimal policy π∗ of Equation 3 will produce a trajectory
τ ′ = {(s′j), j ∈ N, s′1 = s}, such that ∃n ∈ N, n <∞, s′n ∈ Sπ

∗

f and V π
∗

c (s) = minπ′ V π
′

c (s).
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5.2 Iterative Reachability Estimation for Stochastic Settings

In stochastic environments, for each state, there is some likelihood of entering into the unsafe states
under any policy. Thus, we adopt the probabilistic reachability Definitions 3 and 4. Rather than
using the binary indicator in the optimal feasible set to demarcate the feasibility and infeasibility
optimization scenarios, we use the likelihood of infeasibility of the safest policy. In particular, for any
state s, the optimal likelihood that the policy will enter the infeasible set is ϕ∗(s) from Definition 4.

We again divide the full optimization problem in stochastic settings into infeasible and feasible ones
similar to Equations 1 and 2. However, we consider the infeasible formulation with likelihood the
current state is in a safest policy’s infeasible state, or ϕ∗(s). Similarly, we account for the feasible
optimization formulation with likelihood the current state is in a safest policy’s feasible set, 1−ϕ∗(s).
The complete Reachability Estimation for Safe Policy Optimization (RESPO) can be rewritten as:

max
π

E
s∼d0

[V π(s) · (1− ϕ∗(s))− V πc (s) · ϕ∗(s)], s.t., V πc (s) = 0, w.p. 1− ϕ∗(s),∀s ∈ SI .

(RESPO)

In sum, the RESPO framework provides several benefits when compared with other constrained
Reinforcement Learning and reachability-based approaches. Notably, 1) it maintains persistent safety
when in the feasible set unlike CMDP-based approaches, 2) compared with other reachability-based
approaches, RESPO considers performance optimization in addition to maintaining safety, 3) it
maintains the behavior of a safest policy in the infeasible set and even reenters the feasible set when
possible, 4) RESPO employs rigorously defined reachability definitions even in stochastic settings.

5.3 Overall Algorithm

We describe our algorithms by breaking down the novel components. Our algorithm predicts
reachability membership to guide the training toward optimizing the right portion of the optimization
equation (i.e., feasibility case or infeasibility case). Furthermore, it exclusively uses the discounted
sum of costs as the safety value function – we can avoid having to learn the reachability value function
while having the benefit of exploiting the improved signal in the cost value function.

Optimization in infeasible set versus feasible set. If the agent is in the infeasible set, this is the
simplest case. We want to find the optimal policy that maximizes −V πc (s). This would be the only
term that needs to be considered in optimization.

On the other hand, if the agent is in the feasible set, we must solve the constraint optimization
maxπ V

π(s) subject to V πc (s) = 0. This could be solved via a Lagrangian-based method:

min
π

max
λ

L(π, λ) = min
π

max
λ

(
E

s∼d0
[−V π(s) + λV πc (s)]

)
.

Now what remains is obtaining the reachability estimation function ϕ∗. First, we address the problem
of acquiring optimal likelihood of being feasible. It is nearly impossible to accurately know before
training if a state is in a safest policy’s infeasible set. We propose learning a function guaranteed to
converge to this REF (with some discount factor for γ-contraction mapping) by using the recursive
Bellman formulation proved in Theorem 1.

We learn a function p(s) to capture the probability ϕ∗(s). It is trained like a reachability function:
p(s) = max{1s∈Sv

, γ · p(s′)},
where Sv is the violation set, s′ is the next sampled state, and γ is a discount parameter 0 ≪ γ < 1
to ensure convergence of p(s). Furthermore, and crucially, we ensure the learning rate of this REF is
on a slower time scale than the policy and its critics but faster than the lagrange multiplier.

Bringing the concepts covered above, we present our full optimization equation:

min
π

max
λ

L(π, λ) = min
π

max
λ

(
E

s∼d0

[
[−V π(s) + λ · V πc (s)] · (1− p(s)) + V πc (s) · p(s)

])
. (4)

We show the design of our algorithm RESPO in an actor-critic framework in Algorithm 1. Note
that the V and Vc have corresponding Q functions: V π(s) = Ea∼π(·|s)Q(s, a) and V πc (s) =
Ea∼π(·|s)Qc(s, a). The gradients’ definitions are found in the appendix. We use operator ΓΘ to
indicate the projection of vector θ ∈ Rn to the closest point in compact and convex set Θ ⊆ R

n.
Specifically, ΓΘ = argminθ̂∈Θ ||θ̂ − θ||2. ΓΩ is similarly defined.
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Algorithm 1 RESPO Actor Critic

Require: Randomly initialized policy πθ’s parameters θ0, reward criticQ’s parameters η0, cost critic
Qc’s parameters κ0, REF p’s parameters ξ0, Lagrange multiplier λ’s parameters ω0, horizon T

Require: Convex projection operators ΓΘ and ΓΩ, and reward and cost critic learning rate ζ1(k),
policy learning rate ζ2(k), REF learning rate ζ3(k), lagrange multiplier learning rate ζ4(k)

1: for k = 0, 1, 2, ... do
2: for i = 0, 1, 2, ... do
3: Sample trajectories τi : {(sj , aj , s′j , rj , hj)} ∼ πθ
4: Rew. Update ηk+1 = ηk − ζ1(k)∇ηQ(st, at) · [Q(st, at)− (r(st, at) + γQ(st+1, at+1))]
5: Cost Update κk+1 = κk − ζ1(k)∇κQc(st, at) · [Qc(st, at)− (h(st) + γQc(st+1, at+1))]
6: Policy Update θk+1 =

7: ΓΘ

(
θk−ζ2(k)γt

[
−Q(st, at)[1−p(st)]+Qc(st, at)[λ(1−p(st))+p(st)]

]
∇θ log πθ(at|st)

)
8: REF Update ξk+1 = ξk − ζ3(k)∇ξp(st) · [p(st)−max{1h(st)>0, γp(st+1)}]
9: Lagrange multiplier Update ωk+1 = ΓΩ

(
ωk − ζ4(k)Qc(st, at)(1− p(st))∇ωλ

)
10: end for
11: end for

Figure 1: We compare the performance of our algorithm with other SOTA baselines in Safety Gym (left two
figures), Safety PyBullet (middle two figures), and Safety MuJoCo (right two figures).

5.4 Convergence Analysis

We provide convergence analysis of our algorithm for Finite MDPs (finite bounded state and action
space sizes, maximum horizon T , reward bounded by Rmax, and cost bounded by Hmax) under
reasonable assumptions. We demonstrate our algorithm almost surely finds a locally optimal policy
for our RESPO formulation, based on the following assumptions:
• A1 (Step size): Step sizes follow schedules {ζ1(k)}, {ζ2(k)}, {ζ3(k)}, {ζ4(k)} where:∑
k

ζi(k) = ∞ and
∑
k

ζi(k)
2 <∞,∀i ∈ {1, 2, 3, 4}, and ζj(k) = o(ζj−1(k)),∀j ∈ {2, 3, 4}.

The reward returns and cost returns critic value functions must follow the fastest schedule ζ1(k),
the policy must follow the second fastest schedule ζ2(k), the REF must follow the second slowest
schedule ζ3(k), and finally, the lagrange multiplier should follow the slowest schedule ζ4(k).
• A2 (Strict Feasibility): ∃π(·|·; θ) such that ∀s ∈ SI where ϕ∗(s) = 0, V πθ

c (s) ≤ 0.
• A3 (Differentiability and Lipschitz Continuity): For all state-action pairs (s, a), we assume value
and cost Q functions Q(s, a; η), Qc(s, a;κ), policy π(a|s; θ), and REF p(s, a; ξ) are continuously
differentiable in η, κ, θ, ξ respectively. Furthermore, ∇ωλω and, for all state-action pairs (s, a),
∇θπ(a|s; θ) are Lipschitz continuous functions in ω and θ respectively.

The detailed proof of the following result is provided in the appendix.
Theorem 2. Given Assumptions A1-A3, the policy updates in Algorithm 1 will almost surely
converge to a locally optimal policy for our proposed optimization in Equation RESPO.

6 Experiments

Baselines. The baselines we compare are CMDP-based or solve for hard constraints. The CMDP
baselines are Lagrangian-based Proximal Policy Optimization (PPOLag) based on [7], Constraint-
Rectified Policy Optimization (CRPO) [35], Penalized Proximal Policy Optimization (P3O) [32],
and Projection-Based Constrained Policy Optimization (PCPO) [3]. The hard constraints baselines
are RCRL [27], CBF with constraint ḣ(s) + ν · h(s) ≤ 0, and Feasibile Actor-Critic (FAC) [9]. We
classify FAC among the hard constraint approaches because we make its cost threshold χ = 0 in
order to better compare using NN lagrange multiplier with our REF approach in RESPO. We include
the unconstrained Vanilla PPO [33] baseline for reference.
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Benchmarks. We compare RESPO with the baselines in a diverse suite of safety environments. We
consider high-dimensional environments in Safety Gym [30] (namely PointButton and CarGoal),
Safety PyBullet [50] (namely DroneCircle and BallRun), and Safety MuJoCo [51], (namely Safety
HalfCheetah and Reacher). We also show our algorithm in a multi-drone environment with multiple
hard and soft constraints. More detailed experiment explanations and evaluations are in the appendix.

