
A Distributed Frequency Estimation583

In this section, we consider the frequency estimation problem for federated analytics. Recall that584

for the frequency estimation task, each client’s private data xi 2 {0, 1}d satisfies kxik0 = 1, and the585

goal is to estimate ⇡ := 1
n

P
i xi by minimizing the `2 (or `1, `1) error E

h
k⇡ � ⇡̂(Y n)k22

i
subject586

to communication and (", �)-DP constraints. When the context is clear, we sometimes use xi to587

denote, by abuse of notation, the index of the item, i.e., xi 2 [d].588

To fully make use of the `0 structure of the problem, a standard technique is applying a Hadamard589

transform to convert the `0 geometry to an `1 one and then leveraging the recursive structure of590

Hadamard matrices to efficiently compress local messages.591

Specifically, for a given b-bit constraint, we partition each local item xi into 2b�1 chunks
x(1)
i , ..., x(2b�1)

i 2 {0, 1}B , where B := d/2b�1 and x(j)
i = xi[B · (j � 1) : B · j � 1]. Note

that since xi is one-hot, only one chunk of x(j)
i is non-zero. Then, client i performs the following

Hadamard transform for each chunk: y(`)i = HB · x(`)
i , where HB is defined recursively as follows:

H2n =
1p
2


H2n�1 , H2n�1

H2n�1 , �H2n�1

�
, and H0 = [1] .

Each client then generates a sampling vector Zij
i.i.d.⇠ Bern

�
1
B

�
via shared randomness that592

is also known by the server, and commits (y(1)i (j), ..., y(2
b�1)

i (j)) as its local report. Since593

(y(1)i (j), ..., y(2
b�1)

i (j)) only contains a single non-zero entry that can be 1p
B

or � 1p
B

, the local594

report can be represented in b bits (b� 1 bits for the location of the non-zero entry and 1 bit for its595

sign).596

From the local reports, the server can compute an unbiased estimator by summing them together597

(with proper normalization) and performing an inverse Hadamard transform. Moreover, with an598

adequate injection of Gaussian noise, the frequency estimator satisfies (", �)-DP.599

The idea has been used in previous literature under local DP [19, 6, 3, 32], but in order to obtain the600

order-optimal trade-off under central-DP, one has to combine Hadamard transform with a random601

subsampling step and incorporate the privacy amplification due to random compression in the602

analysis. In Algorithm 3, we provide a summary of the resultant scheme which builds on the603

Recursive Hadamard Response (RHR) mechanism from [32], which was originally designed for604

communication-efficient frequency estimation under local DP.605

In the following theorem, we control the `1 error of Algorithm 3.606

Theorem A.1. Let ⇡̂(xn) be the output of Algorithm 3. Then it holds that for all j 2 [d],607

E [|⇡(j)� ⇡̂(j)|] 
rP

i {xi2[B·(j�1):B·j�1]}

n2
+

�2

B
, (7)

and the `22 and `1 errors are bounded by608

E
h
k⇡ � ⇡̂k22

i
 B

n
+

d�2

B
, and (8)

609

E [k⇡ � ⇡̂k1] 
r

dB

n
+

d2�2

B
. (9)

Theorem A.2. For any ", � > 0, Algorithm 3 is (", �)-DP, if

�2 � O

✓
B2 log(B/�)

n2
+

B(log(1/�) + ") log(B/�)

n2"2

◆
.

By combining Theorem A.1 and Theorem A.2, we conclude that Algorithm 3 achieves (", �)-DP610

with `22 error611

O

✓
B

n
+

dB log(B/�)

n2
+

d(log(1/�) + ") log(B/�)

n2"2

◆

= O

✓
d

n2b
+

d2 log(d/�)

n22b
+

d(log(1/�) + ") log(d/�)

n2"2

◆
.

