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Abstract

A major challenge of reinforcement learning (RL) in real-world applications is the
variation between environments, tasks or clients. Meta-RL (MRL) addresses this
issue by learning a meta-policy that adapts to new tasks. Standard MRL methods
optimize the average return over tasks, but often suffer from poor results in tasks of
high risk or difficulty. This limits system reliability since test tasks are not known
in advance. In this work, we define a robust MRL objective with a controlled
robustness level. Optimization of analogous robust objectives in RL is known to
lead to both biased gradients and data inefficiency. We prove that the gradient
bias disappears in our proposed MRL framework. The data inefficiency is addressed
via the novel Robust Meta RL algorithm (RoML). RoML is a meta-algorithm that
generates a robust version of any given MRL algorithm, by identifying and over-
sampling harder tasks throughout training. We demonstrate that RoML achieves
robust returns on multiple navigation and continuous control benchmarks.

1 Introduction

Figure 1: (a) An illustration of driving tasks, characterized by
various weather conditions and traffic density. (b) The returns
of two meta-policies π1, π2 on these tasks. π1 has a higher
average return, but π2 is more robust to high-risk tasks. The
task space is discretized only for illustration purposes.

Reinforcement learning (RL) has achieved
impressive results in a variety of applica-
tions in recent years, including cooling sys-
tems control [Luo et al., 2022] and con-
versational chatbots [Cohen et al., 2022].
A significant challenge in extending this
success to mass production is the varia-
tion between instances of the problem, e.g.,
different cooling systems or different chat-
bot end-users. Meta-RL (MRL) addresses
this challenge by learning a “meta-policy”
that quickly adapts to new tasks [Thrun and
Pratt, 1998, Finn et al., 2017]. In the ex-
amples above, MRL would maximize the
average return of the adapted policy for a
new cooling system or a new end-user.

However, optimizing the return of the average client might not suffice, as certain clients may still
experience low or even negative returns. If 10% of the clients report poor performance, it may deter
potential clients from adopting the new technology – even if its average return is high. This highlights
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the need for MRL systems that provide robust returns across tasks. Robustness is further motivated
by risk sensitivity in many natural RL applications, such as medical treatment [Yu et al., 2021] and
driving [Shalev-Shwartz et al., 2016]. For example, as illustrated in Fig. 1, an agent should drive
safely at any road profile – even if at some roads the driving would be more cautious than necessary.

A common approach for risk-averse optimization is the max-min objective [Collins et al., 2020]; in
MRL, that would mean searching for a meta-policy with the highest expected-return in the worst
possible task. This expresses the most extreme risk aversion, which only attends to the one worst
case out of all the possible outcomes. Furthermore, in certain problems, worst cases are inevitable
(e.g., in certain medical treatments, a fatal outcome cannot be avoided), thus optimizing the minimum
return might not provide any meaningful result. A more general objective is the average return over
the worst α quantiles (0 ≤ α ≤ 1), also known as the Conditional Value-at-Risk (CVaR). Notice that
the CVaR is a generalization of both the mean (for α = 1) and the minimum (for α = 0).

CVaR is a coherent risk measure used for risk management in various fields [Filippi et al., 2020],
including banking regulation [Acerbi and Szekely, 2014] and RL [Tamar et al., 2015, Hiraoka et al.,
2019]. In this work, we extend CVaR optimization to MRL, by replacing the standard MRL objective

argmax
π

Jθ(R), Jθ(R) = Eτ,R[R], (1)

with a CVaR objective, which measures the robustness of a policy to high-risk tasks:

argmax
π

Jθ
α(R), Jθ

α(R) = CVaRατ [ER[R]] . (2)

In both equations, τ is a random task and R is the random return of policy πθ in τ . Intuitively, the
CVaR return expresses robustness to the selected task, in analogy to robustness to the realized model
in standard RL. To further motivate Eq. (2), note that CVaR optimization in RL is equivalent to robust
optimization under uncertain perturbations [Chow et al., 2015].

