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A Additional Related Work29

A.1 Programming with Natural Language30

Due to the low learning requirements, programming with natural language has been seen an attractive31

programming mode since 1960s [2, 5, 6, 8, 11, 13, 15]. The relevant domains encompass semantic32

parsing [9, 23], language grounding [20, 21], and so on. Among these works, Wang et al. [22] is the33

most similar one which let users build complex voxel structures by defining alternative, more natural34

syntax, and increasingly complex natural concepts, starting from a core programming language.35

However, they are restricted by the pre-defined natural language specifications and domain-specific36

languages while this paper focuses on unconstrained natural language and general-purpose languages37

like Python. Furthermore, it should be noted that the interactive processes involved in these studies38

rely on manually annotated data, whereas our system operates in a truly debugging fashion for39

programs composed of natural language.40

A.2 LLMs as an Interpreter41

LLMs have been embedded in programs as an interpreter, due to their capabilities of common sense42

question answering and simple natural language reasoning [16, 17, 25]. For example, Cheng et al. [4]43

1



leverages LLMs to generate programs for questions like "Is Mexico North America?" with Codex API44

calls like f(ıNorthAmerica?ȷ,Mexico) and then answer it by executing and prompting. Dohan45

et al. [7] composes LLMs into a probabilistic programming framework, which allows control flow46

and dynamic structure. Different from these works, we focus on leveraging LLMs to implement47

natural language modules into executable programs. We take the utilization of taking LLMs as parts48

of our generated programs as future work.49

B Detailed Limitations and Future Work50

Though our system has shown excellent performance revealed by the large-scale human study, there51

are still three main limitations to our current system. The first limitation is the response of LLMs.52

ANPL gives users a detailed implementation of each hole in Python and asks them to further debug.53

This requires users to read Python code when editing ANPL programs. LLMs may employ certain54

APIs that users may not be familiar with, resulting in the implementation of a function that deviates55

from the users’ intended approach. Consequently, comprehending Python code becomes more56

challenging. Additionally, when LLMs automatically break down a function into sub-functions,57

identifying the specific sub-function containing a bug becomes difficult for users. To enhance the58

user-friendliness of ANPL and alleviate the burden on users in terms of their code capabilities,59

how can ANPL provides concise summaries of each function in easily understandable natural60

language should be studied. These summaries would enable users to identify any misinterpretations61

or incorrect implementations based on the corresponding descriptions, allowing them to modify their62

natural language descriptions accordingly without the need for complete redrafting.63

Another limitation is the absence of comprehensive natural language libraries. In the context of64

code generation using LLMs, the quality of the prompt and the accompanying description assumes65

paramount importance. However, the creation of effective natural language descriptions necessitates66

considerable expertise in prompt engineering. In order to mitigate this issue, a natural language67

library should be established. The natural language content within this library is derived from two68

primary sources: library learning methods [24] and user contributions, and users can share and reuse69

natural language and corresponding implementations made by each other.70

So far, ANPL has been limited to generating Python code for solving ARC problems through71

communication with users. However, as mentioned earlier, some ARC tasks cannot be fully addressed72

with Python programs alone and require the use of neural modules like object detection. Therefore,73

we need to integrate ANPL with neural modules, similar to works including Cheng et al. [4], Shen74

et al. [18], Surís et al. [19]. This integration would further enhance the capabilities of the ANPL75

compiler and expand the range of tasks that ANPL can handle. Additionally, the application scope76

should not be confined solely to the ARC dataset but should extend to multiple domains, such as chip77

design, program writing, and robot control. However, due to the unique characteristics of ARC itself78

and the limited availability of human resources, it is well-suited for conducting user-programming79

experiments and human study reports. Thus, we have chosen ARC as the platform for conducting our80

experiments and presenting our findings.81

C Broader Impacts82

On one hand, ANPL sheds light on the human-computer interaction paradigm by making the83

interaction more stable and reliable through low-cost predefined programming conventions. On84

the other hand, ANPL has the potential to promote the development of the programming field and85

broaden the scope of programming applications. For example, ANPL enables users to program and86

debug with natural language which can significantly lower the programming barrier. Furthermore,87