16

Algorithm 3 Subsampled Recursive Hadamard Response

Input: user data x1, ..., xn 2 {0, 1}d (where d is a power of two), DP parameters (", �), commu-
nication budget b.
Output: frequency estimate ⇡̂

Set B := d/2b�1 and partition each one-hot vector xi into 2b�1 chunks: x(1)
i , ..., x(2b�1)

i 2
{0, 1}B .
for user i 2 [n] do

Compute the Hadamard transform of each chunk: y(`)i = HB · x(`)
i .

for coordinate j 2 [B] do
Draw Zi,j

i.i.d.⇠ Bern
�
1
B

�

if Zi,j = 1 then
Send (y(1)i (j), ..., y(2

b�1)
i (j)) to the server.

end if
end for

end for
Server computes the average: 8` 2 [2b�1], j 2 [B],

ŷ(`)(j) :=
B

n

X

i:Zij=1

y(`)i (j) +N(0,�2),

where �2 is computed according to Theorem A.2.
Server performs the inverse Hadamard transform ⇡̂(`) = HB · ŷ(`), for ` = 1, ..., B.
Return: ⇡̂ =

⇣�
⇡̂(1)

�|
, ...,

⇣
⇡̂(2b�1)

⌘|⌘
.

Notice that when n = ⌦̃(d), the error can be simplified to

O

✓
d

n2b
+

d(log(1/�) + ") log(d/�)

n2"2

◆
,

which matches the order-optimal estimation error (up to a log d factor) subject to a b-bit constraint612

[54, 3, 2] and (", �)-DP constraint [15, 7].613

17

B Proof of Theorem 4.1614

It is trivial to see that the average communication cost is d · � = b bits. To compute the `22 estimation615

error, observe that616

E
h
kµ̂xn � µxnk22

i

=
dX

j=1

E

2

4

1

n�

X

i

xi(j) · Zi,j +N(0,�2)� 1

n

X

i

xi(j)

!2
3

5

=
dX

j=1

1

n2
E

2

4

1

�

X

i

xi(j) · Zi,j �
X

i

xi(j)

!2
3

5+ d�2

=
dX

j=1

1

n2
E

2

4

1

�

X

i

xi(j) · Zi,j

!2
3

5� 1

n2

X

i

xi(j)

!2

+ d�2

=
dX

j=1

1

n2
E

2

4 1

�2

X

i

x2
i (j) · Z2

i,j +
1

�2

X

i 6=i0

xi(j)xi0(j)Zi,jZi0,j

3

5� 1

n2

X

i

xi(j)

!2

+ d�2

=
dX

j=1

1

n2

0

@ 1

�

X

i

x2
i (j) +

X

i 6=i0

xi(j)xi0(j)

1

A� 1

n2

X

i

xi(j)

!2

+ d�2

=
dX

j=1

1

n2

✓
1

�
� 1

◆ X

i

x2
i (j)

!
+ d�2

 dc2

n�
+ d�2,

which yields the inequality of (2). Next, we analyze the privacy of Algorithm 1. We first the following617

two lemmas for subsampling and the Gaussian mechanism:618

Lemma B.1 ([65, 81]). If M is (", �)-DP, then M0 that applies M � PoissonSample satisfies619

("0, �0)-DP with "0 = log (1 + � (e" � 1)) and �0 = ��.620

Lemma B.2 ([15]). For any ", � 2 (0, 1), the Gaussian output perturbation mechanism with621

�2 := �22 log(1.25/�)
"2 satisfies (", �)-DP, where � is the `2 sensitivity of the target function.622

Now, we use the above two lemmas to analyze the per-coordinate privacy leakage of Algorithm 1. For
simplicity, we analyze the sum of xi(j)’s instead (and normalized it in the last step). Let Sj(xn) :=Pn

i=1(xi(j)), then clearly the sensitivity of Sj(xn) is c, so Lemma B.2 implies Sj(xn) +N(0,�2
1)

satisfies ("1, �1)-DP if we set �2
1 = 2c2 log(1.25/�1)

"21
(assuming "1 < 1). Next, if applying subsampling

before computing the sum, i.e.,

Sj � PoissonSample�(x
n) :=

nX

i=1

xi(j)Zi,j ,

where Zi,j
i.i.d.⇠ Bern(1/�) as defined in Algorithm 1, then by Lemma B.1,

Sj � PoissonSample�(x
n) +N(0,�2

1)

satisfies ("2, �2)-DP with "2 := log (1 + � (e"1 � 1)) = C1�"1 (since we assume ✏1 < 1) and623

�2 := ��1. Equivalently, we have624 (
"1 = C̃1

1
� "2

�1 = 1
� �2.

