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A Posterior samples facilitate calibrated/fair detection

Say that s 2 {1, 0} denotes the presence or absence of a particular pathology (e.g., brain tumor), and
say that we train a soft classifier c(·) on ground-truth images x and calibrate it such that

c(x) = Pr{s = 1|x}. (A.1)

Now say that we observe a distorted/corrupted/incomplete measurement y = M(x). We would like
to infer the probability that the pathology is present given y, i.e., compute Pr{s = 1|y}. Note that

Pr{s = 1|y} =

Z
Pr{s = 1,x|y} dx =

Z
Pr{s = 1|x,y}p(x|y) dx (A.2)

=

Z
Pr{s = 1|x}p(x|y) dx =

Z
c(x)p(x|y) dx = E{c(x)|y} (A.3)

= lim
P!1

1

P

PX

i=1

c(bxi) for bxi ⇠ i.i.d. p(x|y), (A.4)

where the last equality follows from the law of large numbers. So, given access to many independent
posterior samples {bxi}, equation (A.4) says that we can simply plug them into our calibrated classifier
c(·) and average the result to compute Pr{s = 1|y}. Conversely, if we have access to only the
posterior mean bxmmse = E{x|y}, then because

Pr{s = 1|y} = E{c(x)|y} 6= c(E{x|y}) = c(bxmmse) (A.5)

for any non-linear c(·), the plug-in probability estimate will be incorrect. In fact, there exists no point
estimate bx that gives the correct Pr{s = 1|y} for general c(·).
Although above we defined c(·) as a (soft) binary pathology classifier, the same results hold if
we define c(·) as a K-ary classifier of any protected attribute, such as race, gender, etc. This
implies that, if we have a machine-learning system that has been calibrated to classify fairly on
clean ground-truth data x, then the use of posterior samples {bxi} enables it to classify fairly on
distorted/corrupted/incomplete measurements y = M(x), whereas the use of generic point-estimates
bx does not.

B Proof of Proposition 3.1

Here we prove Proposition 3.1. To begin, for an N -pixel image, we rewrite (8)-(9) as

L1,P (✓) =
PN

j=1 Ey

�
Ex,z1,...,zP|y

�
|xj � 1

P

PP
i=1 bxij |

��y
  

(B.1)

LSD,P (✓) =
PN

j=1 Ey

�
Ez1,...,zP|y

��P

P

PP
i=1 |bxij � 1

P

PP
k=1 bxkj |

��y
  

, (B.2)

where xj , [x]j , bxij , [bxi]j , and

�P ,
q

⇡P
2(P�1) . (B.3)

To simplify the notation in the sequel, we will consider an arbitrary fixed value of j and use the
abbreviations

xj ! X, bxij ! bXi. (B.4)

Recall that x and {bxi} are mutually independent when conditioned on y because the code vectors
{zi} are generated independently of both x and y. In the context of Proposition 3.1, we also assume
that the vector elements xj and bxij are independent Gaussian when conditioned on y. This implies
that we can make the notational shift

px|y(xj |y) ! N (X;µ0,�
2
0), pbx|y(bxij |y) ! N ( bXi;µ,�

2), (B.5)

where X and { bXi} are mutually independent. With this simplified notation, we note that [bxmmse]j !
µ0, and that mode collapse corresponds to � = 0.
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Furthermore, if ✓ can completely control (µ,�), then (12) can be rewritten as

(µ⇤,�⇤) = argmin
µ,�

�
L1,P (µ,�)� �SDLSD,P (µ,�)

 
)

⇢
µ⇤ = µ0

�⇤ = �0
(B.6)

with

L1,P (µ,�) = EX, bX1,... bXP
{|X � 1

P

PP
i=1

bXi|} (B.7)

LSD,P (µ,�) = E bX1,... bXP
{�P

P

PP
i=1 | bXi � 1

P

PP
k=1

bXk|}. (B.8)

Although �⇤ must be positive, it turns out that we do not need to enforce this in the optimization
(B.6) because it will arise naturally.

To further analyze (B.7) and (B.8), we define

bµ , 1
P

PP
i=1

bXi (B.9)

b� , �P

P

PP
i=1 | bXi � bµ|. (B.10)

The quantity bµ can be recognized as the unbiased estimate of the mean µ of bXi, and we now show
that b� is an unbiased estimate of the SD � of bXi in the case that bXi is Gaussian. To see this, first
observe that the i.i.d. N (µ,�2) property of { bXi} implies that bXi � bµ = (1� 1

P ) bXi � 1
P

P
k 6=i

bXk

is Gaussian with mean zero and variance (1� 1
P )2�2 + P�1

P 2 �2 = P�1
P �2. The variable | bXi � bµ|

is thus half-normal distributed with mean
q

2(P�1)
⇡P �2 [48]. Because { bXi} are i.i.d., the variable

1
P

PP
i=1 | bXi � bµ| has the same mean as | bXi � bµ|. Finally, multiplying 1

P

PP
i=1 | bXi � bµ| by �P

yields b� from (B.10), and multiplying its mean using the expression for �P from (B.3) implies

E{b�} = �, (B.11)

and so b� is an unbiased estimator of �, the SD of bXi.