the proposed DARC dataset reveals how humans systematically decompose complex problems into88

simpler ones when faced with logical problems similar to ARC. This could provide further insights to89

cognitive science and foster advancements in related fields.90

However, ANPL also raises safety challenges by producing code that is unaligned with user intent91

and can be misused. We refer readers to the broader impacts and hazard analysis discussed compre-92

hensively by Chen et al. [3] as the basic component of the ANPL compiler is the LLM. Note that,93

compared to Chen et al. [3], a more significant concern with the usage of ANPL is its lower barrier to94

entry, allowing individuals with limited programming experience to generate code. This may result in95
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code generated by ANPL lacking the scrutiny and maintenance of experienced personnel, making96

it more susceptible to misuse and thereby leading to more severe issues related to code security.97

Besides, since these users may have limited exposure to open-source communities such as GitHub,98

models trained on corresponding data may face greater challenges in user alignment.99

D ANPL Details100

D.1 An ANPL Code Example101

Figure 2 is an ANPL code example for the task shown in Figure 1. In this example, users first decom-102

pose the task into "Change the input into four new arrays based on the central dividing line in103

↪→ the x and y directions" and "Find an array that doesn't have just one color". Then, users can104

either define a hole by its name like seperate_input with corresponding parameters, or they can just105

code a piece of natural language description like "Find an array that doesn't have just one color"106

and set the sketch by specifying its input-output variables.107

Figure 1: Task 64 of ARC.

def seperate_input(input):
"Change the input into four new arrays based on the central dividing line in the x and y directions"

def main(input):
inputs = seperate_input(input)
output = "Find an array that doesn't have just one color"(inputs)
return output

Figure 2: An ANPL code example for task 64.

D.2 Syntactic Sugar108

Recursion. ANPL employs a hole within the function’s own body to implement recursion, following109

the thought of Y Combinator. A function can indirectly invoke itself by passing its own reference to a110

hole within its own body.111

Figure 3 is an example demonstrating the use of hole-driven recursion with the Flood Fill algorithm.112

In this example, the floodfill function is passed as an argument to the hole "apply floodfill to113

↪→ adjacent pixels: above, below, right, and left". The semantics of the hole suggests that floodfill114

will be applied to the adjacent pixels, establishing an indirect recursion.115
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def floodfill (grid, i, j):
if "is outside the valid grid area"(grid, i, j) and grid[i, j] != black:

return grid
else:

return "apply floodfill to adjacent pixels: above, below, right, and left"(grid, i, j, floodfill)

Figure 3: Recursion in ANPL.

D.3 Implementation Details116

ANPL interacts with the LLM via the prompt shown in Figure 4. In the prompt, the code section will117

be substituted with all the executed codes up to that point, and the hole section will be replaced with118

the designated function name of the hole along with the natural language description given by the119

user. During the initial user input and function editing, it goes through a sequence of five attempts,120

starting with a temperature parameter of 0 and incrementing it by 0.1 with each try until it succeeds.121

In the resynthesis stage, ANPL requests the underlying LLM to produce 10 potential completions122

for each prompt. The text that ChatGPT generates will be subject to a maximum token constraint of123

1024.124

# system prompt
As a pythonGPT, your task is to complete the unimplemented functions in the given python code,
which are referred to as "holes" and are labeled as _hole0, _hole1, _hole2, and so on.
Your implementation should align with the code and documentation using Python.

# user prompt
```python
{code}
```
The function needs to be given a new name. Markdown format should be used to return it.
```python
{hole}
```

Figure 4: Prompts used in ANPL.