In Section 4, we follow the standard approach of policy gradient (PG) for CVaRα optimization in
RL, and apply it to MRL. That is, for every batch of N trajectories, we apply the learning step to
the αN trajectories with the lowest returns. This standard approach, CVaR-PG, is known to suffer
from a major limitation: in an actor-critic framework, the critic leads to a biased gradient estimator –
to the extent that it may point to the opposite direction [Tamar et al., 2015]. This limitation is quite
severe: many CVaR-PG implementations [Tamar et al., 2015, Greenberg et al., 2022] rely on vanilla
PG without a critic (REINFORCE, Williams [1992]); others pay the price of gradient bias – in favor
of advanced actor-critic methods that reduce the gradient variance [Rajeswaran et al., 2017].

This limitation is particularly concerning in meta RL, where high complexity and noise require more
sophisticated algorithms than REINFORCE. Fortunately, Section 4 eliminates this concern: in
MRL, in contrast to RL, the CVaR policy gradient is proven to remain unbiased regardless
of the choice of critic. Hence, our proposed method – CVaR Meta Learning (CVaR-ML) – can be
safely applied on top of any MRL algorithm. This makes CVaR-ML a meta-algorithm: given an
arbitrary MRL algorithm, CVaR-ML generates a robust version of it.

Nevertheless, in CVaR optimization methods, another source of gradients variance and sample
inefficiency is the large proportion of data not being utilized. Every iteration, we rollout trajectories
for N tasks, but only use αN of them for training. To mitigate this effect, we introduce in Section 5
the Robust Meta RL algorithm (RoML). RoML assumes that tasks can be selected during training. It
learns to identify tasks with lower returns and over-samples them. By training on high-risk tasks, the
meta-agent learns policies that are robust to them without discarding data. Hence, RoML increases
the sample efficiency by a factor of up to α−1α−1α−1. Unlike common adversarial methods, which search
for the worst-case sample (task) that minimizes the return [Collins et al., 2020], RoML lets the user
specify the desired level of robustness α, and addresses the entire α-tail of the return distribution.

We test our algorithms on several domains. Section 6.1 considers a navigation problem, where both
CVaR-ML and RoML obtain better CVaR returns than their risk-neutral baseline. Furthermore, they
learn substantially different navigation policies. Section 6.2 considers several continuous control
environments with varying tasks. These environments are challenging for CVaR-ML, which entirely
fails to learn. Yet, RoML preserves its effectiveness and consistently improves the robustness of the
returns. In addition, Section 6.3 demonstrates that under certain conditions, RoML can be applied to
supervised settings as well – providing robust supervised meta-learning.
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As a meta-algorithm, in each experiment RoML improves the robustness of its baseline algorithm
– using the same hyper-parameters as the baseline. The average return is also improved in certain
experiments, indicating that even the risk-neutral objective of Eq. (1) may benefit from robustness.

Contribution: (a) We propose a principled CVaR optimization framework for robust meta-RL. While
the analogous problem in standard RL suffers from biased gradients and data inefficiency, we (b)
prove theoretically that MRL is immune to the former, and (c) address the latter via the novel Robust
Meta RL algorithm (RoML). Finally, (d) we demonstrate the robustness of RoML experimentally.

2 Related Work

Meta-RL for the average task is widely researched, including methods based on gradients [Finn
et al., 2017, Gupta et al., 2018], latent memory [Zintgraf et al., 2019, Rakelly et al., 2019] and offline
meta learning [Dorfman et al., 2020, Pong et al., 2022]. It is used for applications ranging from
robotics [Nagabandi et al., 2018] to education [Wu et al., 2021]. Adversarial meta learning was
studied for minimax optimization of the lowest-return task, in supervised meta learning [Collins
et al., 2020, Goldblum et al., 2020] and MRL [Lin et al., 2020]. Other works studied the robustness
of MRL to distributional shifts [Mendonca et al., 2020, Ajay et al., 2022]. However, the CVaR task
objective has not been addressed yet in the framework of MRL.

Risk-averse RL. In standard RL, risk awareness is widely studied for both safety [García and
Fernández, 2015, Greenberg and Mannor, 2021] and robustness [Derman et al., 2020]. CVaR
specifically was studied using PG [Tamar et al., 2015, Rajeswaran et al., 2017, Hiraoka et al., 2019,
Huang et al., 2021a], value iteration [Chow et al., 2015] and distributional RL [Dabney et al., 2018,
Schubert et al., 2021, Lim and Malik, 2022]. CVaR optimization was also shown equivalent to mean
optimization under robustness [Chow et al., 2015], motivating robust-RL methods [Pinto et al., 2017,
Godbout et al., 2021]. In this work, we propose a meta-learning framework and algorithms for CVaR
optimization, and point to both similarities and differences from the standard RL setting.