(10)

Now, since we have established the per-coordinate privacy leakage, we apply the following composi-625

tion theorem to account for the total privacy budgets.626

18

Theorem B.3. For any " > 0, � 2 [0, 1] and �̃ 2 (0, 1], the class of (", �)-DP mechanisms satisfies
("̃�̃, d� + �̃)-DP under d-fold adaptive composition, for

"̃�̃ = d" (e" � 1) + "
q

2d log(1/�̃).

According Theorem B.3, Algorithm 1 satisfies (", �)-DP for627

" = d"2(e
"2 � 1) + "2

q
2d log(1/�̃), (11)

and � = d�2 + �̃ (where �̃ is a free parameter that we can optimize).628

Consequently, for a pre-specified (total) privacy budget (", �), we set parameters as follows. Let
�̃ = �

2 and �1 = 1
� �2 = 1

2d� �. Let "2  1 so that e"2 � 1  2"2 holds. Then (11) implies Algorithm 1
is

" = 2d"22 + "2

q
2d log(1/�̃) � d"2(e

"2 � 1) + "2

q
2d log(1/�̃).

Solving the above quadratic (in-)equality for "2, it yields that

"2 = min

1,
�
p
2d log(2/�) +

p
2d log(2/�) + 8"d

4d

!
= O

min

1,

"p
d (log(1/�) + ")

!!
.

Consequently, we set "1 = C̃1
� "2 = O

✓
min

✓
1, "

�
p

d(log(1/�)+")

◆◆
(note that we require "1 = O(1)629

so that (10) holds).630

Plug in ("1, �1) into �2
1 , we have

�2
1 :=

2c2 log(1.25/�1)

"21
= ⌦

✓
max

✓
c2 log(d/�),

�2c2d(log(1/�) + ") log(d/�)

"2

◆◆
.

Finally, as we are interested in estimating the (subsampled) mean instead of the sum, we will
normalize the private sum by

µ̂j(x
n) =

1

n�

�
Sj � PoissonSample�(x

n) +N(0,�2
1)
�
=

1

n�
Sj�PoissonSample�(x

n)+N(0,�2),

where

�2 = O

✓
max

✓
c2 log(d/�)

n2�2
,
c2d(log(1/�) + ") log(d/�)

n2"2

◆◆
.

Plugging in �2 above and � = b/d yields the desired accuracy in Theorem 4.1. ⇤631

Since we will reuse the above result, we summarize it into the following lemma:632

Lemma B.4. Let fi : Rd⇥m 7! RD for i = 1, ..., B be n functions with sensitivity bounded by �
(where the number of inputs m can be a random variable). Then

�
f1 � PoissonSample�(x

n) +N(0,�2), ..., fB � PoissonSample�(x
n) +N(0,�2)

�

satisfies (", �)-DP, if

�2 � O

✓
max

✓
�2 log(B/�),

�2�2B(log(1/�) + ") log(B/�)

"2

◆◆
.

C Omitted details of dimension-free communication cost633

C.1 Proof of Theorem 4.4634

To prove Theorem 4.4, it suffices to prove the following `1 version:635

19

Theorem C.1. Let x1, ..., xn 2 {�c, c}d, d0 = min
⇣
nb, n2"2

(log(1/�)+") log(d/�)

⌘
, and636

�
2 = O

✓
c
2 log(1/�)
n2�2

+
c
2
d
0(log(d0/�) + ") log(d0/�)

n2"2

◆
. (12)

Then Algorithm 2 is (", �)-DP and yields an unbiased estimator on µ. In addition, the (average)637

per-client communication cost is �d0 = b bits, and the `22 estimation error is at most638

O

✓
c2d2 log

✓
d

�

◆
max

✓
1

nb
,
(log(1/�) + ")

n2"2

◆◆
. (13)

With a slight abuse of notation, we let µJ 2 Rd be such that

µJ (j) =

(
0, ifj 62 J
dµj

d0 , else.