With the above definitions of bµ and b�, the optimization cost in (B.6) can be written as

L1,P (µ,�)� �SDLSD,P (µ,�) = EX, bX1,... bXP

�
|X � bµ|

 
� �SD E bX1,... bXP

�
b�
 

(B.12)

= EX, bX1,... bXP

�
|X � bµ|

 
� �SD�, (B.13)

where in the last step we exploited the unbiased property of b�. To proceed further, we note that the
i.i.d. Gaussian property of { bXi} implies bµ ⇠ N (µ,�2/P ), after which the mutual independence of
{ bXi} and X yields

X � bµ ⇠ N (µ0 � µ,�2
0 + �2/P ). (B.14)

Taking the absolute value of a Gaussian random yields a folded-normal random variable [48]. Using
the mean and variance in (B.14), the expressions in [48] yield

EX, bX1,... bXP

�
|X � bµ|

 
=

r
2(�2

0 + �2/P )

⇡
exp

⇣
� (µ0 � µ)2

2(�2
0 + �2/P )

⌘

+ (µ0 � µ) erf
⇣ µ0 � µp

2(�2
0 + �2/P )

⌘
. (B.15)

Thus the optimization cost (B.13) can be written as

J(µ,�) =

r
2(�2

0 + �2/P )

⇡
exp

⇣
� (µ� µ0)2

2(�2
0 + �2/P )

⌘

+ (µ� µ0) erf
⇣ µ� µ0p

2(�2
0 + �2/P )

⌘
� �SD�. (B.16)

Since J(·, ·) is convex, the minimizer (µ⇤,�⇤) = argminµ,� J(µ,�) satisfies rJ(µ⇤,�⇤) = (0, 0).
To streamline the derivation, we define

c ,
q
2(�2

0 + �2/P )/⇡, s ,
q

�2
0 + �2/P (B.17)
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so that

J(µ,�) = c exp
⇣
� (µ� µ0)2

2s2

⌘
+ (µ� µ0) erf

⇣µ� µ0p
2s2

⌘
� �SD�. (B.18)

Because c and s are invariant to µ, we get

@J(µ,�)

@µ
= �c exp

⇣
� (µ� µ0)2

2s2

⌘µ� µ0

s2
+ erf

⇣µ� µ0p
2s2

⌘
+ (µ� µ0)

2p
⇡
exp

⇣
� (µ� µ0)2

2s2

⌘
,

(B.19)

which equals zero if and only if µ = µ0. Thus we have determined that µ⇤ = µ0. Plugging µ⇤ = µ0

into (B.16), we find

J(µ⇤,�) =
q
2(�2

0 + �2/P )/⇡ � �SD�. (B.20)

Taking the derivative with respect to �, we get

@J(µ⇤,�)

@�
=

s
2

⇡P (P�2
0/�

2 + 1)
� �SD (B.21)

=

s
2

⇡P (P�2
0/�

2 + 1)
�

s
2

⇡P (P + 1)
, (B.22)

where in the last step we applied the value of �SD from (11). It can now be seen that @J(µ⇤,�)
@� = 0 if

and only if � = �0, which implies that �⇤ = �0. Thus we have established (B.6), which completes
the proof of Proposition 3.1.

C Derivation of Proposition 3.2

Here we prove Proposition 3.2. To start, we establish some notation and conditional-mean properties:

bxmmse , Ex|y{x|y}
emmse , x� bxmmse, 0 = Ex|y{emmse|y}
bxi(✓) , G✓(zi,y), x(✓) , Ezi|y{bxi(✓)|y}

bx(P )(✓) , 1
P

PP
i=1 bxi(✓), x(✓) = Ez1,...,zP|y{bx(P )(✓)|y}

di(✓)) , bxi(✓)� x(✓), 0 = Ezi|y{di(✓)|y} 8✓
d(P )(✓) , 1

P

PP
i=1 di(✓), 0 = Ez1,...,zP|y{d(P )(✓)|y} 8✓

(C.1)

Our first step is to write (14) as

L2,P (✓) = Ey

�
Ex,z1,...,zP|y{kx� bx(P )(✓)k22|y}

 
. (C.2)

Leveraging the fact that bxmmse and x(✓) are deterministic given y, we write the inner term in (C.2) as

Ex,z1,...,zP|y{kx� bx(P )(✓)k22|y}
= Ex,z1,...,zP|y{kbxmmse + emmse � x(✓)� d(P )(✓)k22|y} (C.3)

= Ex,z1,...,zP|y{kbxmmse � x(✓)k22|y}
+ 2ReEx,z1,...,zP|y{(bxmmse � x(✓))H(emmse � d(P )(✓))|y}
+ Ex,z1,...,zP|y{kemmse � d(P )(✓)k22|y} (C.4)

= kbxmmse � x(✓)k22 + 2Re
⇥
(bxmmse � x(✓))H Ex,z1,...,zP|y{(emmse � d(P )(✓))|y}| {z }

= 0

⇤

+ Ex,z1,...,zP|y{kemmse � d(P )(✓)k22|y} (C.5)