6.1 Main Experiments in Safety Gym, Safety PyBullet, and MuJoCo

We compare our algorithm with SOTA benchmarks on various high-dimensional (up to 76D observa-
tion space), complex environments in the stochastic setting, i.e., where the environment and/or policy
are stochastic. Particularly, we examine environments in Safety Gym, Safety PyBullet, and Safety
MuJoCo. The environments provide reward for achieving a goal behavior or location, while the cost
is based on tangible (e.g., avoiding quickly moving objects) and non-tangible (e.g., satisfying speed
limit) constraints. Environments like PointButton require intricate behavior where specific buttons
must be reached while avoiding multiple moving obstacles, stationary hazards, and wrong buttons.

Overall, RESPO achieves the best balance between optimizing reward and minimizing cost violations
across all the environments. Specifically, our approach generally has the highest reward performance
(see the red lines from the top row of Figure 2) among the safety-constrained algorithms while
maintaining reasonably low to 0 cost violations (like in HalfCheetah). When RESPO performs the
second highest, the highest-performing safety algorithm always incurs several times more violations
than RESPO – for instance, RCRL in PointButton or PPOLag in Drone Circle. Non-primal-dual
CMDP approaches, namely CRPO, P3O, and PCPO generally satisfy their cost threshold constraints,
but their reward performances rarely exceed that of PPOLag. RCRL generally has extremes of high
reward and high cost, like in BallRun, or low reward and low cost, like in CarGoal. FAC and CBF
generally have conservative behavior that sacrifices reward performance to minimize cost.
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Figure 2: Comparison of RESPO with baselines in Safety Gym and PyBullet environments. The plots in the first
row show performance measured in rewards (higher is better); those in second row show cost (lower is better).
RESPO (red curves) achieves the best balance of maximizing reward and minimizing cost. When other methods
achieve higher rewards than RESPO, they achieve much higher costs as well. E.g., in PointButton, RCRL has
slightly higher rewards, but accumulates over 3× violations than RESPO. Note, Vanilla PPO is unconstrained.

6.2 Hard and Soft Constraints

We also demonstrate RESPO’s performance in an environment with multiple hard and soft constraints.
The environment requires controlling two drones to pass through a tunnel one at a time while
respecting certain distance requirements. The reward is given for quickly reaching the goal positions.
The two hard constraints involve (H1) ensuring neither drone collides into the wall and (H2) the
distance between the two drones is more than 0.5 to ensure they do not collide. The soft constraint is
that the two drones are within 0.8 of each other to ensure real-world communication. It is preferable
to prioritize hard constraint H1 over hard constraint H2, since colliding with the wall may have more
serious consequences to the drones rather than violations of an overly precautious distance constraint.

Our approach, in the leftmost of Figure 3, successfully reaches the goal while avoiding the wall
obstacles in all time steps. We are able to prioritize this wall avoidance constraint over the second
hard constraint. This can be seen particularly in between the blue to cyan time period where the higher
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Figure 3: Comparison of RESPO with baselines trajectories in Hard & Soft Constraints multi-Drone control.
Starting at gold circles, drones must enter the tunnel one at a time and reach green stars. Hard constraints are
wall avoidance and ensuring drones are farther than 0.5 meters from each other. Soft constraint is drones are
within 0.8 meters of each other. Trajectory colors correspond to time. RESPO (on left) successfully controls
drones to reach goals while always avoiding walls and usually respecting distance constraints. Other baselines
cannot manage multiple constraints: they collide with the wall and have many distance constraint violations.
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Figure 4: Comparison of RESPO with baselines in Mu-
JoCo. Higher rewards (first row plots) and lower costs
(second row plots) are better. In HalfCheetah, RESPO
has highest reward among safety baselines, with 0 viola-
tions. In Reacher, RESPO has good rewards, low costs.
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Figure 5: Ablation study on the learning rate of REF.
Higher rewards (first row plots) are better; lower costs
(second row plots) are better. When changing REF’s
learning rate to violate timescale assumptions, REF
produces suboptimal feasible sets.

Drone makes way for the lower Drone to pass through but needs to make a drop to make a concave
parabolic trajectory to the goal. Nonetheless, the hard constraints are almost always satisfied, thereby
producing the behavior of allowing one drone through the tunnel at a time. The soft constraints are
satisfied at the beginning and end but are violated, reasonably, in the middle of the episode since only
one drone can pass through the tunnel at a time, thereby forcing the other drone into a standby mode.

6.3 Ablation Studies

We also perform ablation studies to experimentally confirm the design choices we made based on the
theoretically established convergence and optimization framework. We particularly investigate the
effects of changing the learning rate of our reachability function as well as changing the optimization
framework. We present the results of changing the learning rate for REF in Figure 5 while our results
for the ablation studies on our optimization framework can be seen in Figure 6.

In Figure 5, we show the effects of making the learning rate of REF slower and faster than the one we
use in accordance with Assumption 1. From these experiments, changing the learning rate in either
direction produces poor reward performance. A fast learning rate makes the REF converge to the
likelihood of infeasibility for the current policy, which can be suboptimal. But a very slow learning
rate means the function takes too long to converge – the lagrange multiplier may meanwhile become
very large, thus making it too difficult to optimize for reward returns. In both scenarios, the algorithm
with modified learning rates produces conservative behavior that sacrifices reward performance.

In Figure 6, we compare RESPO with RCRL implemented with our REF and PPOLag in the
CMDP framework with cost threshold χ = 0 to ensure hard constraint satisfaction. The difference
between RESPO and the RCRL-based ablation approach is that the ablation still uses V πh instead of
V πc . The ablation aproach’s high cumulative cost can be attributed to the limitations of using V πh –
particularly, the lower sensitivity of V πh to safety improvement and its lack of guarantees on feasible
set (re)entrance. PPOLag with χ = 0 produces low violations but also very low reward performance
that’s close to zero. Naively using V πc in a hard constraints framework leads to very conservative
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Figure 6: Ablation study on optimization framework. Top row plots show performance measured in reward
(higher is better). Bottom row plots show cost (lower is better). RESPO (red curve) achieves best balance of
maximizing reward and minimizing cost. RCRL framework implemented with our REF without V π

c incurs very
high costs. PPOLag in CMDP framework with χ = 0 has very low reward performance. So, learning REF and
learning V π

c are both crucial components in our design and work in tandem to contribute to RESPO’s efficacy.

behavior that sacrifices reward performance. Ultimately, this ablation study experimentally highlights
the importance of learning our REF and using value function V πc in our algorithm’s design.

7 Discussion and Conclusion

In summary, we proposed a new optimization formulation and a class of algorithms for safety-
constrained reinforcement learning. Our framework optimizes reward performance for states in
least-violation policy’s feasible state space while maintaining persistent safety as well as providing
the safest behavior in other states by ensuring entrance into the feasible set with minimal cumulative
discounted costs. Using our proposed reachability estimation function, we prove our algorithm’s class
of actor-critic methods converge a locally optimal policy for our proposed optimization. We provide
extensive experimental results on a diverse suite of environments in Safety Gym, PyBullet, and
MuJoCo, and an environment with multiple hard and soft constraints, to demonstrate the effectiveness
of our algorithm when compared with several SOTA baselines. We leave open various extensions to
our work to enable real-world deployment of our algorithm. These include constraining violations
during training, guaranteeing safety in single-lifetime reinforcement learning, and ensuring policies
don’t forget feasible sets as environment tasks change. Our approach of learning the optimal REF
to reduce the state space into a low-dimensional likelihood representation to guide training for
high-dimensional policies can have applications in other learning problems in answering binary
classification or likelihood-based questions about dynamics in high-dimension feature spaces.
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A Notation

r reward function
h safety loss function
V π cumulative discounted reward value function
V πc cumulative discounted cost value function
V πh reachability value function
1s∈Sv instantaneous violation indicator function
ϕπ reachability estimation function (REF) of a given policy
ϕ∗ reachability estimation function (REF) of safest policy
p predicted reachability estimation function (REF) of safest policy

Hmax upper bound of function h
Hmin minimum non-zero value of of function h
λmax maximum value to clip lagrange multiplier
Rmax upper bound of function r
Ss safe set
Sv unsafe set
Sf feasible set (persistent safe set)

Es′∼π,P expectation taken over possible next states
Eτ∼π,P expectation taken over possible trajectories
Es∼d0 expectation taken over initial distribution

Table 1: Notation used in the paper.