Note that µJ is an unbiased estimate of µ if J is selected uniformly at random. Then the `22 error639

can be controlled by640

E
h
kµ� µ̂k22

i
(a)
= E

h
kµ� µJ k22

i
+ E

h
kµJ � µ̂k22

i

(b)
 E

h
kµ� µJ k22

i
+

d2

d02
O

✓
max

✓
d02c2

nb
,
d03c2 log(d/�)

n2b2
,
c2d02(log(1/�) + ") log(d/�)

n2"2

◆◆

= E
h
kµ� µJ k22

i
+O

✓
max

✓
d2c2

nb
,
d2d0c2 log(d/�)

n2b2
,
c2d2(log(1/�) + ") log(d/�)

n2"2

◆◆

(c)
 d2c2

d0
+O

✓
max

✓
d2c2

nb
,
d2d0c2 log(d/�)

n2b2
,
c2d2(log(1/�) + ") log(d/�)

n2"2

◆◆
,

where (a) holds since µJ is an unbiased estimate of µ and conditioned on J , µ̂ is an unbiased641

estimate of µJ ; (b) follows from Theorem 4.1; (c) holds due to the following fact:642

E
h
kµ� µJ k22

i

X

j2J
µJ (j)2 +

X

j2[d]

µ2
j 

d2c2

d0
+ dc2  2d2c2

d0
.

Therefore, by setting d0 = min
⇣
nb, n2"2

(log(1/�)+") log(d/�)

⌘
we ensure the first term in (c) is always643

smaller than the second term, and the second term can be simplified as follows:644

O

✓
c2d2 max

✓
1

nb
,
d0 log(d/�)

n2b2
,
(log(1/�) + ") log(d/�)

n2"2

◆◆

 O

✓
c2d2 max

✓
1

nb
,
nb log(d/�)

n2b2
,
(log(1/�) + ") log(d/�)

n2"2

◆◆

 O

✓
c2d2 log(d/�)max

✓
1

nb
,
(log(1/�) + ")

n2"2

◆◆
.

Finally, applying the same trick of Kashin’s representation, we can transform the `1 geometry to `2645

(similar to Corollary 4.3), hence proving Theorem 4.4. ⇤646

D Proof of Theorem A.1647

Let ⇡ := 1
n

P
i xi and ⇡(`) be defined in the same way as x(`)

i for ` 2 [B]. Then our goal is to bound648 ��⇡(`)(j)� ⇡̂(`)(j)
��, for all ` 2 [2b�1] and j 2 [B].649

To this end, let y(`) := HB · ⇡(`) (so it holds that ⇡(`) = 1
BHB · y(`)). Then we have650

E
h���⇡(`)(j)� ⇡̂(`)(j)

���
i (a)

r
E
h�
⇡(`)(j)� ⇡̂(`)(j)

�2i

=

vuutE
"✓

1

B
HB ·

�
y(`) � ŷ(`)

�
(j)

◆2
#
. (14)

20

Next, observe that due to the subsampling step, for all ` 2 [2b�1] and j 2 [B],

ŷ(`)(j) =
B

n

nX

i=1

h(HB)j , x
(`)
i i · Zij +N(0,�2),

where recall that Zij
i.i.d.⇠ Ber(1/B). Therefore, ŷ(`)(j) is an unbiased estimator of y(`)(j). In651

addition, since we choose Zij independently in Algorithm 3, ŷ(`)(j)’s are independent for different652

j’s, so we have653

E
⇣

ŷ(`)(j)� y(`)(j)
⌘2�

= Var
⇣
ŷ(`)(j)