= kbxmmse � Ezi|y{bxi(✓)|y}k22 + Ex,z1,...,zP|y{kemmse � d(P )(✓)k22|y}. (C.6)
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where in (C.5) we used the fact that d(P ) and emmse are both zero-mean when conditioned on y. We
now leverage the fact that {zi} are independent of x and y to write

Ex,z1,...,zP|y{kemmse � d(P )(✓)k22|y}
= Ex,z1,...,zP|y{kemmsek22|y}+ 2ReEx,z1,...,zP|y{e

H
mmsed(P )(✓)|y}+ Ex,z1,...,zP|y{kd(P )(✓)k22|y}

(C.7)

= Ex|y{kemmsek22|y}+ 2Re
⇥
Ex|y{emmse|y}| {z }

= 0

H Ez1,...,zP|y{d(P )(✓)|y}| {z }
= 0

⇤
+ Ez1,...,zP|y{kd(P )(✓)k22|y}.

(C.8)

Finally, we can leverage the fact that {zi} are i.i.d. to write

Ez1,...,zP|y{kd(P )(✓)k22|y} = Ez1,...,zP|y{k 1
P

PP
i=1 di(✓)k22|y} (C.9)

= 1
P 2

PP
i=1 Ezi|y{kdi(✓)k22|y} (C.10)

= 1
P Ezi|y{kdi(✓)k22|y} for any i (C.11)

= 1
P Ezi|y{tr[di(✓)di(✓)

H]|y} (C.12)

= 1
P tr

⇥
Ezi|y{di(✓)di(✓)

H}|y}
⇤

(C.13)

= 1
P tr

⇥
Covzi|y{bxi(✓)|y}

⇤
. (C.14)

Combining (C.2), (C.6), (C.8), and (C.14), we get the bias-variance decomposition

L2,P (✓) = Ey

n
kbxmmse � Ezi|y{bxi(✓)|y}k22 + 1

P tr
⇥
Covzi|y{bxi(✓)|y}

⇤
+ Ex|y{kemmsek22|y}

o
.

(C.15)

We now see that if ✓ has complete control over the y-conditional mean and covariance of bxi(✓), then
minimizing (C.15) over ✓ will cause

Ezi|y{bxi(✓)|y} = bxmmse (C.16)
Covzi|y{bxi(✓)|y} = 0, (C.17)

which proves Proposition 3.2.

D Derivation of (19)

To show that the expression for Lvar,P in (19) holds, we first rewrite (18) as

Lvar,P (✓) =
1

P�1

PP
i=1 Ey{Ez1,...,zP|y{kbxi(✓)� bx(P )(✓)k22|y} (D.1)

where the definitions from (C.1) imply

Ez1,...,zP|y{kbxi(✓)� bx(P )(✓)k22|y}
= Ez1,...,zP|y{kx(✓) + di(✓)� d(P )(✓)� x(✓)k22|y} (D.2)

= Ez1,...,zP|y{kdi(✓)� 1
P

PP
j=1 dj(✓)k22|y} (D.3)

= Ez1,...,zP|y{k(1� 1
P )di(✓)� 1

P

P
j 6=i dj(✓)k22|y} (D.4)

= (1� 1
P )2 Ezi|y{kdi(✓)k22|y}+ P�1

P 2 Ezi|y{kdi(✓)k22|y} (D.5)

= P�1
P Ezi|y{kdi(✓)k22|y} for any i. (D.6)

For (D.5), we leveraged the zero-mean and i.i.d. nature of {di(✓)} conditioned on y. By plugging
(D.6) into (D.1), we get

Lvar,P (✓) =
1
P

PP
i=1 Ey{Ezi|y{kdi(✓)k22|y}} (D.7)

= Ey{Ezi|y{kdi(✓)k22|y}} for any i (D.8)
= Ey{tr[Covzi|y{bxi(✓)|y}]}, (D.9)

where (D.8) follows because {di(✓)} are i.i.d. when conditioned on y and (D.9) follows from
manipulations similar to those used for (C.14).
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E Proof of Proposition 3.3

Here we prove Proposition 3.3. Recall from (C.1) that bxmmse , E{x|y} and emmse , x� bxmmse.
To reduce clutter, we will abbreviate emmse by e in this appendix. Also, for true-posterior samples
bxi ⇠ px|y(·|y), we define

bei , bxi � bxmmse. (E.1)

Then using bx(P ) , 1
P

PP
i=1 bxi and from EP from (20), we have

EP = E{kbx(P ) � xk2|y} (E.2)

= E{k( 1
P

PP
i=1 bxi)� xk2|y} (E.3)

= E{k 1
P

PP
i=1(bxi � x)k2|y} (E.4)

= 1
P 2 E{k

PP
i=1(bxi � bxmmse + bxmmse � x)k2|y} (E.5)

= 1
P 2 E{k

PP
i=1(bei � e)k2|y} (E.6)

= 1
P 2 E{

PP
i=1(bei � e)H PP

j=1(bej � e)|y} (E.7)

= 1
P 2

PP
i=1

PP
j=1 E{(bei � e)H(bej � e)|y} (E.8)