B Gradient estimates

The Q value losses based on the MSE between the Q networks and the respective sampled returns
result in the gradients:

∇̂ηJQ(η) = ∇ηQ(st, at; η) · [Qη(st, at)− (r(st, at) + γQ(st+1, at+1; η))]

∇̂κJQc
(κ) = ∇κQc(st, at;κ) · [Qκ(st, at)− (h(st) + γQc(st+1, at+1;κ))]

Similarly the REF gradient update is:

∇̂ηJp(ξ) = ∇ξp(st; ξ) · [p(st; ξ)−max{1st∈Sv
, γp(st+1; ξ)}]

From the policy gradient theorem in [52], we get the policy gradient loss as:

∇̂θJπ(θ) = γt
[
−Qη(st, at)[1− pξ(st)]

+Qc(st, at)[λω(1− pξ(st)) + pξ(st)]

]
∇θ log πθ(at|st)

and the stochastic gradient of the multiplier is

∇̂ωJλ(ω) = Qc(st, at;κ)(1− pξ(st))∇ωλω

and λω is clipped to be in range [0, λmax] (in particular, projection operator ΓΩ(λω) =

argminλ̂ω∈[0,λmax]
||λω − λ̂ω||2).

C Proofs

C.1 Theorem 1 with Proof

Theorem 3. The REF can be reduced to the following recursive Bellman formulation:
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ϕπ(s) = max{1s∈Sv , E
s′∼π,P (s)

ϕπ(s′)},

where s′ ∼ π, P (s) is a sample of the immediate successive state (i.e., s′ ∼ P (·|s, a ∼ π(·|s))) and
the expectation is taken over all possible successive states.

Proof.

ϕπ(s) := E
τ∼π,P (s)

max
st∈τ

1sπt ∈Sv

= E
τ∼π,P (s)

max{1s∈Sv
, max
st∈τ\{s}

1sπt ∈Sv
}

= max{1s∈Sv
, E
τ∼π,P (s)

max
st∈τ\{s}

1sπt ∈Sv
}

= max{1s∈Sv
, E
s′∼π,P (s)

E
τ ′∼π,P (s′)

max
st∈τ ′

1sπt ∈Sv
}

= max{1s∈Sv
, E
s′∼π,P (s)

ϕπ(s′)}

Note that we use the notation τ ∼ π, P (s) to indicate a trajectory sampled from the MDP with
transition probability P under policy π starting from state s, and use the notation s′ ∼ π, P (s) to
indicate the next immediate state from the MDP with transition probability P under policy π starting
from state s. The third line holds because the indicator function is either 0 or 1, so if it’s 1 then
ϕπ(s) = Eτ∼π,P (s) 1 = 1 else ϕπ(s) = Eτ∼π,P (s) maxst∈τ\{s} 1sπt ∈Sv

.

C.2 Proposition 1 with Proof

Proposition 3. The cost value function V πc (s) is zero for state s if and only if the persistent safety is
guaranteed for that state under the policy π.

Proof. (IF) Assume for a given policy π, the persistent safety is guaranteed, i.e. h(st|s0 = 0, π) = 0
holds for all st ∈ τ for all possible trajectories τ sampled from the environment with control policy
π. We then have:

V πc (s) := E
τ∼π,P (s)

[
∑
st∈τ

γth(st)] = 0.

(ONLY IF) Assume for a given policy π, V πc (s) = 0. Since the image of the safety loss function h(s)
is non-negative real, and V πc (s) is the expectation of the sum of non-negative real values, the only
way V πc (s) = 0 is if h(st|s0 = 0, π) = 0, ∀st ∈ τ for all possible trajectories τ sampled from the
environment with control policy π.

C.3 Proposition 2 with Proof

Proposition 4. If ∃π that produces trajectory τ = {(si), i ∈ N, s1 = s} in deterministic MDP M
starting from state s, and ∃m ∈ N,m < ∞ such that sm ∈ Sπf , then ∃ϵ > 0 where if discount
factor γ ∈ (1− ϵ, 1), then the optimal policy π∗ of Main paper Equation 3 will produce a trajectory
τ ′ = {(s′j), j ∈ N, s′1 = s}, such that ∃n ∈ N, n <∞, s′n ∈ Sπ

∗

f and V π
∗

c (s) = minπ′ V π
′

c (s).

In other words the proposition is stating for some state s, if there is a policy that enters its feasible set
in a finite number (m− 1) of steps, then by ensuring discount factor γ is close to 1 we can guarantee
that the optimal policy π∗ of Main paper Equation 3 will also enter the feasible set in a finite number
of steps with the minimum cumulative discounted sum of the costs. Note that π∗ will always produce
trajectories with the minimum discounted sum of costs whether the state is in the feasible or infeasible
set of the policy by virtue of its optimization which constrains V πc .

Proof. We consider two cases: (Case 1) m = 1 and (Case 2) m > 1.

Case 1 m = 1: In this case, there exists a policy π in which the the current state s is in the feasible
set of that policy. By definition, that means that in a trajectory τ sampled in the MDP using that
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policy, starting from state s, there are no future violations incurred in τ . Thus V πc (s) = 0. Since π∗

incurs the minimum cumulative violation, V π
∗

c (s) = 0 trivially. Therefore, s, the first state of the
trajectory, is in the feasible set of π∗.

Case 2 m > 1: Since policy π∗ produces the minimum cumulative discounted cost for a given state s,
the core of this proof will be demonstrating that the minimum cumulative discounted cost of entering
the feasible set (call this value HE) is less than the minimum cumulative discounted cost of not
entering the feasible set (call this value HN ), and therefore π∗ will choose the route of entering the
feasible set.

The proof will proceed by deriving a sufficient condition for HE < HN by establishing bounds on
them.

We place an upper bound on the minimum cumulative discounted cost of entering the feasible set
HE . Since ∃π that enters the feasible set in m− 1 steps, entering the feasible set can be at most the
highest possible cost that π incurs. Since the maximum cost at any state is Hmax, the upper bound is
the discounted sum of m− 1 steps of violations Hmax, or

HE <
Hmax(1− γm−1)

(1− γ)

We place a lower bound on the minimum cumulative discounted cost of not entering the feasible
set HN . In this case, say in the sampled trajectory, the maximum gap between any two non-zero
violations is w. By definition, the trajectory cannot have an infinite sequence of violation-free states
since the trajectory never enters the feasible set. Therefore w is finite. Now recall Hmin is the lower
bound on the non-zero values of h. So the minimum cumulative discounted cost of not entering the
feasible set must be at least the cost of the trajectory with a violation of Hmin at intervals of w steps.
That is:

Hmin(γ
w)

(1− γw)
< HN

Now HE < HN will be true if the upper bound of HE is less than the lower bound of HN . In other
words HE < HN is true if:

Hmax(1− γm−1)

(1− γ)
<
Hmin(γ

w)

(1− γw)
(5)

Rearranging, we get:
Hmax

Hmin
<

(1− γ) · (γw)
(1− γm−1) · (1− γw)

(6)

Let’s define the RHS of the Inequality 6 as the function υ(γ). Consider γ ∈ (0, 1). It is not difficult
to demonstrate that υ(γ) in this domain range is a continuous function and that left directional limit
limγ→1− υ(γ) = ∞. This suggests that there is an open interval of values for γ (whose supremum
is 1) for which Hmax/Hmin < υ(γ) and so HE < HN . So we establish that ∃ϵ > 0 such that for
γ ∈ (1− ϵ, 1), we satisfy the sufficient condition HE < HN so that the optimal policy will enter its
feasible set.

Thus, we prove that if there is a policy entering its feasible set from state s, then there is a range of
values for γ that are close enough to 1 ensuring that the optimal policy of Main paper Equation 3 will
enter its feasible set in a finite number of steps with minimum discounted sum of costs.

C.4 Theorem 2 with Proof

Theorem 4. Given Assumptions A1-A3 in Main paper, the policy updates in Algorithm 1 will almost
surely converge to a locally optimal policy for our proposed optimization in Equation RESPO.

We first provide an intuitive explanation behind why our REF learns to converge to the safest policy’s
REF, then a proof overview, and then the full proof.
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Figure 7: The predicted feasible set converges to a safest policy’s feasible set since the misclassified regions X
and Y are corrected over time.