Sampling. In Section 5, we use the cross-entropy method [de Boer et al., 2005] to sample high-risk
tasks for training. The cross-entropy method has been studied in standard RL for both optimization
[Mannor et al., 2003, Huang et al., 2021b] and sampling [Greenberg et al., 2022]. Sampling in RL was
also studied for regret minimization in the framework of Unsupervised Environment Design [Dennis
et al., 2020, Jiang et al., 2021]; and for accelerated curriculum learning in the framework of Contextual
RL [Klink et al., 2020, Eimer et al., 2021]. By contrast, we address MRL (where the current task is
unknown to the agent, unlike Contextual RL), and optimize the CVaR risk measure instead of the
mean.

3 Preliminaries

MRL. Consider a set of Markov Decision Processes (MDPs) {(S,A, τ,Pτ ,P0,τ , γ)}τ∈Ω, where
the distribution of transitions and rewards Pτ and the initial state distribution P0,τ both depend on
task τ ∈ Ω. The task itself is drawn from a distribution τ ∼ D over a general space Ω, and is not
known to the agent. The agent can form a belief regarding the current τ based on the task history h,
which consists of repeating triplets of states, actions and rewards [Zintgraf et al., 2019]. Thus, the
meta-policy πθ(a; s, h) (θ ∈ Θ) maps the current state s ∈ S and the history h ∈

∏
(S × A × R)

(consisting of state-action-reward triplets) to a probability distribution over actions.

A meta-rollout is defined as a sequence of K ≥ 1 episodes of length T ∈ N over a single task τ :
Λ = {{(sk,t, ak,t, rk,t)}Tt=1}Kk=1. For example, in a driving problem, τ might be a geographic area
or type of roads, and Λ a sequence of drives on these roads. The return of the agent over a meta-rollout
is defined as R(Λ) = 1

K

∑K
k=1

∑T
t=0 γ

trk,t, where rk,t is the (random variable) reward at step t in
episode k. Given a task τ and a meta-policy πθ, we denote by P θ

τ (x) the conditional PDF of the return
R. With a slight abuse of notation, we shall use P θ

τ (Λ) to also denote the PDF of the meta-rollout
itself. The standard MRL objective is to maximize the expected return Jθ(R) = Eτ,R[R].

While the meta policy πθ(s, a;h) is history-dependent, it can still be learned using standard policy
gradient (PG) approaches, by considering h as part of an extended state space s̃ = (s, h) ∈ S̃. Then,
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the policy gradient can be derived directly:

∇θJ
θ(R) =

∫
Ω

D(z)

∫ ∞

−∞
(x− b)∇θP

θ
z (x) · dx · dz, (3)

where D is a probability measure over the task space Ω, P θ
z (x) is the PDF of R (conditioned on

πθ and τ = z), and b is any arbitrary baseline that is independent of θ [Agrawal, 2019]. While
a direct gradient estimation via Monte Carlo sampling is often noisy, its variance can be reduced
by an educated choice of baseline b. In the common actor-critic framework [Mnih et al., 2016], a
learned value function b = V (s;h) is used. This approach is used in many SOTA algorithms in deep
RL, e.g., PPO [Schulman et al., 2017]; and by proxy, in MRL algorithms that rely on them, e.g.,
VariBAD [Zintgraf et al., 2019].

A major challenge in MRL is the extended state space S̃, which now includes the whole task history.
Common algorithms handle the task history via a low-dimensional embedding that captures transitions
and reward function [Zintgraf et al., 2019]; or using additional optimization steps w.r.t. task history
[Finn et al., 2017]. Our work does not compete with such methods, but rather builds upon them: our
methods operate as meta-algorithms that run on top of existing MRL baselines.