= 1
P 2

PP
i=1 E{(bei � e)H(bei � e)|y}+ 1

P 2

PP
i=1

P
j 6=i E{(bei � e)H(bej � e)|y} (E.9)

= 1
P 2

PP
i=1

⇥
E{kbeik2|y}� 2ReE{beH

i e|y}+ E{kek2|y}
⇤

+ 1
P 2

PP
i=1

P
j 6=i Re

⇥
E{beH

i bej |y}� E{beH
i e|y}� E{eHbej |y}+ E{kek2|y}

⇤
(E.10)

= 1
P 2

PP
i=1 E{kbeik2|y}+

1
P E{kek2|y}+ P (P�1)

P 2 E{kek2|y}, (E.11)
where certain terms vanished because the i.i.d. and zero-mean properties of {e,be1, . . . ,beP } imply

E{beH
i bej |y} = E{bei|y}H E{bej |y} = 0 (E.12)

E{beH
i e|y} = E{bei|y}H E{e|y} = 0 (E.13)

E{eHbej |y} = E{e|y}H E{bej |y} = 0. (E.14)

Finally, note that E{kek2|y} = Emmse from (C.1). Furthermore, because {x, bx1, . . . , bxP } are
independent samples of px|y(·|y) under the assumptions of Proposition 3.3, we have E{kek2|y} =
E{kbeik2|y} and so (E.11) becomes

EP =
1

P 2

PX

i=1

Emmse +
1

P
Emmse +

P (P � 1)

P 2
Emmse =

P + 1

P
Emmse. (E.15)

This result holds for any P � 1, which implies the ratio
E1
EP

=
2P

P + 1
. (E.16)

F CFID implementation details

With the Gaussian approximation described in Section 4.1, where px|y and pbx|y are approximated by
N (µx|y,⌃xx|y) and N (µbx|y,⌃bxbx|y), respectively, the CWD in (24) reduces to

CFID , Ey

�
kµx|y � µbx|yk22 + tr

⇥
⌃xx|y +⌃bxbx|y � 2

�
⌃1/2

xx|y⌃bxbx|y⌃
1/2
xx|y

�1/2⇤ 
. (F.1)

The values in (F.1) are computed using

µx|y = µx +⌃xy⌃
�1
yy (y � µy) (F.2)

⌃xx|y = ⌃xx �⌃xy⌃
�1
yy ⌃>

xy (F.3)

µbx|y = µbx +⌃bxy⌃
�1
yy (y � µy) (F.4)

⌃bxbx|y = ⌃bxbx �⌃bxy⌃
�1
yy ⌃>

bxy. (F.5)
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Plugging (F.2)-(F.5) into (F.1), the CFID can be written as [22, Lemma 2]:

CFID = kµx � µbxk22 + tr
h
(⌃xy �⌃bxy)⌃

�1
yy (⌃xy �⌃bxy)

>
i

+ tr
h
⌃xx|y +⌃bxbx|y � 2

�
⌃1/2

xx|y⌃bxbx|y⌃
1/2
xx|y

�1/2i
, (F.6)

where ⌃�1
yy is typically implemented using a pseudo-inverse.

We now detail how the means and covariances in (F.6) are computed. We start with a dataset
{(xt,yt)}nt=1 of truth/measurement pairs. For each yt, we generate a set of P posterior samples
{bxti}Pi=1. We merge these samples with P repetitions of xt and yt to obtain {(xti,yti, bxti)}Pi=1
for t = 1 . . . n. These terms are processed by a feature-generating network to yield the feature
embeddings {(xti,yti

, bxti)}Pi=1, which are then packed into matrices X , Y , and cX with Pn rows.
We used the VGG-16 feature-generating network [49] for our MRI experiments, since [41] found that
it gave results that correlated much better with radiologists’ perceptions, while we used the standard
Inception-v3 network [50] for our inpainting experiments. The embeddings are then used to compute
the sample-mean values

µx , 1
Pn1

>X, µy , 1
Pn1

>Y , µbx , 1
Pn1

>cX. (F.7)

We then subtract the sample mean from each row of X , Y , and cX to give the zero-mean embedding
matrices Xzm , X � 1µ>

x , Y zm , Y � 1µ>
y , and cXzm , cX � 1µ>

bx , which are then used to
compute the sample covariance matrices

⌃xx , 1
PnX

>
zmXzm, ⌃yy , 1

PnY
>
zmY zm, ⌃bxbx , 1

Pn
cX

>
zm
cXzm (F.8a)

⌃xy , 1
PnX

>
zmY zm, ⌃bxy , 1

Pn
cX

>
zmY zm. (F.8b)

We plug the sample statistics from (F.7)-(F.8) into (F.2)-(F.5), which yields the statistics needed to
compute the CFID in (F.6). In [22], the authors use P = 1 in all of their experiments. To be consistent
with how we evaluated the other metrics, we use P = 32 unless otherwise noted.