C.4.1 Intuition behind REF convergence

The approach can be explained by considering what happens in the individual regions of space.
Consider a deterministic environment for simplicity. As seen in Figure 7, there are two subsets of the
initial state space: a safest policy’s "true" feasible set ShI and REF predicted feasible set SpI , and
they create 4 regions in the initial state space SI : W = ShI ∩ SpI , X = ShI ∩ SpI , Y = ShI ∩ SpI ,
Z = ShI ∩ SpI . Consider a point during training when the lagrange multiplier λ is sufficiently large.
For states in W , the set of correctly classified infeasible states, the algorithm will simply minimize
cumulative violations V πθ

c (s), and thereby remain as safe as possible since the policy and critics
learning rates are faster than that of REF. X , which is the set of infeasible states that are misclassified,
is very small if we ensure the policy and REF are trained at much faster time scales than the multiplier
and so when the agent starts in true infeasible states, it will by definition reach violations and therefore
be labeled as infeasible. In Y , the set of truly feasible states that are misclassified, the algorithm also
minimizes cumulative violations, which by the definition of feasibility should be 0. It will then have
no violations and enter the correctly predicted feasible set Z . And when starting in states in Z , the
algorithm will optimize the lagrangian, and since the multiplier λ is sufficiently large, it will converge
to a policy that optimizes for reward while ensuring safety, i.e. no future violations, and therefore the
state will stay predictably feasible in Z . In this manner, REF’s predicted feasible set will converge
to the optimal feasible set, and the agent will be safe and have optimal performance in the feasible
set and be the safest behavior outside the feasible set. Thereby, the algorithm finds a locally optimal
solution to the proposed optimization formulation.

C.4.2 Proof Overview

We show our algorithm convergence to the optimal policy by utilizing the proof framework of
multi-time scale presented in [8, 10, 53, 27]. Specifically, we have 4 time scales for (1) the critics,
(2) policy, (3) REF function, and (4) lagrange multiplier, listed in order from fastest to slowest. The
overview of each timescale proof step is as follows:

1 We demonstrate the almost sure convergence of the critics to the corresponding fixed point
optimal critic functions of the policy.

2 Using multi-timescale theory, we demonstrate the policy almost surely converges to a
stationary point of a continuous time system, which we show has a Lyapunov function
certifying its locally asymptotic stability at the stationary point.

3 We demonstrate the almost sure convergence of the REF function to the REF of the policy
that is safe insofar as the lagrange multiplier is sufficiently large.

4 We demonstrate the almost sure convergence of the lagrange multiplier to a stationary point
similar to the proof in the policy timecale.

Finally, we demonstrate that the stationary points for the policy and lagrange multiplier form a saddle
point, and so by local saddle point theorem we almost surely achieve the locally optimal policy of our
proposed optimization.
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C.4.3 Proof Details

Proof. Step 1 (convergence of the critics Vη and Vκ updates): From the multi-time scale assumption,
we know that η and κ will convergence on a faster time scale than the other parameters θ, ξ, and ω.
Therefore, we can leverage Lemma 1 of Chapter 6 of [10] to analyze the convergence properties while
updating ηk and κk by treating θ, ξ, and ω as fixed parameters θk, ξk, and ωk. In other words, the
policy, REF, and lagrange multiplier are fixed while computing Qπθk (s, a) and Q

πθk
c (s, a). With the

Finite MDP assumption and policy evaluation convergence results of [52], and assuming sufficiently
expressive function approximator (i.e. wide enough neural networks) to ensure convergence to global
mininum, we can use the fact that the bellman operators B and Bc which are defined as

B[Q](s, a) = r(s, a) + γ E
s′,a′∼π,P (s)

[Q(s′, a′)]

B[Qc](s, a) = h(s) + γ E
s′,a′∼π,P (s)

[Qc(s
′, a′)]

are γ-contraction mappings, and therefore as k approaches ∞, we can be sure that Q(s, a; ηk) →
Q(s, a; η∗) = Qπθk (s, a) and Qc(s, a;κk) → Qc(s, a;κ

∗) = Q
πθk
c (s, a). So since ηk and κk

converge to η∗ and κ∗, we prove convergence of the critics in Time scale 1.

Step 2 (convergence of the policy πθ update): Because ξ and ω updated on slower time scales than θ,
we can again use Lemma 1 of Chapter 6 of [10] and treat these parameters are fixed at ξk and ωk
respectively when updating θk. Additionally in Time scale 2, we have ||Q(s, a; ηk)−Q(s, a; η∗)|| →
0 and ||Qc(s, a;κk) −Qc(s, a;κ

∗)|| → 0 almost surely. Now the update of the policy θ using the
gradient from Equation 4 is:

θk+1 = ΓΘ[θk − ζ2(k)(∇θL(θ, ξk, ωk)|θ=θk)]
= ΓΘ[θk − ζ2(k)[γ

t[−Qη(st, at)[1− pξk(st)]

+Qc(st, at)[λω(1− pξk(st)) + pξk(st)]]∇θ log π(at|st; θ)|θ=θk ]]
= ΓΘ[θk − ζ2(k)(∇θL(θ, ξk, ωk)|θ=θk,η=η∗,κ=κ∗ + δθk+1 + δθϵ)]

where

δθk+1 =
∑
si,ai

[
d0(s0)P

πθk (si, ai|s0)γi[−Qη(si, ai)[1− pξk(si)]

+Qc(si, ai)[λω(1− pξk(si)) + pξk(si)]]∇θ log π(ai|si; θ)|θ=θk
]

−γt[−Qη(st, at)[1− pξk(st)] +Qc(st, at)[λω(1− pξk(st)) + pξk(st)]]

·∇θ log π(at|st; θ)|θ=θk

and

δθϵ =
∑
si,ai

d0(s0)P
πθk (si, ai|s0)

[
−γi[−Q(si, ai; ηk)[1− pξk(si)] +Qc(si, ai;κk)[λω(1− pξk(si)) + pξk(si)]]

·∇θ log π(ai|si; θ)|θ=θk
+γi[−Qπθk (si, ai)[1− pξk(si)] +Q

πθk
c (si, ai)[λω(1− pξk(si)) + pξk(si)]]

·∇θ log π(ai|si; θ)|θ=θk
]
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Lemma 1: We can first demonstrate that δθk+1 is square integrable. In particular,

E[||δθk+1||2|Fθ,k]

≤ 2||∇θ log π(a|s; θ)|θ=θk1π(a|s;θk)>0||2∞ ·
(
||Q(s, a; ηk)||2∞ · ||1− pξk(s)||2∞

+ ||Qc(s, a;κk)||2∞ ·
[
||λω||2∞ · ||1− pξk(s)||2∞ + ||pξk(s)||2∞

])
≤ 2

||∇θπ(a|s; θ)|θ=θk ||2∞
min{π(a|s; θk)|π(a|s; θk) > 0}

·
(
||Q(s, a; ηk)||2∞ · ||1− pξk(s)||2∞

+ ||Qc(s, a;κk)||2∞ ·
[
||λω||2∞ · ||1− pξk(s)||2∞ + ||pξk(s)||2∞

])
Note that Fθ,k = σ(θm, δθm,m ≤ k) is the filtration for θk generated by different independent
trajectories [8]. Also note that the indicator function is used because the expectation of ||δθk+1||2
is taken with respect to Pπθk and Pπθk (s, a|s0) = 0 if π(a|s; θk) = 0. From the Assumptions on
Lipschitz continuity and Finite MDPs reward and costs, we can bound the values of the functions and
the gradients of functions. Specifically

||∇θπ(a|s; θ)|θ=θk ||2∞ ≤ K1(1 + ||θk||2∞),

||Q(s, a; ηk)||2∞ ≤ Rmax

1− γ
,

||Qh(s, a;κk)||2∞ ≤ Hmax

1− γ
,

||λω||2∞ ≤ λmax,

||1− pξk(s)||2∞ ≤ 1,

||pξk(s)||2∞ ≤ 1

where K1 is a Lipschitz constant. Furthermore, note that because we are sampling, π(a|s; θk) will
take on only a finite number of values, so its nonzero values will be bounded away from zero. Thus
we can say

1

min{π(a|s; θk)|π(a|s; θk) > 0}
≤ K2

for some large enough K2. Thus using the bounds from these conditions, we can demonstrate

E[||δθk+1||2|Fθ,k] ≤ 2 ·K1(1 + ||θk||2∞) ·K2(
Rmax

1− γ
· 1 + Hmax

1− γ
· (λmax · 1 + 1)) <∞

Therefore δθk+1 is square integrable.

Lemma 2: Secondly, we can demonstrate δθϵ → 0.