CVaR-PG. Before moving on to CVaR optimization in MRL, we first recap the common PG approach
for standard (non-meta) RL. For a random variable X and α-quantile qα(X), the CVaR is defined
as CVaRα(X) = E [X |X ≤ qα(X)]. For an MDP (S,A, P, P0, γ), the CVaR-return objective is

J̃θ
α(R) = CVaRαR∼P θ [R] =

∫ qθα(R)

−∞ x · P θ(x) · dx, whose corresponding policy gradient is [Tamar
et al., 2015]:

∇θJ̃
θ
α(R) =

∫ qθα(R)

−∞
(x− qθα(R)) · ∇θP

θ(x) · dx. (4)

Given a sample of N trajectories {{(si,t, ai,t)}Tt=1}Ni=1 with returns {Ri}Ni=1, the policy gradient
can be estimated by [Tamar et al., 2015, Rajeswaran et al., 2017]:

∇θJ̃
θ
α(R) ≈ 1

αN

N∑
i=1

111Ri≤q̂θα
· (Ri − q̂θα) ·

T∑
t=1

∇θ log πθ(ai,t; si,t), (5)

where q̂θα is an estimator of the current return quantile.

Notice that in contrast to mean-PG, in CVaR optimization the baseline cannot follow an arbitrary
critic, but should approximate the total return quantile qθα(R). Tamar et al. [2015] showed that any
baseline b ̸= qθα(R) inserts bias to the CVaR gradient estimator, potentially to the level of pointing to
the opposite direction (as discussed in Appendix A.1 and Fig. 6). As a result, CVaR-PG methods in
RL either are limited to basic REINFORCE with a constant baseline [Greenberg et al., 2022], or use
a critic for variance reduction at the cost of biased gradients [Rajeswaran et al., 2017].

Another major source of gradient-variance in CVaR-PG is its reduced sample efficiency: notice that
Eq. (5) only exploits ≈ αN trajectories out of each batch of N trajectories (due to the term 111Ri≤q̂θα

),
hence results in estimation variance larger by a factor of α−1.

4 CVaR Optimization in Meta-Learning

In this section, we show that unlike standard RL, CVaR-PG in MRL permits a flexible baseline
without presenting biased gradients. Hence, policy gradients for CVaR objective in MRL is
substantially different from both mean-PG in MRL (Eq. (3)) and CVaR-PG in RL (Eq. (4)).

To derive the policy gradient, we first define the policy value per task and the tail of tasks.

Definition 1. The value of policy πθ in task τ is denoted by V θ
τ = ER∼P θ

τ
[R]. Notice that V θ

τ
depends on the random variable τ . We define the α-tail of tasks w.r.t. πθ as the tasks with the lowest
values: Ωθ

α = {z ∈ Ω |V θ
z ≤ qα(V

θ
τ )}.

Assumption 1. To simplify integral calculations, we assume that for any z ∈ Ω and θ ∈ Θ, R is a
continuous random variable (i.e., its conditional PDF P θ

z (x) has no atoms). We also assume that
v(z) = V θ

z is a continuous function for any θ ∈ Θ.

4



Theorem 1 (Meta Policy Gradient for CVaR). Under Assumption 1, the policy gradient of the CVaR
objective in Eq. (2) is

∇θJ
θ
α(R) =

∫
Ωθ

α

D(z)

∫ ∞

−∞
(x− b)∇θP

θ
z (x) · dx · dz, (6)

where b is any arbitrary baseline independent of θ.

Proof intuition (the formal proof is in Appendix A). In RL, the CVaR objective measures the α
lowest-return trajectories. When the policy is updated, the cumulative probability of these tra-
jectories changes and no longer equals α. Thus, the new CVaR calculation must add or remove
trajectories (as visualized in Fig. 6 in the appendix). This adds a term in the gradient calculation,
which causes the bias in CVaR-PG. By contrast, in MRL, the CVaR measures the α lowest-return
tasks Ωθ

α. Since the task distribution does not depend on the policy, the probability of these tasks is
not changed – but only the way they are handled by the agent (Fig. 7). Thus, no bias term appears
in the calculation. Note that Ωθ

α does change throughout the meta-learning – due to changes in task
values (rather than task probabilities); this is a different effect and is not associated with gradient
bias.

According to Theorem 1, the CVaR PG in MRL permits any baseline b. As discussed in Section 3,
this flexibility is necessary, for example, in any actor-critic framework.