G MR imaging details

We now give details on magnetic resonance (MR) image recovery. Suppose that the goal is to recover
the N -pixel MR image i 2 CN from the multicoil measurements {kc}Cc=1, where [39]

kc = MFSci+ nc. (G.1)
In (G.1), C refers to the number of coils, kc 2 CM are the measurements from the cth coil,
M 2 RM⇥N is a sub-sampling operator containing rows from IN—the N ⇥ N identity matrix,
F 2 CN⇥N is the unitary 2D discrete Fourier transform, Sc 2 CN⇥N is a diagonal matrix containing
the sensitivity map of the cth coil, and nc 2 CM is noise. From (G.1), it can be seen that the MR
measurements are collected in the spatial Fourier domain, otherwise known as the “k-space.” The
sensitivity maps {Sc} are estimated from {kc} using ESPIRiT [40] (in our case via SigPy [51]),
which yields maps with the property

PC
c=1 S

H
cSc = IN . The ratio R , N

M is known as the
acceleration rate.

There are different ways that one could apply the generative posterior sampling framework to
multicoil MR image recovery. One is to configure the generator to produce posterior samples bi
of the complex image i. Another is to configure the generator to produce posterior samples bx of
the stack x , [x>

1 , . . . ,x
>
C ]

> of “coil images” xc , Sci and later coil-combining them to yield a
complex image estimate bi , [SH

1 , . . . ,S
H
C ]bx. We take the latter approach. Furthermore, rather than

feeding our generator with k-space measurements kc, we choose to feed it with aliased coil images
yc , F HM>kc. Writing (G.1) in terms of the coil images, we obtain

yc = F HM>MFxc +wc, (G.2)

where wc , F HM>nc. Then we can stack {yc} and {wc} column-wise into vectors y and w,
and set A = IC ⌦ F HM>MF 2 CNC⇥NC , to obtain the formulation y = Ax+w described in
Section 1.
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To train our generator, we assume to have access to paired training examples {(xt,yt)}, where xt is
a stack of coil images and yt is the corresponding stack of k-space coil measurements. The fastMRI
multicoil dataset [33] provides {(xt,kt)}, from which we can easily obtain {(xt,yt)}.

H Data-consistency

In this section, we describe a data-consistency procedure that can be optionally used when our cGAN
is used to solve a linear inverse problem, i.e., to recover x from y under a model of the form

y = Ax+w, (H.1)

where A is a known linear operator and w is unknown noise. The motivation is that, in some
applications, such as medical imaging or inpainting, the end user may feel comfortable knowing that
the generated samples {bxi} are consistent with the measurements y in that

y = Abxi. (H.2)

When (H.2) holds, A+y = A+Abxi must also hold, where (·)+ denotes the pseudo-inverse. The
quantity A+A can be recognized as the orthogonal projection matrix associated with the row space
of A. So, (H.2) requires the component of bxi in the row space of A to equal A+y, while placing no
constraints on the component of bxi in the nullspace of A. This suggests the following data-consistency
procedure:

bxi = (I �A+A)bxraw
i +A+y. (H.3)

where bxraw
i is the raw generator output. We note that a version of this idea for point estimation was

proposed in [3].

The data-consistency procedure (H.3) ensures that any generative method will generate only the
component of x that lies in the nullspace of A. Consequently, (H.3) is admissible only when A has a
non-trivial nullspace. Also, because no attempt is made to remove the noise w in y, this approach is
recommended only for low-noise applications. For high-noise applications, an extension based on the
dual-decomposition approach [52] would be more appropriate, but we leave this to future work.

When applying (H.3) to the MRI formulation in Appendix G, we note that A = IC ⌦ F HM>MF
is an orthogonal projection matrix, and so I �A+A = I �A = I ⌦ F H(I �M>M)F .

I Implementation details

The code for our model can be found here: https://github.com/matt-bendel/rcGAN.

I.1 MRI

I.1.1 cGAN training

At each training iteration, our cGAN’s generator takes in nbatch measurement samples yt and Ptrain

code vectors for every yt, and performs an optimization step on the loss

LG(✓) , �advLadv(✓,�) + L1,Ptrain(✓)� �SDLSD,Ptrain(✓), (I.1)

where by default we use �adv = 1e-5, nbatch = 36, Ptrain = 2, and update �SD via (23) using Pval = 8.
Then, using the Ptrainnbatch generator outputs, our cGAN’s discriminator performs an optimization
step on the loss

LD(�) = �Ladv(✓,�) + ↵1Lgp(�) + ↵2Ldrift(�), (I.2)
with gradient penalty Lgp from [24]. As per [29], Ldrift is a drift penalty, ↵1 = 10, ↵2 = 0.001, and
one discriminator update was used per generator update. The models were trained for 100 epochs
using the Adam optimizer [53] with a learning rate of 1e-3, �1 = 0, and �2 = 0.99, as in [29].
Running PyTorch on a server with 4 Tesla A100 GPUs, each with 82 GB of memory, the training of
an MRI cGAN took approximately 1 day.