δθϵ =
∑
si,ai

d0(s0)P
πθk (si, ai|s0)

[
γi
[
(Q(si, ai; ηk)−Qπθk (si))[1− pξk(si)]

+ (−Qc(si, ai;κk) +Q
πθk
c (si, ai))[λω(1− pξk(si)) + pξk(si)]

]
∇θ log π(ai|si; θ)|θ=θk

]
≤

∑
si,ai

d0(s0)P
πθk (si, ai|s0)

[
γi
[
(Q(si, ai; ηk)−Q(si, ai; η

∗))[1− pξk(si)]

+ (−Qc(si, ai;κk) +Qc(si, ai;κ
∗))[λω(1− pξk(si)) + pξk(si)]

]
∇θ log π(ai|si; θ)|θ=θk

]
≤

∑
si,ai

d0(s0)P
πθk (si, ai|s0)

[
γi
[
||Q(si, ai; ηk)−Q(si, ai; η

∗)||[1− pξk(si)]

+ || −Qc(si, ai;κk) +Qc(si, ai;κ
∗)||[λω(1− pξk(si)) + pξk(si)]

]
∇θ log π(ai|si; θ)|θ=θk

]
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And because we have ||Q(s, a; ηk) − Q(s, a; η∗)|| → 0 and ||Qc(s, a;κk) − Qc(s, a;κ
∗)|| → 0

almost surely, we can therefore say δθϵ → 0.

Lemma 3: Finally, since ∇̂θJπ(θ)|θ=θk is a sample of ∇θL(θ, ξk, ωk)|θ=θk based on the history of
sampled trajectories, we conclude that E[δθk+1|Fθ,k] = 0.

From the 3 above lemmas, the policy θ update is a stochastic approximation of a continuous system
θ(t) defined by [10]

θ̇ = ΥΘ[−∇θL(θ, ξ, ω)] (7)

in which

ΥΘ[M(θ]
∆
= lim

0<ψ→0

ΓΘ(θ + ψM(θ))− ΓΘ(θ)

ψ

or in other words the left directional derivative of ΓΘ(θ) in the direction of M(θ). Using the left
directional derivative ΥΘ[−∇θL(θ, ξ, ω)] in the gradient descent algorithm for learning the policy
πθ ensures the gradient will point in the descent direction along the boundary of Θ when the θ
update hits its boundary. Using Step 2 in Appendix A.2 from [8], we have that dL(θ, ξ, ω)/dt =
−∇θL(θ, ξ, ω)

T ·ΥΘ[−∇θL(θ, ξ, ω)] ≤ 0 and the value is non-zero if ||ΥΘ[−∇θL(θ, ξ, ω)]|| ≠ 0.
Now consider the continuous system θ(t). For some fixed ξ and ω, define a Lyapunov function

Lξ,ω(θ) = L(θ, ξ, ω)− L(θ∗, ξ, ω)

where θ∗ is a local minimum point. Then there exists a ball centered at θ∗ with a radius ρ such that
∀θ ∈ Bθ∗(ρ) = {θ|||θ−θ∗|| ≤ ρ}, Lξ,ω(θ) is a locally positive definite function, that is Lξ,ω(θ) ≥ 0.
Using Proposition 1.1.1 from [54], we can show that ΥΘ[−∇θL(θ, ξ, ω)]|θ=θ∗ = 0 meaning θ∗ is
a stationary point. Since dL(θ, ξ, ω)/dt ≤ 0, through Lyapunov theory for asymptotically stable
systems presented in Chapter 4 of [55], we can use the above arguments to demonstrate that with
any initial conditions of θ(0) ∈ Bθ∗(ρ), the continuous state trajectory of θ(t) converges to θ∗.
Particularly, L(θ∗, ξ, ω) ≤ L(θ(t), ξ, ω) ≤ L(θ(0), ξ, ω) for all t > 0.

Using these aforementioned properties, as well as the facts that 1) ∇θL(θ, ξ, ω) is a Lipschitz
function (using Proposition 17 from [8]), 2) the step-sizes of Assumption on steps sizes, 3) δθk+1 is
a square integrable Martingale difference sequence and δθϵ is a vanishing error almost surely, and
4) θk ∈ Θ,∀k implying that supk ||θk|| <∞ almost surely, we can invoke Theorem 2 of chapter 6
in [10] to demonstrate the sequence {θk}, θk ∈ Θ converges almost surely to the solution of the ODE
defined by Equation 7, which additionally converges almost surely to the local minimum θ∗ ∈ Θ.

Step 3 (convergence of REF pξ updates): Since ω is updated on a slower time scale that ξ, we can
again treat ω as a fixed parameter at ωk when updating ξ. Furthermore, in Time scale 3, we know that
the policy has converged to a local minimum, particularly ||θk − θ∗(ξk, ωk)|| = 0. Now the bellman
operator for REF is defined by

Bp[p](s) = max{1s∈Sv
, γ E

s′∼π,P (s)
[p(s′)]}.

We demonstrate this is a γ contraction mapping as follows:

|Bp[p](s)− Bp[p̂](s)|
= |max{1s∈Sv

, γ E
s′∼π,P (s)

[p(s′)]} −max{1s∈Sv
, γ E

s′∼π,P (s)
[p̂(s′)]}|

≤ |γ E
s′∼π,P (s)

[p(s′)]− γ E
s′∼π,P (s)

[p̂(s′)]|

= γ| E
s′∼π,P (s)

[p(s′)− p̂(s′)]|

≤ γ sup
s

|p(s)− p̂(s)| = γ||p− p̂||∞

So we can say that p(s; ξk) will converge to p(s; ξ∗) as k → ∞ under the same assumptions of
the Finite MDP and function approximator expressiveness in Step 1. Therefore, πθk will also
converge to π⋄ = πθ∗(ξ∗,ωk) as k → ∞. And because πθ is the sampling policy used to compute p,
p(s; ξ∗) = pπθ∗(ξ∗,ωk)(s; ξ∗) = p⋄(s).
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Notice that π⋄ is a locally minimum optimal policy for the following optimization (recall λω is treated
as constant in this timescale):

min
π

E
s∼d0

E
a∼π(·|s)

[
−Qπ(s, a) · [1− p⋄(s)] +Qπc (s, a) · [(1− p⋄(s))λω + p⋄(s)]

]
and therefore also locally minimum optimal policy for optimization:

min
π

E
s∼d0

E
a∼π(·|s)

[
−Qπ(s, a) +Qπc (s, a) · [λω +

p⋄(s)

(1− p⋄(s))
]

]
, if p⋄(s) > 0

E
s∼d0

min
π

E
a∼π(·|s)

[
Qπc (s, a)

]
, if p⋄(s) = 0

Since p⋄(s)
(1−p⋄(s)) ≥ 0, and the Q functions are always nonnegative, we can know that π⋄ is at least

as safe as (i.e., its expected cumulative cost is at most that of) a locally optimal policy for the
optimization:

min
π

E
s∼d0

E
a∼π(·|s)

[
−Qπ(s, a) +Qπc (s, a)λω

]
(8)

As λω approaches λmax, which in turn approaches ∞, the local minimum optimal policies of
Equation 8 approach those of the optimization π△ = argminπ Es∼d0 Ea∼π(·|s)Qπc (s, a)λω =
argminπ Es∼d0 Ea∼π(·|s)Qπc (s, a). Therefore, the feasible set of the REF p⋄ will approach that of
the REF pπ

△
.

Step 4 (convergence of lagrange multiplier λω update): Since λω is on the slowest time scale, we
have that ||θk−θ∗(ω)|| = 0, ||ξk− ξ∗(ω)|| = 0, and ||Qc(s, a;κk)−Q

πθk
c (s, a)|| = 0 almost surely.

Furthermore, due to the continuity of ∇ωL(θ, ξ, ω), we have that ||∇ωL(θ, ξ, ω)|θ=θk,ξ=ξk,ω=ωk
−

∇ωL(θ, ξ, ω)|θ=θ∗(ωk),ξ=ξ∗(ωk),ω=ωk
|| = 0 almost surely. The update of the multiplier using the

gradient for Equation is:
ωk+1 = ΓΩ[ωk + ζ4(k)(∇ωL(θ, ξ, ω)|θ=θk,ξ=ξk,ω=ωk

)]

= ΓΩ[ωk + ζ4(k)(Qc(st, at;κk)[1− p(st; ξk)]∇ωλω|ω=ωk
)]

= ΓΩ[ωk + ζ4(k)(∇ωL(θ, ξ, ω)|θ=θ∗(ωk),ξ=ξ∗(ωk),ω=ωk
+ δωk+1)]

where
δωk+1 = −∇ωL(θ, ξ, ω)|θ=θ∗(ωk),ξ=ξ∗(ωk),ω=ωk

+Qc(st, at;κk)[1− p(st; ξk)]∇ωλω|ω=ωk

= −
∑
si,ai

d0(s0)P
πθk (si, ai|s0)[Qπθ∗

c (si, ai)[1− pξ∗(si)]∇ωλω|ω=ωk
]