To estimate the gradient from meta-rollouts of the tail tasks, we transform the integration of Eq. (6)
into an expectation:
Corollary 1. Eq. (6) can be written as

∇θJ
θ
α(R) = Eτ∼D

[
EΛ∼P θ

τ
[g(Λ)]

∣∣∣ V θ
τ ≤ qα(V

θ
τ )

]
, (7)

where g(Λ) = (R(Λ) − b)
∑

1≤k≤K,
1≤t≤T

∇θ log πθ(ak,t; s̃k,t); and s̃k,t = (sk,t, hk,t) is the extended

state (that includes all the task history hk,t until trajectory k, step t).

Proof. We apply the standard log trick∇θP
θ
z = P θ

z ·∇θ logP
θ
z to Eq. (6), after substituting the meta-

rollout PDF: P θ
z (Λ) =

∏K
k=1

[
P0,z(sk,0) ·

∏T
t=1 Pz(sk,t+1, rk,t | sk,t, ak,t)πθ(ak,t; s̃k,t)

]
.

For a practical Monte-Carlo estimation of Eq. (7), given a task zi, we need to estimate whether
V θ
zi ≤ qα(V

θ
τ ). To estimate V θ

zi , we can generate M i.i.d meta-rollouts with returns {Ri,m}Mm=1,
and calculate their average return V̂ θ

zi = Ri =
∑M

m=1 Ri,m/M . Then, the quantile qα(V
θ
τ ) can

be estimated over a batch of tasks q̂α = qα({Ri}Ni=1). If V̂ θ
zi ≤ q̂α, we use all the meta-rollouts

of zi for the gradient calculation (including meta-rollouts that by themselves have a higher return
Ri,m > q̂α). Notice that we use M i.i.d meta-rollouts, each consisting of K episodes (the episodes
within a meta-rollout are not independent, due to agent memory).

Putting it together, we obtain the sample-based gradient estimator of Eq. (7):

∇θJ
θ
α(R) ≈ 1

αN

N∑
i=1

111Ri≤q̂θα

M∑
m=1

gi,m,

gi,m := (Ri,m − b)

K∑
k=1

T∑
t=1

∇θ log πθ(ai,m,k,t; s̃i,m,k,t),

(8)

where ai,m,k,t, s̃i,m,k,t are the action and the state-and-history at task i, meta-rollout m, trajectory k
and step t.

The procedure described above follows the principles of CVaR-PG in (non-meta) RL, as the learning
rule is only applied to the tail of the sampled batch. However, in MRL we consider a batch of tasks
rather than a batch of trajectories. As discussed in Theorem 1 and its proof, this distinction has a
substantial impact on the gradient and the resulting algorithm. Specifically, Eq. (8) allows for greater
flexibility than Eq. (4), as it permits any baseline b that does not depend on θ. This allows gradient
calculation using any PG algorithm, including SOTA methods such as PPO [Schulman et al., 2017]
(which are already used in MRL methods such as VariBAD Zintgraf et al. [2019]). Therefore, in
contrast to standard RL, CVaR optimization is not restricted to basic REINFORCE.
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Algorithm 1: CVaR Meta Learning (CVaR-ML)
1 Input: Meta-learning algorithm (Definition 2);

robustness level α ∈ (0, 1]; task distribution D;
N tasks per batch; M meta-rollouts per task

2 while not finished training do
// Sample tasks

3 Sample {zi}Ni=1 ∼ D
// Run meta-rollouts

4 {{Λi,m}Mm=1}Ni=1 ← rollouts({zi}Ni=1, M)
5 Ri,m ← return(Λi,m), ∀i, m

// Compute sample quantile
6 Ri ← mean({Ri,m}Mm=1), ∀i
7 q̂α ← quantile({Ri}Ni=1, α)

// Meta-learning algorithm train step
8 ML

(
{Λi,m | Ri ≤ q̂α, 1 ≤ m ≤M}

)

Our CVaR Meta Learning method (CVaR-
ML, Algorithm 1) leverages this property
to operate as a meta-algorithm, providing a
robust version for any given baseline algo-
rithm, such as Finn et al. [2017], Zintgraf et al.
[2019]:

Definition 2. A baseline MRL algorithm
learns a meta-policy πθ using a training step
ML. Given a batch of meta-rollouts {Λi},
ML({Λi}) updates πθ.