E Human Studies125

E.1 Questionnaire126

We conducted a survey to investigate users’ programming abilities, LLM usage experiences, evalua-127

tions of system A and system B, as well as the perceived importance of various functionalities within128

system A. The detailed questions are as follows:129

1. How would you rate your programming skills?130

1: Non-programmer131

2: Beginner, struggles with solving LeetCode medium-level problems132

3: Familiar with a programming language, understands basic data structures and algorithms,133

able to solve some LeetCode medium-level problems134

4: Proficient in common data structures and algorithms, capable of solving many LeetCode135

medium-level problems136

5: Skilled in data structures and algorithms, capable of solving LeetCode hard-level problems137

2. How familiar are you with the Python language?138

1: No exposure to Python.139

2: Have used Python, familiar with basic syntax, but rarely used in daily activities.140

3: Occasionally use Python to write simple scripts, not familiar with Python libraries such141
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as NumPy and PyTorch.142

4: Proficient in Python features, frequently use Python, and familiar with some libraries.143

5: Mastery in Python and proficiency in using common libraries.144

3. Have you used language models to generate code before?145

4. How do you perceive the difficulty of ARC questions? (1: Very easy - 5: Very hard)146

5. Do you find System A (ANPL) useful? (1: Very dissatisfied - 5: Very satisfied)147

6. Do you find System B (natural language) useful? (1: Very dissatisfied - 5: Very satisfied)148

7. How important do you consider the Trace feature of System A? (1: Very unimportant - 5:149

Very important)150

8. How important do you consider the Edit feature of System A? (1: Very unimportant - 5:151

Very important)152

9. How important do you consider the Resynthesis feature of System A? (1: Very unimportant153

- 5: Very important)154

The results are shown in Figure 5. Participants in our human study are primary Python programmers155

and half of them are not familiar with code generation with LLMs. The average score of system156

A is 4.05, significantly greater than system B which scores 2.58. System A achieves not only a157

higher solving rate but also a better user experience than System B. Besides, most users find tracing158

and editing useful while resynthesizing less important, which shows the limitation of LLM code159

generation and indicates the importance of introducing user interaction in solving complex tasks like160

ARC.161

E.2 Tutorials162

The task requires you to solve ARC (Abstraction and Reasoning Corpus) tasks, each composed of163

several input-output pairs. These pairs maintain a uniform pattern and are structured as color grids164

with ten distinct colors: black, blue, red, green, yellow, grey, pink, orange, teal, and maroon.165

The goal is to deduce patterns from the input-output pairs and communicate your solution to the166

system. In this experiment, you will interact with two systems: System A and System B. System A167

accepts ANPL inputs, whereas System B functions on full natural language. Both systems aim to168

generate Python code that transforms the input into the expected output.169

Each task requires working with both systems in a specific order provided in the task assignment. To170

begin, find the ARC task solution independently (solve the task in your mind, i.e. not with Python).171

With a solution in hand, activate the system, which will initiate a timer.172

Your target is to instruct the systems to generate accurate Python code based on your solution. We’ll173

be evaluating the program strictly on the test input and output, yet it’s essential for you to confirm174

that your program is capable of successfully handling all the training input and output. Once the175

correct code is produced, the system will automatically deactivate. Perseverance is crucial, but if176

the system fails to generate the accurate code within 30 minutes, you’re permitted to terminate the177

process. If a task proves overly challenging at any point, it’s acceptable to stop prematurely.178

System A is comprised of three primary operations. The trace operation allows for a function name to179

be entered, which triggers the program to run on a test input and displays all the input and output data180

of the selected function. The edit operation allows for direct changes to a function’s body, including181

alterations to the sketch and hole. This operation has four sub-operations:182

• Splitting the original function into multiple holes linked by the sketch.183

• Turning the original code into a hole and attempting code generation.184

• Changing the natural language description associated with the hole.185

• Modifying the sketch while maintaining the generated hole.186

The resynthesis operation requires the user to provide correct input and output examples. The system187

then generates numerous functions and tests in which one meets these examples. The provided188

examples are kept for future use, and multiple sets of examples can be provided by the user.189
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Figure 5: Questionnaire Analysis. The average score of System A is 4.05, and System B is 2.58.