⌘

= �2 +
B2

n2

nX

i=1

h(HB)j , x
(`)
i i

2Var (Zij)

 �2 +
B

n2

nX

i=1

h(HB)j , x
(`)
i i

2

= �2 +
B

n2

nX

i=1

{xi2`-th chunk}

| {z }
:=C`

, (15)

and for all j 6= j0654

E
h⇣

ŷ(`)(j)� y(`)(j)
⌘
·
⇣
ŷ(`)(j0)� y(`)(j0)

⌘i
= 0. (16)

Therefore, we continue bounding (14) as follows:655
vuutE

"✓
1

B
HB ·

�
y(`) � ŷ(`)

�
(j)

◆2
#
=

r
1

B2
E
⇥
h(HB)j ,

�
ŷ(`) � y(`)

�
i2
⇤

=

vuuut 1

B2
E

2

4

BX

k=1

(HB)jk ·
�
ŷ(`)(k)� y(`)(k)

�
!2
3

5

(a)
=

vuut 1

B2
E
"

BX

k=1

�
ŷ(`)(k)� y(`)(k)

�2
#

(b)
=

r
C`

n2
+

�2

B
(c)

r

1

n
+

�2

B
,

where (a) holds since each entry of HB takes value in {�1, 1} and by (16), (b) holds due to (15), and656

(c) holds because C`  n for all `.657

Finally, to bound the `22 error, observe that the above analysis ensures that

E
⇣

⇡(`)(j)� ⇡̂(`)(j)
⌘2�


C`(j)

n2
+

�2

B
,

where `(j) 2 [2b�1] is the index of the chuck containing j. Therefore, summing over j 2 [d], we
must have

E
���⇡(`) � ⇡̂(`)

���
2

2

�


dX

j=1

C`(j)

n2
+

d�2

B
=

B

n
+

d�2

B
,

since
X

j

C`(j) =
2b�1X

`=1

X

j02`-th chunk

nX

i=1

{i2`�th chunk} = B
2b�1X

`=1

nX

i=1

{i2`�th chunk} = B · n.

⇤658

21

E Proof of Theorem A.2659

Let fj(xn) := (⇡(1)(j), ...,⇡(2b�1)(j)), for j = 1, ..., B. Then the `2 sensitivity of fj is � = B
n . Set660

the sampling rate � = 1
B and the proof is complete by Lemma B.4. ⇤661

F Algorithm of Shuffled SQKR662

Algorithm 4 Shuffled SQKR
Input: users’ data x1, . . . , xn, local-DP parameter "0, communication parameters b0, T
Output: mean estimator µ̂
for round k 2 [T] do

for user i 2 [n] do
Sample s(i, 1), . . . , s(i, b0)

i.i.d.⇠ Unif[d]

Sample Z ⇠ Bern
⇣

e"0
e"0+2b0�1

⌘

if Z=1 then
Set Y (i, 1), . . . , Y (i, b0) xi(s(i, 1)), . . . , xi(s(i, b0))

else
Sample Y (i, 1), . . . , Y (i, b0)

i.i.d.⇠ Unif {�c, c}
end if
Send Y (i, 1), . . . , Y (i, b0) and s(i, 1), . . . , s(i, b0) to shuffler

end for
Shuffler samples a permutation ⇡ ⇠ Unif {f : [n]! [n] bijective}
for j 2 [b0] do

Shuffler sends Y (⇡(1), j), . . . , Y (⇡(n), j) and s(⇡(1), j), . . . , s(⇡(n), j) to server
end for
µ̂(k) d

nb0
e"0+2b0�1

e"0�1

Pn
i=1

Pb0
j=1 Y (⇡(i), j)es(⇡(i),j)

end for
Return µ̂ := 1

T

PT
k=1 µ̂

(k)