Notice that CVaR-ML only handles task filter-
ing, and uses the baseline training step ML as
a black box (Line 8). Hence, it can be used
with any MRL baseline – not just PG methods.
In fact, by using a supervised meta-learning
baseline, CVaR-ML can be applied to the su-

pervised setting as well with minimal modifications, namely, replacing meta-rollouts with examples
and returns with losses.

5 Efficient CVaR-ML

Theorem 1 guarantees unbiased gradients when using Algorithm 1; however, it does not bound their
variance. In particular, Line 8 applies the learning step to a subset of only αNM meta-rollouts out of
NM , which increases the estimator variance by a factor of α−1 compared to mean optimization. This
could be prevented if we knew the set Ωθ

α of tail-tasks (for the current πθ), and sampled only these
tasks, using the distribution Dθ

α(z) = α−1111V θ
z ≤qα(V θ

τ )D(z). Proposition 1 shows that this would
indeed recover the sample efficiency.

Proposition 1 (Variance reduction). Denote by G the estimator of∇θJ
θ
α(R) in Eq. (8), assume there

is no quantile error (q̂θα = qθα), and denote ED[·] = Ezi∼D,Ri,m∼P θ
zi
[·]. Then, switching the task

sample distribution to Dθ
α leads to a variance reduction of factor α:

EDθ
α
[αG] = ED[G], VarDθ

α
(αG) ≤ α ·VarD(G).

Proof sketch (the complete proof is in Appendix B). We calculate the expectation and variance di-
rectly. G is proportional to 111Ri≤qθα

(Eq. (8)). The condition Ri ≤ qθα leads to multiplication by the
probability α when sampled from D (where it corresponds to the α-tail); but not when sampled from
Dθ

α (where it is satisfied w.p. 1). This factor α cancels out the ratio between the expectations of G
and αG (thus the expectations are identical) – but not the ratio α2 between their variances.

Figure 2: Left: RoML uses the cross entropy method to modify the task distribution Dϕ, which is used to
generate the next meta-rollouts. Right: illustration of an arbitrary point of time in training: the task distribution
Dϕ (blue) is learned according to the task values of the current meta-policy πθ (red). Since low-return tasks are
over-sampled, the learned meta-policy is more robust to the selection of task.
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Following the motivation of Proposition 1, we wish to increase the number of train tasks that come
from the tail distribution Ωθ

α. To that end, we assume to have certain control over the sampling
of training tasks. This assumption is satisfied in most simulated environments, as well as many
real-world scenarios. For example, when training a driver, we choose the tasks, roads and times of
driving throughout training. In this section, we propose a method to make these choices.

We begin with parameterizing the task distribution D: we consider a parametric family Dϕ such
that D = Dϕ0

. Then, we wish to modify the parameter ϕ so that Dϕ aligns with Dθ
α as closely as

possible. To that end, we use the Cross Entropy Method (CEM, de Boer et al. [2005]), which searches
for ϕ∗ that minimizes the KL-divergence (i.e., cross entropy) between the two:

ϕ∗ ∈ argminϕ′ DKL

(
Dθ

α ||Dϕ′
)
= argmaxϕ′ Ez∼Dϕ0

[
111V θ

z ≤qα(V θ
τ ) logDϕ′(z)

]
= argmaxϕ′ Ez∼Dϕ

[
w(z) 111V θ

z ≤qα(V θ
τ ) logDϕ′(z)

]
,

(9)

where w(z) = Dϕ0
(z)

Dϕ(z)
is the importance sampling weight corresponding to z ∼ Dϕ. Note that Eq. (9)

has a closed-form solution for most of the standard families of distributions [de Boer et al., 2005].

Algorithm 2: Robust Meta RL (RoML)
1 Input: Meta-learning algorithm (Definition 2);

robustness level α ∈ (0, 1]; parametric task
distribution Dϕ; original parameter ϕ0; N tasks per
batch, ν ∈ [0, 1) of them sampled from the original
Dϕ0

; CEM quantile β ∈ (0, 1)

2 Initialize:
3 ϕ← ϕ0, No ← ⌊νN⌋, Ns ← ⌈(1− ν)N⌉
4 while not finished training do

// Sample tasks
5 Sample {zo,i}No

i=1 ∼ Dϕ0
, {zϕ,i}Ns

i=1 ∼ Dϕ

6 z ← (zo,1, . . . , zo,No
, zϕ,1, . . . , zϕ,Ns

)
// Rollouts and meta-learning step

7 {Λi}Ni=1 ← rollout({zi}Ni=1)
8 Ri ← return(Λi), ∀i ∈ {1, . . . , N}
9 ML({Λi}Ni=1)