System B incorporates two operations. The chat operation allows the user to interact with the system190

using natural language, leading to code generation or modification based on these descriptions. The191

remove history operation allows the user to select and delete some historical conversation data.192

E.3 User Interface193

The user interface consists of 4 components: tracing operation, editing operation, resynthesizing194

operation, and a grid editor.195

Tracing. The tracing operation has three panels, namely function selection, visual IO, and textual196

IO, see Figure 6. The function selection section allows users to choose from a list of available197

functions eligible for tracing. After selecting a function, IOs are shown to users within the visual IO198

and the textual IO panels, where the visual IO panel visualizes the IO into grids and the textual IO199

panel prints the IO as NumPy arrays.200

Editing. The editing operation has three panels: function selection, function editing, and code201

synthesis, see Figure 7. The function selection panel serves the same purpose as the one in the tracing202

operation. After selection, users can modify ANPL code in the function editing panel and submit it to203
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Function Select

Visual IO

Textual IO

Figure 6: The tracing operation. Users can check the execution trace between high-level holes.

the LLM for code generation. They can then view the code generation progress in the code synthesis204

panel.

Function Select

Function Edit

Code Synthesis

Figure 7: The editing operation. Users can edit the existing ANPL program through further decompo-
sition or just modifying the code or natural language.

205

Resynthesizing. The resynthesis operation has three panels: function selection, IO entering, and206

code synthesis, see Figure 8. The function selection panel and the code synthesis panel serve the207

same purpose as the ones mentioned above. The IO entering panel enables users to constrain the208

programs generated by the LLM by providing IOs. Specifically, LLM generates a set of 10 candidate209

Python programs, and subsequently selects the program(s) that satisfy the given IO constraints as the210

compiled program.211

Grid editor. In order to facilitate the transition for users between visual IO (i.e. colored grids) and212

textual IO (i.e. NumPy array), we have implemented a grid editor (Figure 9). This editor consists of213

the following elements:214

1. Resize: Allows users to specify the dimensions of the grid.215

2. Generate: Generate the corresponding grids by inputting a Numpy array.216

3. Reset: Reinitializes the current grid to its initial state.217

4. Copy: Converts the current grid into a Numpy array and copies it to the clipboard.218
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、

Function Select

Code Synthesis

IO Enter

Figure 8: The resynthesis operation. Users can provide IO constraints and ask the compiler to
resynthesize the program.

5. Graphical editing area: Provides three operations, including edit, select, and flood fill, along219

with 10 different colors, for direct editing of the colored grids.220

Resize Grid

Generate grid 

Convert the current 
matrix to text and copy 

it to the clipboard

Graphical editing area

Edit mode

Color selection

Figure 9: The grid editor.

E.4 Suggested Prompts for System B221

Users can input natural language without restrictions in system B. To enhance the user experience,222

we offer them a suggested prompt template shown in Figure 10.223

E.5 Task Assignment224

Table 1 provides an assignment for ARC tasks. Each number corresponds to a question; a number225

highlighted in blue instructs use of System A before System B, whereas an orange number, conversely,226

denotes System B to be operated before System A.227
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You are a skilled Python programmer.
Your task is to write Python code to transform the input grid into the output grid.
In the input grid, you should see ...
To make the output grid, you should ...
Return your Python code in Markdown format.

```python
import numpy as np
black, blue, red, green, yellow, grey, pink, orange, teal, maroon = range(10)
def main(input_grid: np.ndarray) -> np.ndarray:
```

Figure 10: prompt for System B.

F Additional Experiments228

F.1 Datasets229

Why not evaluate ANPL on common code generation benchmarks. We evaluate ANPL on ARC230

instead of common code generation benchmarks [1, 3, 12, 14] according to the following two reasons:231

(1) Most code generation benchmarks are too easy for users. Though competitive programming232

benchmarks exist [10], they demand high data structure and algorithm skills. Instead, ARC is a233

general artificial intelligence benchmark. Solving tasks directly in ARC is easy for humans, but234

expressing the solution using code is the main challenge. The results we obtained on this benchmark235

better reflect the impact of our system on programming, i.e., taking an algorithm and expressing it in236