Adler and Öktem’s cGAN [8] uses generator loss �advLadler
adv (✓,�), where Ladler

adv (✓,�) was described
in (5), and discriminator loss �Ladler

adv (✓,�) + ↵1Lgp(�) + ↵2Ldrift(�) with the values of ↵1 =10,
↵2 =0.001, and �adv =1, as in the original paper.
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Ohayon et al.’s cGAN [23] uses generator loss �advLadv(✓,�) + L2,Ptrain(✓), where L2,Ptrain(✓) was
described in (14), and discriminator loss �Ladv(✓,�) + ↵1Lgp(�) + ↵2Ldrift(�) with the values
↵1 =10, ↵2 =0.001, and �adv =1e-5. We modify �adv to re-balance the loss due to an increased
magnitude of our discriminator’s outputs.

All three cGANs used the same generator and discriminator architectures (detailed below), except that
Adler and Öktem’s discriminator used extra input channels to facilitate the 3-input loss Ladler

adv (✓,�)
from (5).

I.1.2 cGAN generator architecture

For our MRI experiments, we take inspiration from the UNet architecture from [36], using it as the
basis for the cGAN generators. The primary input y is concatenated with the code vector z and fed
through the UNet. The network consists of 4 pooling layers with 128 initial channels. However,
instead of pooling, we opt to use convolutions with kernels of size 3 ⇥ 3, “same” padding, and a
stride of 2 when downsampling. Likewise, we upsample using transpose convolutions, again with
kernels of size 3⇥ 3, “same” padding, and a stride of 2. All other convolutions utilize kernels of size
3⇥ 3, “same” padding, and a stride of 1.

Within each encoder and decoder layer we include a residual block, the architecture of which can
be found in [8]. We use instance-norm for all normalization layers and parametric ReLUs as our
activation functions, in which the network learns the optimal “negative slope.” Finally, we include 5
residual blocks at the base of the UNet, in between the encoder and decoder. This is done in an effort
to artificially increase the depth of the network and is inspired by [54]. Our generator has 86 734 334
trainable parameters.

I.1.3 cGAN discriminator architecture

Our discriminator is a standard CNN with 6 layers and 1 fully-connected layer. In the first 3 layers,
we use convolutions with kernels of size 3⇥ 3, “same” padding. We reduce spatial resolution with
average pooling, using 2⇥ 2 kernels with a stride of 2. We use batch-norm as our normalization layer
and leaky ReLUs with a “negative-slope” of 0.2 as our activation functions. The network outputs an
estimated Wasserstein score for the whole image.

I.1.4 E2E-VarNet

For the Sriram et al.’s E2E-VarNet [37], we use the same training procedure and hyperparameters
outlined in [19] other than replacing the sampling pattern with the GRO undersampling mask. As in
[19], we use the SENSE-based coil-combined image as the ground truth instead of the RSS image.

I.1.5 Langevin approach

For Jalal et al.’s MRI approach [19], we do not modify the original implementation from [38] other
than replacing the default sampling pattern with the GRO undersampling mask. We generated 32
samples for 72 different test images using a batch-size of 4, which took roughly 6 days. These
samples were generated on a server with 4 NVIDIA V100 GPUs, each with 32 GB of memory. We
used 4 samples per batch (and recorded the time to generate 4 samples in Table 1) because the code
from [38] is written to generate one sample per GPU.

I.2 Inpainting

I.2.1 Our cGAN

For our generator and discriminator, we use the CoModGAN networks from [9]. Unlike CoModGAN,
however, we train our cGAN with L1,SD,Ptrain regularization and we do not use MBSD at the discrim-
inator. We use the same general training and testing procedure described in Section 4.2, but with
�adv = 5e-3, nbatch = 100, and 110 epochs of cGAN training. Running PyTorch on a server with 4
Tesla A100 GPUs, each with 82 GB of memory, the training takes approximately 2 days.
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Table J.1: The mean and covariance components of CFID, along with the total CFID, for the
generative models in the MRI and inpainting experiments. For the MRI experiment, CFID1 used 72
test samples and P = 32, CFID2 used 2 376 test samples and P = 8, and CFID3 used all 14 576
samples and P = 1. For the inpainting experiment, CFID1 used 1 000 test images and P = 32,
CFID2 used 3 000 test and validation images and P = 8, and CFID3 used all 30 000 images and
P = 1.

Model CFID1
mean # CFID1

cov # CFID1 # CFID2
mean # CFID2

cov # CFID2 # CFID3
mean # CFID3

cov # CFID3 #
R = 4 MRI

Langevin (Jalal [19]) 1.89 3.40 5.29 - - - - - -
cGAN (Adler [8]) 3.12 3.27 6.39 2.79 1.48 4.27 2.71 1.10 3.82
cGAN (Ohayon [23]) 1.94 2.12 4.06 2.27 1.00 3.27 2.29 0.66 2.95
cGAN (Ours) 0.98 2.12 3.10 0.86 0.68 1.54 0.86 0.43 1.29

R = 8 MRI
Langevin (Jalal [19]) 2.61 4.73 7.34 - - - - - -
cGAN (Adler [8]) 5.00 5.10 10.10 4.16 2.14 6.30 4.09 1.63 5.72
cGAN (Ohayon [23]) 2.73 3.31 6.04 3.07 1.52 4.59 3.30 0.97 4.27
cGAN (Ours) 1.55 3.32 4.87 1.24 0.99 2.23 1.17 0.62 1.79