+Qc(st, at;κk)[1− p(st; ξk)]∇ωλω|ω=ωk

= −
∑
si,ai

d0(s0)P
πθk (si, ai|s0)[Qπθ∗

c (si, ai)[1− pξ∗(si)]∇ωλω|ω=ωk
]

+ [Qc(st, at;κk)[1− p(st; ξk)]−Q
πθk
c (st, at)[1− p(st; ξk)]+

Q
πθk
c (st, at)[1− p(st; ξk)]−Q

πθk
c (st, at)[1− p⋄(st)]+

Q
πθk
c (st, at)[1− p⋄(st)]]∇ωλω|ω=ωk

= −
∑
si,ai

d0(s0)P
πθk (si, ai|s0)[Qπθ∗

c (si, ai)[1− pξ∗(si)]∇ωλω|ω=ωk
]

+ [(Qc(st, at;κk)−Q
πθk
c (st, at))[1− p(st; ξk)]+

Q
πθk
c (st, at)[p

⋄(st)− p(st; ξk)]+

Q
πθk
c (st, at)[1− p⋄(st)]]∇ωλω|ω=ωk

]

Now, just as in the θ update convergence, we can demonstrate the following lemmas:

Lemma 4: δωk+1 is square integrable since

E[||δωk+1||2|Fω,k] ≤ 2 · Hmax

1− γ
· 1 ·K3(1 + ||ωk||2∞) <∞
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for some large Lipschitz constant K3. Note that Fω,k = σ(ωm, δωm,m ≤ k) is the filtration for ωk
generated by different independent trajectories [8].

Lemma 5: Because ||Qc(st, at;κk) − Q
πθk
c (st, at)||∞ → 0 and ||p⋄(st) − p(st; ξk)||∞ → 0 and

Q
πθk
c (st, at)[1− pξ∗(st)]∇ωλω|ω=ωk

is a sample of Qπθ∗
c (si, ai)[1− pξ∗(si)]∇ωλω|ω=ωk

, we con-
clude that E[δωk+1|Fω,k] = 0 almost surely.

Thus, the lagrange multiplier ω update is a stochastic approximation of a continuous system ω(t)
defined by [10]

ω̇ = ΥΩ[−∇ωL(θ, ξ, ω)|θ=θ∗(ω),ξ=ξ∗(ω)] (9)

with Martingale difference error of δωk and where ΥΩ is the left direction deriva-
tive defined similar to that in Time scale 2 of the convergence of θ update. Us-
ing Step 2 in Appendix A.2 from [8], we have that dL(θ∗(ω), ξ∗(ω), ω)/dt =

∇ωL(θ, ξ, ω)|θ=θ∗(ω),ξ=ξ∗(ω)
T · ΥΩ[∇ΩL(θ, ξ, ω)|θ=θ∗(ω),ξ=ξ∗(ω)] ≥ 0 and the value is non-zero

if ||ΥΩ[∇ωL(θ, ξ, ω)|θ=θ∗(ω),ξ=ξ∗(ω)]|| ≠ 0.

For a local maximum point ω∗, define a Lyapunov function as

L(ω) = L(θ∗(ω), ξ∗(ω), ω∗)− L(θ∗(ω), ξ∗(ω), ω)

Then there exists a ball centered at ω∗ with a radius ρ′ such that ∀ω ∈ Bω∗(ρ′) = {ω|||ω −
ω∗|| ≤ ρ′}, L(ω) is a locally positive definite function, that is L(ω) ≥ 0. Also, dL(ω(t))/dt =
−dL(θ∗(ω), ξ∗(ω), ω)/dt ≤ 0 and is equal only when ΥΩ[∇ωL(θ, ξ, ω)|θ=θ∗(ω),ξ=ξ∗(ω)] = 0, so
therefore ω∗ is a stationary point. By leveraging Lyapunov theory for asymptotically stable systems
presented in Chapter 4 of [55] we can demonstrate that for any initial conditions of ω ∈ Bω∗(ρ′), the
continuous state trajectory of ω(t) converges to the locally maximum point ω∗.

Using these aforementioned properties, as well as the facts that 1) ∇ωL(θ
∗(ω), ξ∗(ω), ω) is a Lips-

chitz function, 2) the step-sizes of Assumption on steps sizes, 3) {ωk+1} is a stochastic approximation
of ω(t) with a Martingale difference error, and 4) convex and compact properties in projections used,
we can use Theorem 2 of chapter 6 in [10] to demonstrate the sequence {ωk} converges almost surely
to a locally maximum point ω∗ almost surely, that is L(θ∗(ω), ξ∗(ω), ω∗) ≥ L(θ∗(ω), ξ∗(ω), ω).

From Time scales 2 and 3 we have that L(θ∗(ω), ξ∗(ω), ω) ≤ L(θ, ξ, ω) while from Time
scale 4 we have that L(θ∗(ω), ξ∗(ω), ω∗) ≥ L(θ∗(ω), ξ∗(ω), ω). Thus, L(θ∗(ω), ξ∗(ω), ω) ≤
L(θ∗(ω), ξ∗(ω), ω∗) ≤ L(θ, ξ, ω∗). Therefore, (θ∗, ξ∗, ω∗) is a local saddle point of (θ, ξ, ω). In-
voking the saddle point theorem of Proposition 5.1.6 in [54], we can conclude that π(·|·; θ∗) is a
locally optimal policy for our proposed optimization formulation.

C.4.4 Remark on Bounding Lagrange Multiplier

We can say our algorithm learns an REF that is closer to an optimally safe policy’s REF as we take
λmax → ∞. Nonetheless, we want to put a bound on the λmax. This λmax must be large enough
so that choosing a policy that can reduce the expected cost returns by some non-zero amount is
prioritized over increasing the reward returns. So any change in the reward critic terms must be less
than any change in the cost critic term. If H∆ is the minimum non-zero difference between any two
cost values, and Pmin is the minimum sampled non-zero likelihood of reaching a particular state and
a point in the sample trajectory, then we can bound the maximum change in the reward returns and
the maximum change on the weighted cost returns:

∆ E
s∼d0

[V (s)] ≤ Rmax

1− γ

γT ·H∆ · Pmin · (λ+
ϕ(s)

(1− ϕ(s))
) ≤ ∆ E

s∼d0
[Vc(s) · (λ+

ϕ(s)

(1− ϕ(s))
)]
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So we can find the bound for λmax:

∆ E
s∼d0

[V (s) · (1− ϕ(s))] < ∆ E
s∼d0

[Vc(s) · (λ · (1− ϕ(s)) + ϕ(s))]

∆ E
s∼d0

[V (s)] < ∆ E
s∼d0

[Vc(s) · (λ+
ϕ(s)

(1− ϕ(s))
)]

Rmax

1− γ
< γT ·H∆ · Pmin · (λ+

ϕ(s)

(1− ϕ(s))
)

Rmax

(1− γ) · γT ·H∆ · Pmin
< λ+

ϕ(s)

(1− ϕ(s))

Rmax

(1− γ) · γT ·H∆ · Pmin
− ϕ(s)

(1− ϕ(s))
< λ

The second line holds since we are simply rearranging the comparative weightages of the reward
and cost returns. Now − ϕ(s)

(1−ϕ(s)) ≤ 0 (recall that if ϕ(s) = 1, then λ is irrelevant in the lagrangian

optimization). Thus, if λ > Rmax

(1−γ)·γT ·H∆·Pmin
then minimizing the cost returns is prioritized over

maximizing reward returns.

D Complete Experiment Details and Analysis

D.1 Baselines

We compare our algorithm RESPO with 7 other safety RL baselines, which can be divided to CMDP
class and hard constraints class, and unconstrained Vanilla PPO for reference.

CMDP Approaches

Proximal Policy Optimization-Lagrangian. PPOLag is a primal-dual method using Proximal Policy
Optimization [33] based off of the implementation found in [7]. The lagrange multiplier is a scalar
learnable parameter.

Constraint-Rectified Policy Optimization. CRPO [35] is a primal approach that switches between
optimizing for rewards and minimizing constraint violations depending on whether the constraints
are violated.

Penalized Proximal Policy Optimization. P3O [32] is another primal approach based on applying the
technique of clipping the surrogate objectives found in PPO [33] to CMDPs.

Projection-Based Constrained Policy Optimization. PCPO [3] is a trust-region approach that takes
a step in policy parameter space toward optimizing for reward and then projects this policy to the
constraint set satisfying the CMDP expected cost constraints.

Hard Constraints Approaches

Reachability Constrained Reinforcement Learning. RCRL [27] is a primal-dual approach where the
constraint is on the reachability value function and the lagrange multiplier is represented by a neural
network parameterized by state.