Python. (2) Solutions for common code generation benchmarks can be found on the Internet, which237

runs the risk of data contamination. On the other hand, it is unlikely programmatic (python) solutions238

for ARC exist in any online corpus, making tasks in ARC unique enough for LLMs and participants239

of human study.240

F.2 Results241

The importance of the control structures and holes. In order to analyze the significance of the242

programming model, we conduct an analysis on the proportion of control structures (e.g., for, while,243

if) and holes in programs that were correct in both system A and system B, and the proportion of244

programs that were correct in system A but incorrect in system B. In the programs that were correct245

in both systems, 47.8% utilized control flow, maintaining an average of 2.47 holes. On the other246

hand, a remarkable 97.4% of programs that were correctly functioning in system A but failed in247

system B incorporated control flow, and had an increased average of 3.37 holes. Results show that248

the introduction of control structure and hole has a significant positive impact on the user’s ability to249

accomplish highly complex tasks.250
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Figure 11: The distribution of time and the number of interactions. Trace Calculated (TC) means the
trace mode is considered into interactions.
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User id Tasks
0 4 34 36 48 50 116 128 222 230 309 384
1 6 74 101 102 104 139 141 150 152 218 235 247 257 279 289 312 332

340 343 356 368 370 374 382
2 21 55 61 65 69 86 92 164 165 182 183 186 227 234 258 261 262 271

307 310 344 378 379 386
3 0 8 22 75 95 108 125 140 157 192 198 202 205 228 237 245 255 265

280 316 339 346 363 365 371 381
4 24 28 37 68 71 80 87 98 114 124 166 170 200 206 208 241 272 297 298

301 302 303 315 317 319 327 336 360 361 389 398
5 16 25 30 56 62 70 111 120 130 142 151 173 180 185 212 215 226 275

295 347 364 388 393 397
6 53 63 105 135 137 159 176 224 244 260 278 300 320 341 359
7 10 12 14 35 43 44 90 97 144 161 162 175 199 219 231 236 263 287 299

323 331 345
8 91 94 112 126 129 168 181 190 191 193 248 264 285 306 387 391
9 18 26 41 77 79 122 127 131 160 223 252 277 292 321 338
10 1 2 9 38 42 54 81 88 96 99 115 136 145 147 153 246 283 308 322 355

380 383 385
11 13 23 31 32 49 57 118 132 138 149 211 225 240 251 267 270 286 304

313 314 318 353 396
12 15 58 64 83 117 119 155 156 167 189 210 214 221 233 242 254 256

276 281 293 296 305 325 354 367 369 376 392 395
13 5 27 33 51 82 123 134 172 177 178 201 216 229 232 243 282 288 311

330 358 377 399
14 20 40 47 73 171 187 195 217 220 328 337 351
15 11 29 46 60 93 106 107 110 113 163 184 209 213 239 274 326 333 342

372
16 39 59 67 76 78 103 158 179 188 204 207 253 266 294 334 335 348 350

357 362 366 390 394
17 3 17 109 133 197 259
18 7 19 45 52 66 72 84 85 89 100 121 143 146 148 154 169 174 194 196

203 238 249 250 268 269 273 284 290 291 324 329 349 352 373 375
Table 1: Task assignment. Blue: use System A and then System B. Orange: use System B and then
System A

The distribution of time and the number of interactions. Furthermore, we conduct an analysis of251

the time consumption and the number of interactions involved in solved problems. That is, we filter252

the problems that can be solved by both systems A and B, collect the time and number of interactions253

spent by users, and then construct the two distributions shown in Figure 11. Results show that, for254

these tasks, system A exhibits faster completion times and fewer interaction counts (without TC)255

compared to system B, with slight advantages in terms of time and interaction. Nevertheless, this256

advantage is not highly pronounced, which could be attributed to the relatively low difficulty level of257

the problems that both system A and system B are capable of solving.258

A
B

✓✓ ✓✗ ✗✗ Total

✓✓ 177 5 45 227
✓✗ 10 32 31 73
✗✗ 7 3 90 100

Total 194 40 166 400
Table 2: Generalization on ARC. ✓✓means the compiled Python program passes both train cases
and test cases. ✓✗means the Python program passes the test cases but fails train cases. ✗✗means the
program fails in all the cases.
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Generalization ability. We further examine the accuracy of programs from System A and System259