G Proof of Theorem 5.3663

Each round xn 7! µ̂(k) of Algorithm 4 implements the private-coin SQKR scheme of [32], achieving664

the communication cost and error as stated in Lemma 5.2.665

Lemma G.1 (SQKR [32]). For all "0 > 0, b0 > 0, the random mapping666

xi 7! Y (i, 1), . . . , Y (i, b0), s(i, 1), . . . , s(i, b0) in Algorithm 4 is ("0, 0)-LDP and has667

output that can be communicated in b0 log(d) bits, and the µ̂(k) computed from668

Y (i, 1), . . . , Y (i, b0), s(i, 1), . . . , s(i, b0) is an unbiased estimator of µ satisfying669

max
xn

E
���µ (xn)� µ̂(k) (xn)

���
2

2

�
= O

✓
c2d

nmin ("20, "0, b0)

◆
. (17)

We now characterize the error performance of Algorithm 4 for general choices of parameters that670

satisfy privacy and communication constraints.671

Proposition G.2. For all " > 0, b > 0, n > 0, with any arbitrary choice of672

�1 2
⇣
e�n/16e, 1

i
(18)

�2 2 (0, 1] , (19)

there exists a choice of parameters "0, b0, T such that Algorithm 4 is (", T �1 + �2)-DP, uses no more673

than b bits of communication, and produces µ̂ such that674

max
xn

E
h
kµ� µ̂k22

i
= O

✓
max

✓
c2d log(d)b0

nb
,
c2d log(1/�1) (log(1/�2) + ")

n2"2

◆◆
. (20)

22

Proof. For arbitrary choice of675

b0 < log

✓
n

16 log(2)

◆
, (21)

it suffices to choose676

T =

�
b

(log2(d) + 1)b0

⌫
(22)

"0 = O

min

1,

"
p
np

T log(1/�1) (log(1/�2) + ")

!!
. (23)

The fact that Algorithm 4 uses less than b bits is immediate from the choice of T .677

Applying Lemma G.1, by construction the mapping from each xi to Y (i, 1), . . . , Y (i, b0) is ("0, 0)-678

LDP. By assumption679

�1 > e�n/16e, (24)
the inequality680

1 < log

✓
n

16 log(2/�1)

◆
(25)

is satisfied. Then the choice of681

"0  1 (26)

also satisfies "0  log
⇣

n
16 log(2/�)

⌘
, so by Lemma 5.1 the mapping xn 7! µ̂(k) is ("1, �1)-DP. where682

"1 = O

"0
p
log(1/�1)p

n

!
. (27)

Since the output of Algorithm 4 is a function of
�
µ̂(1), . . . , µ̂(T)

�
, by B.3 it suffices to have683

"1 = O

min

1,

"p
T (log(1/�2) + ")

!!
(28)

for Algorithm 4 to be (", T �1 + �2)-DP. The first inequality follows from the assumption of �1 >684

e�n/16e and choice of "0 = O(1), and the second from choice of685

"0 = O

"
p
np

T log(1/�1) (log(1/�2) + ")

!
. (29)

Since "0  1  b, we have min("20, "0, b) = "20. Applying Lemma G.1,686

max
xn

E
h
kµ� µ̂k22

i
=

1

T
max
xn

E
���µ� µ̂(1)

���
2

2

�
(30)

= O

✓
d

Tn"20

◆
(31)

= O

✓
max

✓
d

Tn
,
d log(1/�1) (log(1/�2) + ")

n2"2

◆◆
. (32)

Substituting the choice of T gives the desired result.687

To show Theorem 5.3, it suffices to choose688

b0 = 1 (33)

�1 =
�

2T
(34)

�2 =
�

2
, (35)

which requires n > 16e log(2) ⇡ 30.14 due to (21), and apply the previous proposition.689

23

H Rényi-DP for Shuffled SQKR690

In this section we restate some results for RDP which are useful for privacy accounting in experiments.691