Inpainting
Score SDE (Song [20]) 0.97 38.69 39.66 - - - 0.90 4.21 5.11
CoModGAN (Zhao [9]) 0.42 41.21 41.63 0.35 25.39 25.74 0.32 4.98 5.29
cGAN (Ours) 0.32 39.41 39.73 0.25 22.32 22.58 0.24 4.45 4.69

I.2.2 CoModGAN

We use the PyTorch implementation of CoModGAN from [44] and train the model to inpaint a
128⇥ 128 centered square on 256⇥ 256 CelebA-HQ images. The total training time on a server with
4 NVIDIA A100 GPUs, each with 82 GB of memory, is roughly 2 days.

I.2.3 Score-based SDE

For the inpainting experiment in Section 4.3, we compare against Song et al.’s more recent SDE
technique [20], for which we use the publicly available pretrained weights, the suggested settings for
the 256⇥ 256 CelebA-HQ dataset, and the code from the official PyTorch implementation [45]. We
generate 32 samples for all 1 000 images in our test set, using a batch-size of 20 and generating 32
samples for each batch element concurrently. The total generation time on a server with 4 NVIDIA
A100 GPUs, each with 82 GB of memory, is roughly 9 days.

J Additional experimental results

J.1 CFID decomposition into mean and covariance components

In this section, we investigate the small-sample bias effects of CFID, which have been previously
noted in [22]. To do this, we write the CFID from (F.1) as a sum of two terms: a term that quantifies
the conditional-mean error and a term that quantifies the conditional-covariance error:

CFID = CFIDmean +CFIDcov (J.1)

CFIDmean , Ey{kµx|y � µbx|yk22} (J.2)

CFIDcov , tr
⇥
⌃xx|y +⌃bxbx|y � 2

�
⌃1/2

xx|y⌃bxbx|y⌃
1/2
xx|y

�1/2⇤
. (J.3)

To verify that (J.3) quantifies the error in ⌃bxbx|y, notice that (J.3) equals zero when ⌃bxbx|y = ⌃xx|y and
is otherwise positive (by Cauchy Schwarz).

In Table J.1, we report CFIDmean and CFIDcov for the MRI and inpainting experiments, in addition
to the total CFID (also shown in Tables 1 and 4). As before, we computed CFID on three test sets for
each experiment, which contained 72, 2 376, and 14 576 samples respectively for MRI, and 1000,
3000, and 30 000 samples respectively for inpainting. Due to the slow sample-generation time of
the Langevin/score-based methods [19, 20], we did not have the computational resources to evaluate
them on all datasets, and that’s why certain table entries are blank.

For both MRI experiments, Table J.1 shows our method outperforming the competing methods in
both the mean and covariance components of CFID (and thus the total CFID) for all sample sizes.

21



And, in the inpainting experiment, Table J.1 shows our method outperforming CoModGAN in both
the mean and covariance components (and thus the total CFID) for all sample sizes.

For the inpainting experiment, Table J.1 shows our method outperforming the score-based approach in
total CFID on the 3000- and 30 000-sample test sets but not on the 1000-sample test set. However, we
now argue that the 1000-sample inpainting experiment is heavily affected by small-sample bias, and
therefore untrustworthy. Looking at the mean component of CFID (i.e., CFID1

mean, CFID2
mean, and

CFID3
mean) across the inpainting experiments, we see that the values are relatively small and stable

with sample size. But looking at the covariance component of CFID (i.e., CFID1
cov, CFID

2
cov, and

CFID3
cov) across the inpainting experiments, we see that the values are large and heavily dependent

on sample size. For the 1000-sample inpainting experiment, the total CFID is dominated by the
covariance component and thus strongly affected by small-sample bias. Consequently, for the
1000-sample inpainting experiment, the total CFID is not trustworthy.
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K Additional reconstruction plots