B using all IO cases, see Table 2. System A and system B have similar generalization abilities based260

on the observation that for tasks passed on test cases by both two systems (224), the number of tasks261

that system A failed to generalize on all IO cases is 10/224 and the number of system B is 5/224, and262

these two numbers have no significant differences. Thus, we conclude that some programs failed to263

generalize to all IO cases because of the difficulty of the corresponding tasks and the designing of the264

underlying algorithm, which is independent of the usage of systems.265

G DARC Details266

Figure 12: The header of CSV files.

def main(input):
centers = "traverse the input which is a 2-dim numpy array, return positions which satisfies that

there is no grey in its 3*3 neighbor"(input)↪→
scores = "for each position in the centers, count the yellow position in its 3*3 neighbor"(input,

centers)↪→
center_yellow, center_black = "return the center with the max scores and other centers"(centers,

scores)↪→
output = "for each position in the position list, make its 3*3 neighbor yellow"(input, center_yellow)
output = "for each position in the position list, make its 3*3 neighbor black"(output, center_black)
return output

Figure 13: An ANPL program in DARC.
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Figure 14: The trace of the given ANPL program. (2) Centers are framed by red rectangles and we
mark scores inside each rectangle.
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import numpy as np
from typing import *
(black, blue, red, green, yellow, grey, pink, orange, teal, maroon) = range(10)

def get_max_score_center(centers: List[Tuple[int, int]], scores: np.ndarray) -> Tuple[List[Tuple[int,
int]], List[Tuple[int, int]]]:↪→
max_score = np.max(scores)
max_centers = [centers[i] for i in range(len(centers)) if scores[i] == max_score]
other_centers = [centers[i] for i in range(len(centers)) if scores[i] < max_score]
return (max_centers, other_centers)

def find_positions_without_grey_neighbors(input: np.ndarray) -> List[Tuple[int, int]]:
positions = []
for i in range(1, input.shape[0]-1):

for j in range(1, input.shape[1]-1):
if np.all(input[i-1:i+2, j-1:j+2] != grey):

positions.append((i, j))
return positions

def make_neighbors_yellow(input: np.ndarray, positions: List[Tuple[int, int]]) -> np.ndarray:
for position in positions:

input[position[0]-1:position[0]+2, position[1]-1:position[1]+2] = yellow
return input

def make_neighbors_black(input: np.ndarray, positions: List[Tuple[int, int]]) -> np.ndarray:
for position in positions:

input[position[0] - 1:position[0] + 2, position[1] - 1:position[1] + 2] = black
return input

def count_yellow_neighbors(input: np.ndarray, centers: List[Tuple[int, int]]) -> np.ndarray:
scores = np.zeros(len(centers))
for i, position in enumerate(centers):

scores[i] = np.sum(input[position[0] - 1:position[0] + 2, position[1] - 1:position[1] + 2] ==
yellow)↪→

return scores

def main(input):
centers = find_positions_without_grey_neighbors(input)
scores = count_yellow_neighbors(input, centers)
center_yellow, center_black = get_max_score_center(centers, scores)
output = make_neighbors_yellow(input, center_yellow)
output = make_neighbors_black(output, center_black)
return output

Figure 15: The compiled Python program in DARC.

The Recursive Decomposition Dataset of ARC Tasks (DARC) is an assemblage of interaction records267

associated with 400 ARC tasks. These records involve the intercommunication between users, the268

system, and GPT-3.5-turbo. Figure 12 presents the header of each CSV file. For each interaction, data269

concerning the role, action, content, and timestamp are completely collected and stored. The result is270

the entire user interaction history with our systems can be perfectly replayed at a later time. However,271

the response from LLMs will be different for the following reasons: (1) we used temperature = 1.0,272

which will cause different tokens to be sampled (2) the GPT-3.5-turbo implementation might be273

changed, which is outside of our control.274
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300 of the 400 ARC tasks were effectively decomposed and converted into Python using the ANPL,275

averaging 2.7 holes per task – these tasks solves the test-input, but some may fail to generalize to276

other input-outputs, see Appendix F.2. The DARC dataset not only houses the final solutions to the277

ARC tasks but also encapsulates the diverse problem-solving approaches employed by different users.278

Crucially, it is a dataset detailing how humans decompose abstract procedural tasks into simpler279

sub-tasks, and ground each task into a program (e.g. Python) in collaboration with an LLM. We280

give an example of an ANPL program, the compiled Python program and its corresponding trace in281