Control Barrier Function. This CBF-based approach is inspired by the various energy-based certifi-
cation approaches [56, 17, 18, 11, 57, 58]. This is implemented as a primal-dual approach where the
control barrier-based constraint ḣ(s) + ν · h(s) ≤ 0 is to ensure stabilization toward the safe set.

Feasible Actor Critic. FAC [9] is another primal-dual approach similar to RCRL (i.e. it uses the
NN representation of the lagrange multiplier parameterized by state) except that the constraint in
FAC is based on the cumulative discount sum of costs in lieu of the reachability value function. It is
important to note that FAC is originally meant for the CMDP framework (with some positive cost
threshold), but we adapt it to hard constraints by making the cost threshold χ = 0. We do this to make
a better comparison between an algorithm that relies on using the lagrange multiplier represented as a
NN to learn feasibility with our approach of using our proposed REF function to learn the feasibility
likelihood – both approaches enforce a hard constraint on the cumulative discounted costs.
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D.2 Benchmarks

We compare the algorithms on a diverse suite of environments including those from the Safety Gym,
PyBullet, and MuJoCo suites and a multi-constraint, multi-drone environment.

Safety Gym. In Safety Gym [30], we examine CarGoal and PointButton which have 72D and 76D
observation spaces that include lidar, accelerometer, gyro, magnetometer, velocimeter, joint angles,
and joint velocities sensors. In the CarGoal environment, the car agent has a 72D observation space
and is supposed to reach a goal region while avoiding both hazardous spaces and contact with fragile
objects. In PointButton, the point agent has a 76D observation space and must press a series of
specified goal buttons while avoiding 1) quickly moving objects, 2) hazardous spaces, 3) hitting the
wrong buttons.

Safety PyBullet. In Safety PyBullet [50], we evaluate in BallRun and DroneCircle environments.
In the BallRun environment, the ball agent must move as fast as possible under the constraint of a
speed limit, and it must be within some boundaries. In DroneCircle, the agent is based on the AscTec
Hummingbird quadrotor and is rewarded for moving clockwise in a circle of a fixed radius with the
constraint of remaining within a safety zone demarcated by two boundaries. Note that we use this
environment to evaluate our algorithm and the baselines in a stochastic setting. We ensure the MDP
is stochastic by adding a 5% gaussian noise to the transitions per step.

Safety MuJoCo. Furthermore, we compare the algorithms in with complex dynamics in MuJoCo.
Specifically, we look at HalfCheetah and Reacher safety problems. In Safety HalfCheetah, the
agent must move as quickly as possible in the forward direction without moving left of x = −3.
However, unlike the standard HalfCheetah environment, the reward is based on the absolute value of
the distance traveled. In this paradigm, it is easier for the agent to learn to quickly run backward rather
than forward without any directional constraints. In the Safety Reacher environment, the robotic arm
must reach a certain point while avoiding an unsafe region.

Multi-Drone environment. We also compare in an environment with multiple hard and soft constraints.
The environment requires controlling two drones to pass through a tunnel one at a time while
respecting certain distance requirements. The reward is given for quickly reaching the goal positions.
The two hard constraints involve (H1) ensuring neither drone collides into the wall and (H2) the
distance between the two drones is more than 0.5 to ensure they do not collide. The soft constraint is
that the two drones are within 0.8 of each other to ensure real-world communication. It is preferable
to prioritize hard constraint H1 over hard constraint H2, since colliding with the wall may have more
serious consequences to the drones rather than violations of an overly precautious distance constraint
– as we will show, our algorithm RESPO can perform this prioritization in its optimization.
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D.3 Hyperparameters/Other Details

Hyperparameters for Safe RL Algorithms Values
On-policy parameters
Network Architecture MLP

Units per Hidden Layer 256
Numbers of Hidden Layers 2

Hidden Layer Activation Function tanh
Actor/Critic Output Layer Activation Function linear

Lagrange multiplier Output Layer Activation Function softplus
Optimizer Adam

Discount factor γ 0.99
GAE lambda parameter 0.97

Clip Ratio 0.2
Target KL divergence 0.1
Total Env Interactions 9e6

Reward/Cost Critic Learning rate Linear Decay 1e−3 → 0
Actor Learning rate Linear Decay 3e−4 → 0

Lagrange Multiplier Learning rate Linear Decay 5e−5 → 0
Number Seeds per algorithm per experiment 5

RESPO specific parameters
REF Output Layer Activation Function sigmoid

REF Learning rate 1e−4 → 0
CBF specific parameters

ν 0.2
RCRL/FAC Note

Lagrange Multiplier 2-Layer, MLP
(other algs just use scalar parameter)

Table 2: Hyperparameter Settings Details

To ensure a fair comparison, the primal-dual based approaches and unconstrained Vanilla PPO were
implemented based off of the same code base [59]. The other three approaches were implemented
based on [60] with the similar corresponding hyperparameters as the primal-dual approaches. We
run our experiments on Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz with 6 cores. For Safety Gym,
PyBullet, MuJoCo, and the multi-drone environments, each algorithm, per seed, per environment,
takes ∼ 4 hours to train.
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D.4 Double Integrator
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Figure 8: Comparison of the trajectories in the Double Integrator Environment of an agent controlled by policies
obtained by RCRL (in red) and our proposed algorithm RESPO (in green) when starting from the infeasible set
(but still within the safe set). Notice how our approach actively enters the feasible set (blue region), while RCRL
fails to do so. The level set demarcating the feasible/infeasible set boundary is in black. The safe set (i.e. the set
of states that have no violations) is the region within the dashed purple square. The infeasible set is in yellow.

We use the Double Integrator environment as a motivating example to demonstrate how performing
constrained optimization using solely reachability-based value functions as in RCRL can produce
nonoptimal behavior when the agent is outside the feasiblity set. Double Integrator has a 2 dimensional
observation space [x1, x2], 1 dimension action space a ∈ [−0.5, 0.5], system dynamics is ṡ = [x2, a],
and constraint as ||s||∞ ≤ 5. Particularly, we make the cost as 1 if ||s||∞ > 5, and 0 otherwise to
emphasize the importance of capturing the frequency of violation during training.

We train an RCRL controller and RESPO controller in this environment, and the results are visualized
in Figure 8. The color scheme indicates the learned reachability value across the state space while the
black line demarcates the border of the zero level set. We present the behavior of the trajectories of
RCRL and RESPO. Because the RCRL optimizes for reachability value function when outside the
feasible set, it simply minimizes the maximum violation, which as can be seen does not result in the
agent reentering the feasible set since it is uniformly equal to or near 1 in the infeasible set. This is
since it permits many violations of magnitude same or less than that of the maximum violation. On
the other hand, RESPO optimizes for cumulative damage by considering total sum of costs, thereby
re-entering the feasible set.
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D.5 Safety Gym Environments
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Figure 9: Closer look at comparison of algorithms in Safety Gym CarGoal and PointButton Environments.

RESPO: In the CarGoal Environment, our approach achieves the best performance among the safe
RL algorithms while being within the acceptable range of cost violations. It is important to note
that our algorithm has no access to information on the cost threshold. In PointButton, RESPO
achieves very high reward performance among the safety baselines while maintaining among the
lowest violations.

PPOLag: In both Safety Gym environments, PPOLag maintains relatively high performance, albeit
less than our approach. Nonetheless, it always converges to the cost threshold amount of violations
for the respective environments.

RCRL: RCRL has either high reward and high violations or low reward and low violations. It learns
a very conservative behavior in CarGoal environment where the violations go down but the reward
performance can also be seen to be sacrificed during training. For PointButton, RCRL achieves
slightly higher reward performance but has over 3× the number of violations as RESPO.

FAC: Using a NN to represent the lagrange multiplier in order to capture the feasible sets seems to
produce very conservative behavior that sacrifices performance. In both CarGoal and PointButton
the reward performance and cost violations are very low. This can be explained because the average
observed lagrange multiplier across the states quickly grows, even becoming 9× that of scalar
learnable lagrange multiplier in RESPO.

CBF: The CBF approach has low reward performance in both the Safety Gym benchmarks and its
cost violations are quite high.

CRPO, P3O, & PCPO: These CMDP-based primal approaches have mediocre reward performance
but, with the exception of CRPO, achieve violations within the cost threshold. CRPO, however, has
high cost violations in both CarGoal and PointButton.

Vanilla PPO: This unconstrained algorithm consistently has high rewards and high costs, so maxi-
mizing rewards does not improve costs in these environments.
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D.6 Safety PyBullet Environments
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Figure 10: Closer look at comparison of algorithms in Safety PyBullet DroneCircle and BallRun Environments.

RESPO: In the both BallRun and DroneCircle, our approach achieves the highest or among the
highest reward performance compared to the other safety baselines. Furthermore, RESPO converges
to almost 0 constraint violations for both environments.