K.1 R = 4 MRI Reconstruction

E2E-VarNet cGAN (ours) cGAN (Ohayon) cGAN (Adler) Langevin (Jalal)
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Figure K.1: Example R = 4 MRI reconstruction. Row one: pixel-wise SD with P = 32, Row two:
bx(P ) with P = 32, Row three: bx(P ) with P = 4, Row four: bx(P ) with P = 2, Rows five and six:
posterior samples. The arrows indicate regions of meaningful variation across posterior samples.
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E2E-VarNet cGAN (ours) cGAN (Ohayon) cGAN (Adler) Langevin (Jalal)
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Figure K.2: Example R = 4 MRI reconstruction. Row one: pixel-wise SD with P = 32, Row two:
bx(P ) with P = 32, Row three: bx(P ) with P = 4, Row four: bx(P ) with P = 2, Rows five and six:
posterior samples. The arrows indicate regions of meaningful variation across posterior samples.
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E2E-VarNet cGAN (ours) cGAN (Ohayon) cGAN (Adler) Langevin (Jalal)
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Figure K.3: Example R = 4 MRI reconstruction. Row one: pixel-wise SD with P = 32, Row two:
bx(P ) with P = 32, Row three: bx(P ) with P = 4, Row four: bx(P ) with P = 2, Rows five and six:
posterior samples. The arrows indicate regions of meaningful variation across posterior samples.
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E2E-VarNet cGAN (ours) cGAN (Ohayon) cGAN (Adler) Langevin (Jalal)
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Figure K.4: Example R = 4 MRI reconstruction. Row one: pixel-wise SD with P = 32, Row two:
bx(P ) with P = 32, Row three: bx(P ) with P = 4, Row four: bx(P ) with P = 2, Rows five and six:
posterior samples. The arrows indicate regions of meaningful variation across posterior samples.
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E2E-VarNet cGAN (ours) cGAN (Ohayon) cGAN (Adler) Langevin (Jalal)
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Figure K.5: Example R = 4 MRI reconstruction. Row one: pixel-wise SD with P = 32, Row two:
bx(P ) with P = 32, Row three: bx(P ) with P = 4, Row four: bx(P ) with P = 2, Rows five and six:
posterior samples. The arrows indicate regions of meaningful variation across posterior samples.
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E2E-VarNet cGAN (ours) cGAN (Ohayon) cGAN (Adler) Langevin (Jalal)
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Figure K.6: Example R = 4 MRI reconstruction. Row one: pixel-wise SD with P = 32, Row two:
bx(P ) with P = 32, Row three: bx(P ) with P = 4, Row four: bx(P ) with P = 2, Rows five and six:
posterior samples. The arrows indicate regions of meaningful variation across posterior samples.
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K.2 R = 8 MRI Reconstruction

E2E-VarNet cGAN (ours) cGAN (Ohayon) cGAN (Adler) Langevin (Jalal)
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Figure K.7: Example R = 8 MRI reconstruction. Row one: pixel-wise SD with P = 32, Row two:
bx(P ) with P = 32, Row three: bx(P ) with P = 4, Row four: bx(P ) with P = 2, Rows five and six:
posterior samples. The arrows indicate regions of meaningful variation across posterior samples.
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E2E-VarNet cGAN (ours) cGAN (Ohayon) cGAN (Adler) Langevin (Jalal)
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Figure K.8: Example R = 8 MRI reconstruction. Row one: pixel-wise SD with P = 32, Row two:
bx(P ) with P = 32, Row three: bx(P ) with P = 4, Row four: bx(P ) with P = 2, Rows five and six:
posterior samples. The arrows indicate regions of meaningful variation across posterior samples.
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E2E-VarNet cGAN (ours) cGAN (Ohayon) cGAN (Adler) Langevin (Jalal)
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Figure K.9: Example R = 8 MRI reconstruction. Row one: pixel-wise SD with P = 32, Row two:
bx(P ) with P = 32, Row three: bx(P ) with P = 4, Row four: bx(P ) with P = 2, Rows five and six:
posterior samples. The arrows indicate regions of meaningful variation across posterior samples.
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E2E-VarNet cGAN (ours) cGAN (Ohayon) cGAN (Adler) Langevin (Jalal)
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Figure K.10: Example R = 8 MRI reconstruction. Row one: pixel-wise SD with P = 32, Row
two: bx(P ) with P = 32, Row three: bx(P ) with P = 4, Row four: bx(P ) with P = 2, Rows five and
six: posterior samples. The yellow arrows indicate regions of meaningful variation across posterior
samples. The red arrows show visible artifacts in the Langevin recovery.
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E2E-VarNet cGAN (ours) cGAN (Ohayon) cGAN (Adler) Langevin (Jalal)
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Figure K.11: Example R = 8 MRI reconstruction. Row one: pixel-wise SD with P = 32, Row
two: bx(P ) with P = 32, Row three: bx(P ) with P = 4, Row four: bx(P ) with P = 2, Rows five and
six: posterior samples. The yellow arrows indicate regions of meaningful variation across posterior
samples. The red arrows show visible artifacts in the Langevin recovery.
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E2E-VarNet cGAN (ours) cGAN (Ohayon) cGAN (Adler) Langevin (Jalal)
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Figure K.12: Example R = 8 MRI reconstruction. Row one: pixel-wise SD with P = 32, Row two:
bx(P ) with P = 32, Row three: bx(P ) with P = 4, Row four: bx(P ) with P = 2, Rows five and six:
posterior samples. The arrows indicate regions of meaningful variation across posterior samples.

34



K.3 Inpainting
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Figure K.13: Example of inpainting a 128⇥128 square on a 256⇥256 resolution CelebA-HQ image.
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Figure K.14: Example of inpainting a 128⇥128 square on a 256⇥256 resolution CelebA-HQ image.
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Figure K.15: Example of inpainting a 128⇥128 square on a 256⇥256 resolution CelebA-HQ image.
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Figure K.16: Example of inpainting a 128⇥128 square on a 256⇥256 resolution CelebA-HQ image.
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Figure K.17: Example of inpainting a 128⇥128 square on a 256⇥256 resolution CelebA-HQ image.
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Figure K.18: Example of inpainting a 128⇥128 square on a 256⇥256 resolution CelebA-HQ image.
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