Figure 13, Figure 15 and Figure 14.282

The DARC dataset provides a valuable window into the system’s task completion processes. By283

documenting ANPL decompositions, Python code, and detailed interaction histories, it permits us to284

gain insights into the practical application of Language Learning Models (LLMs) for programming.285

We hope that this dataset will be useful for others seeking to understand and refine similar systems.286

H Computational Resources287

For our human study, LLM APIs were called 4304 times for System A (10.76 per task), and 1923288

times for System B (4.81 per task). The distributions of the number of LLM API calls are presented289

in Figure 16. Since System A generates 10 candidates when resynthesizing, the number of API calls290

on several tasks exceeds forty times. For most tasks, the number of interactions in the two systems is291

less than twenty.292

Figure 16: LLM API calls of Systems A and B.

I Case Study293

A case of user interaction. Figure 17 serves as an illustrative instance. Initially, the user enters the294

ANPL code into the system, which consequently produces a function for every hole and automatically295

verifies the code’s validity. Upon encountering a programming error, the system issues a warning to296

the user. In response, the user examines the input and output of the find_smallest_unit function and297

discovers it doesn’t align with expectations. The user then adjusts the natural language description,298

leading to ANPL successfully meeting the test input and output samples following a code regeneration.299

Eventually, the system presents the complete code to the user, as shown in the Figure 18.300

Difficult Tasks. From the overall 400 tasks under consideration, several tasks pose a significant301

challenge to users because it is hard or impossible to find the solving logic. We present one case in302

Figure 19.303

User-Specific Solution. The potential solution of the ARC problem is heavily reliant on the user’s304

algorithm design, which has an impact on the difficulty of programming. For instance, in the ARC305

task illustrated in Figure 20, some users might attempt to identify the color pattern across each row or306

column. Others might note the black square’s location, then rotate the grid 90 degrees and select the307
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Input                      Output (2, 2)  Expected 

Generate
find_smallest_unit

extend_unit
change_blue_to_red

Type Error

Trace 
find_smallest_unit 

Edit find_smallest_unit
there is a small grid repeating from top to down, 

find and return it 
ANPL Correct

Figure 17: User Interaction with System A and Subsequent Code Generation Process

grid in the same position as the answer. The first approach is quite challenging, often too demanding308

to be completed within a time constraint. Conversely, the latter method leverages the rotational309

symmetry of the grid, enabling a direct translation into the correct Python code, eliminating the need310

for debugging.311
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import numpy as np
from typing import *
(black, blue, red, green, yellow, grey, pink, orange, teal, maroon) = range(10)

def find_smallest_unit(input_grid: np.ndarray) -> np.ndarray:
"""
Given a 2D numpy array, this function finds the smallest repeating unit in the grid and returns it.
"""
(width, height) = input_grid.shape
for i in range(1, width+1):

if width % i == 0:
for j in range(1, height+1):

if height % j == 0:
unit = input_grid[:i, :j]
if np.all(np.tile(unit, (width//i, height//j))[:width, :height] == input_grid):

return unit
return input_grid

def extend_unit(unit: np.ndarray) -> np.ndarray:
"""
Given a 2D numpy array, this function extends the array to a 9x3 grid.
"""
(width, height) = unit.shape
if width >= 9 and height >= 3:

return unit[:9, :3]
else:

extended_unit = np.zeros((9, 3), dtype=unit.dtype)
for i in range(9):

for j in range(3):
extended_unit[i, j] = unit[i % width, j % height]

return extended_unit

def change_blue_to_red(unit: np.ndarray) -> np.ndarray:
"""
Given a 2D numpy array, this function changes all blue pixels to red.
"""
unit[unit == blue] = red
return unit

def main(input_grid: np.ndarray):
unit = find_smallest_unit(input_grid)
out = extend_unit(unit)
out = change_blue_to_red(out)
return out

Figure 18: The code synthesized by ANPL.
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Figure 19: Unsolvable ARC task for the user.

Figure 20: Example of an ARC task demonstrating differing user strategies.
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