PPOLag: In DroneCircle, PPOLag has the best reward performance. Although its costs violations
are around the cost threshold, it is much higher than RESPO. On the other hand, in BallRun, PPOLag
has very low reward performance.

RCRL: We again see RCRL take on behavior with extremes – it has low reward and cost violations
in Drone Circle and has high reward and cost violations in BallRun. Constraining the maximum
violation with the reachability value function as RCRL does seems to provide poor safety in an
environment with non-tangible constraints (i.e. a speed limit in BallRun).

FAC: While in BallRun, we see FAC have the same low reward and low violations behavior,
DroneCircle shows an instance where FAC can achieve decently high rewards while maintaining low
violations.

CBF: In DroneCircle, the CBF approach has low rewards and relatively low violations; in BallRun,
it has a bit higher rewards compared to all the low performance algorithms with very low violations.

CRPO, P3O, & PCPO: These CMDP-based primal approaches have mediocre reward performance
in DroneCircle and very low performance in BallRun. Nonetheless they achieve violations within the
cost threshold.

Vanilla PPO: This unconstrained algorithm consistently has high rewards and high costs (sometimes
out of the scope of the plots), so maximizing rewards does not improve costs in these environments.
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D.7 Safety MuJoCo Environments
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Figure 11: Closer look at comparison of algorithms in Safety MuJoCo Reacher and HalfCheetah Environments.

Note on HalfCheetah: The rewards for HalfCheetah are based on the absolute distance traveled in
each step. Without the cost metric to constrain backward travel, it is easy to learn to run backward, as
is the behavior learned in unconstrained PPO.

RESPO: Our approach achieves the highest reward performance among the safety baselines in
HalfCheetah and decent reward performance in Reacher. Interestingly, RESPO also has 0 constraint
violations in HalfCheetah and the second lowest constraint violations in Reacher.

PPOLag: The performance in Reacher for PPOLag is similar as in most of the previous environments:
decently high rewrad, cost near the threshold. However, for HalfCheetah, interesting PPOLag learns
to maintain the violations well below the cost threshold.

RCRL: We see yet again RCRL has high reward follow by very high constraint violations.

FAC: This approach has decent reward performance in Reacher and low reward performance in
HalfCheetah. However, interestingly, FAC has high cost violations though below the cost threshold.

CBF: In Reacher, the CBF approach has conservative behavior with both low reward and low cost
violations. But in HalfCheetah, it has very low reward performance and very high cost violations (not
seen in the plot since its an order of magnitude larger than the visible range).

CRPO, P3O, & PCPO: These CMDP-based primal approaches have decent reward performance in
Reacher while maintaining violations within cost threshold. In HalfCheetah, however, they achieve
low performance and low cost violations.

Vanilla PPO: This unconstrained algorithm consistently has high rewards and high costs (sometimes
out of the scope of the plots), so maximizing rewards does not improve costs in these environments.
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D.8 Hard and Soft Constraints
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Figure 12: Closer look at comparison of RESPO with baselines trajectories in hard & soft Constraints multi-
Drone control. Starting at gold circles, drones must enter the tunnel one at a time and reach green star while
avoiding the wall and satisfying distance constraints. The colors indicate time along the trajectories.

RESPO: We manage multiple hard and soft Constraints by extending our framework to optimize the
following Lagrangian:

min
π

max
λ

(
L(π, λ) = E

s∼d0

[[
[−V π(s) + λsc · (V πsc(s)− χ) + λhc2 · V πhc2(s)] · (1− phc2(s))

+V πhc2(s) · phc2(s) + λhc1 · V πhc1(s)
]
· (1− phc1(s)) + V πhc1(s) · phc1(s)

])
(10)

The subscripts hc1 indicates the first hard constraint (i.e. wall avoidance), hc2 indicates the second
hard constraint (i.e. drone cannot be too close), and sc indicates soft constraint (i.e. drone cannot be
too far) – they are all based on discounted sum of costs. Recall V π(s) is reward returns. We color
coded the corresponding parts of the optimization. Notice how we learn a different REF for each hard
constraint. Also notice that the feasible set of the first hard constraint phc1 is placed in a manner so as
to ensure prioritization of the first hard constraint. As can be seen in the top left plot of Figure 12, our
approach successfully reaches the goals and avoids the walls. To enable mobility of the top drone
to pass through the tunnel with wall collision, the second hard constraint is violated temporarily in
the blue to cyan time period. Furthermore to allow the bottom drone to pass through the tunnel, the
soft constraint is violated during the green to orange time period. Nonetheless, RESPO successfully
manages the constraints and reward performance via Equation 10 optimization.

PPOLag, RCRL, FAC: The optimization formulation for these approaches is as follows:

min
π

max
λ

(
L(π, λ) = −V π(s) + λsc · (V πsc(s)− χ) + λhc2 · V πhc2(s) + λhc1 · V πhc1(s)

)
(11)

For PPOLag and FAC, all the constraint value functions are discount sum of cost. For RCRL,
V πsc(s) is based on discount sum of costs but V πhc1(s) and V πhc2(s) are based on the reachability value
function. Furthermore, in PPOLag, all the lagrange multipliers are learnable scalar parameters. In
FAC and RCRL all the lagrange multipliers are NN representations parameterized by state. These
formulations are not able to provide a framework for the prioritization of the constraint satisfaction –
all the constraints are treated the same, weighted only on the learned lagrange multipliers. As can be
seen in the other three images in Figure 12, the algorithms cannot manage the multiple constraints,
and invariably collide with the wall.
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D.9 Ablation – Learning Rate

0 2 4 6 8
1e6

10

0

10

20

CarGoal Cumulative Rewards
RESPO w/ lr*0.01
RESPO w/ lr*0.1
RESPO
RESPO w/ lr*10
RESPO w/ lr*100

0 2 4 6 8
1e6

0

20

40

60

80
CarGoal Cumulative Costs

0 2 4 6 8
1e6

5

0

5

10 PointButton Cumulative Rewards

0 2 4 6 8
1e6

0

20

40

60

80

100
PointButton Cumulative Costs

Figure 13: Closer look at Ablation study on the learning rate of REF.

We performance Ablation study of varying the learning rate of the REF function to verify the
importance of the multi-timescale assumption. Particular, we compare our algorithm’s approach of
placing the learning rate of the REF between the policy and lagrange multiplier with making the
REF’s learning rate in various orders of magnitudes slower and faster. Our approach with the learning
rate satisfying the multi-timescale assumption experimentally appears to still have the best balance
of reward optimization and constraint satisfaction. Particularly when we change the learning rate
by one order of magnitude (i.e. ×10 or ×0.1), we see the reward performance reduce by around
half and while the cost violations generally don’t change. But when we change the learning rates by
another order of magnitude, there reward performance effective becomes zero and the cost violations
generally reduce further. By increasing the learning rate of the REF function, we can no longer
guarantee that the REF convergences to near the optimally safe REF value. Instead, it becomes the
REF of the policy in question. So instead, the optimization can learn to “hack" the REF function to
obtain a policy (and lagrange multiplier) that is not a local optimal for the optimization formulation.
On the other hand, when the learning rate is too slow, the lagrange multiplier quickly explodes,
thereby creating a very conservative solution – notice the similarity of the orange line in Figure 13
with learning rate 0.01 times that of standard in training behavior with PPOLag where χ = 0 in the
ablation study on optimization.
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D.10 Ablation – Optimization
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Figure 14: Closer look at Ablation study on hard constraints optimization frameworks.
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In this ablation study, we examine the various optimization frameworks within the context of hard
constraints. Particularly, we compare our RESPO framework with RCRL and CMDP. However,
for RCRL we implement using our REF function method while still keeping the reachability value
function. For CMDP, we make the cost threshold χ = 0. These comparisons answer important
questions about our design choices – specifically is it sufficient to simply to just use the REF
component or to just learn the cost returns alone? From this ablation study, we propose that though
we have provided theoretical support for adding each of these design components individually, in
practice they are both required together in our algorithm. In RCRL implemented with our REF, we
generally see decently high rewards but the cost violations are always very large. This highlights the
problems of the reachability function again – if the agent starts or ever wanders into the infeasible set,
there is no guarantee of (re)entrance into the feasible set. So the agent can indefinitely remain in the
infeasible set, thereby incurring potentially an unlimited number of constraint violations. In PPOLag
with χ = 0, both the reward performance and constraint violations are very low. By using such
hard constraints versions of these purely learning-based methods, even when using the cumulative
discounted cost rather than reachability value function, the reward performance is very low because
the lagrange multiplier becomes too large quickly and thereby overshadows the reward returns in
the optimization. Ultimately, both the REF approach and the usage of the cumulative discounted
costs are important components of our algorithm RESPO that encourage a good balance between the
reward performance and safety constraint satisfaction in such stochastic settings.
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