Following the proof of Corollary 4.3 in [44], applying Theorem 4.1 in the same paper yields the692

following.693

Lemma H.1. Let Mi be an independent ("0, 0)-LDP mechanism for each i 2 [n] with "0  1 and ⇡694

be a random permutation of [n]. Then for any ↵ < n
16"0 exp("0)

, the mechanism695

S : (x1, . . . , xn) 7!
�
M1

�
x⇡(1)

�
, . . . ,Mn

�
x⇡(n)

��

is ("1(↵), �)-RDP with696

"1(↵) =
log
⇣
e2↵

2�2

+ 4�mine↵"0
⌘

↵� 1
, (36)

where697

� = 8

r
e"0

n
(37)

�min = e�
n

8(e"0+1) . (38)

For small "0, the result below is useful.698

Lemma H.2 ([40]). Under the same assumptions as Lemma H.1, S is ("(↵), �)-RDP699

"1(↵) = 2↵e4"0 (e"0 � 1)2 /n. (39)

Applying Lemma G.1, by construction the mapping from each xi to y(i, 1), . . . , y(i, b0) is ("0, 0)-700

LDP. By Lemma H.1, respectively Lemma H.2, the mapping xn 7! µ̂(k) is ("1(↵),↵)-RDP where701

"1(↵) is given by (36), respectively (39). By composition, Algorithm 4 is (T"(↵),↵)-RDP.702

We can convert this bound back to (", �)-DP using Proposition 12 from [30].703

Proposition H.3. For all � > 0, Algorithm 4 is (", �)-DP where704

" = inf
↵2(1,1)

T"1(↵) +
log(1/�) + (↵� 1) log(1� 1/↵)� log(↵)

↵� 1
, (40)

where705

"1(↵) = min

0

@2↵e4"0 (e"0 � 1)2 /n,
log
⇣
e2↵

2�2

+ 4�mine↵"0
⌘

↵� 1

1

A (41)

and �, �min are given by (37), (38) respectively.706

I Additional Experiments707

Here experiments are done with the same setup as in Section 6, with local vectors Xi(j)
i.i.d.⇠708

1p
d
(2 · Ber(0.8)� 1). We set � = 10�6.709

Figure 2 illustrates separation between Algorithm 4 and LDP schemes. Algorithm 4 achieves error710

decreasing quadratically with n as guaranteed by Theorem 5.3. With only one round of shuffling,711

there is separation from the LDP scheme only when n is sufficiently large, and thus order-optimal712

error performance only occurs for large n (or equivalently small "). This problem is avoided with713

multiple rounds of shuffling.714

Figure 3 compares the performance of CSGM with and without coordinate pre-selection. In this715

regime coordinate pre-selection improves performance for all b. As predicted by Corollary 4.3 and716

Corollary 4.5, the MSE decreases with b but is effectively constant for sufficiently high b where the717

privacy term dominates. We can determine the communication cost needed for order-optimal central718

DP error performance to be the b at which the MSE is within some fixed constant factor away from719

the limiting value. We see that the communication cost increases with dimension d with the vanilla720

CSGM scheme, but a dimension-free communication cost is achieved with coordinate pre-selection.721

24

Figure 2: Comparison of MSE vs. number of clients n for LDP scheme (SQKR) and shuffled SQKR.
For shuffled SQKR, we set b0 = 1 and choose "0 using results in Section H. Communication cost is
d(log2(2000) + 1)e = 12 bits per round.

Figure 3: CSGM with and without coordinate pre-selection using d0 = 833.

25

	Introduction
	Problem Formulation
	Related Works
	Distributed Mean Estimation
	Dimension-free communication cost
	Lower bounds

	Achieving the Optimal Trade-off via Shuffling
	Experiments
	Limitations and Future Work
	Distributed Frequency Estimation
	Proof of Theorem 4.1
	Omitted details of dimension-free communication cost
	Proof of Theorem 4.4

	Proof of Theorem A.1
	Proof of Theorem A.2
	Algorithm of Shuffled SQKR
	Proof of Theorem 5.3
	Rényi-DP for Shuffled SQKR
	Additional Experiments