// Estimate reference quantile
10 wo,i ← 1, ∀i ∈ {1, . . . , No}
11 wϕ,i ←

Dϕ0
(zϕ,i)

Dϕ(zϕ,i)
, ∀i ∈ {1, . . . , Ns}

12 w ← (wo,1, . . . , wo,No
, wϕ,1, . . . , wϕ,Ns

)
13 q̂α ← weighted_quantile({Ri}, w, α)

// Compute sample quantile
14 qβ ← quantile({Ri}, β)

// Update sampler
15 q ← max(q̂α, qβ)
16 ϕ← argmaxϕ′

∑
i≤Nwi 111Ri≤q logDϕ′(zi)

For a batch of N tasks sampled from D =
Dϕ0 , Eq. (9) essentially chooses the αN
tasks with the lowest returns, and updates
ϕ to focus on these tasks. This may be
noisy unless αN ≫ 1. Instead, the CEM
chooses a larger number of tasks β > α for
the update, where β is a hyper-parameter.
ϕ is updated according to these βN lowest-
return tasks, and the next batch is sampled
from Dϕ ̸= Dϕ0

. This repeats iteratively:
every batch is sampled from Dϕ, where
ϕ is updated according to the βN lowest-
return tasks of the former batch. Each task
return is also compared to the α-quantile of
the original distribution Dϕ0

. If more than
βN tasks yield lower returns, the CEM
permits more samples for the update step.
The return quantile over Dϕ0

can be esti-
mated from Dϕ at any point using impor-
tance sampling weights. See more details
about the CEM in Appendix C.1.

In our problem, the target distribution is the
tail of Dϕ0

. Since the tail is defined by the
agent returns in these tasks, it varies with
the agent and is non-stationary throughout
training. Thus, we use the dynamic-target
CEM of Greenberg [2022]. To smooth the
changes in the sampled tasks, the sampler
is also regularized to always provide certain

exposure to all the tasks: we force ν percent of every batch to be sampled from the original distribution
D = Dϕ0 , and only 1− ν percent from Dϕ.

Putting this together, we obtain the Robust Meta RL algorithm (RoML), summarized in Algorithm 2
and Fig. 2. RoML does not require multiple meta-rollouts per update (parameter M in Algorithm 1),
since it directly models high-risk tasks. Similarly to CVaR-ML, RoML is a meta-algorithm and can
operate on top of any meta-learning baseline (Definition 2). Given the baseline implementation, only
the tasks sampling procedure needs to be modified, which makes RoML easy to implement.

Limitations: The CEM’s adversarial tasks sampling relies on several assumptions. Future research
may reduce some of these assumptions, while keeping the increased data efficiency of RoML.

First, as mentioned above, we need at least partial control over the selection of training tasks. This
assumption is common in other RL frameworks [Dennis et al., 2020, Jiang et al., 2021], and often
holds in both simulations and the real world (e.g., choosing in which roads and hours to train driving).
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Second, the underlying task distribution D is assumed to be known, and the sample distribution is
limited to the chosen parameterized family {Dϕ}. For example, if τ ∼ U([0, 1]), the user may choose
the family of Beta distributions Beta(ϕ1, ϕ2) (where Beta(1, 1) ≡ U([0, 1])), as demonstrated in
Appendix D.2. The selected family expresses implicit assumptions on the task-space. For example, if
the probability density function is smooth, close tasks will always have similar sample probabilities;
and if the family is unimodal, high-risk tasks can only be over-sampled from around a single peak.
This approach is useful for generalization across continuous task-spaces – where the CEM can never
observe the infinitely many possible tasks. Yet, it may pose limitations in certain discrete task-spaces,
if there is no structured relationship between tasks.

6 Experiments

We implement RoML and CVaR-ML on top of two different risk-neutral MRL baselines –
VariBAD [Zintgraf et al., 2019] and PEARL [Rakelly et al., 2019]. As a risk-averse reference
for comparison, we use CeSoR [Greenberg et al., 2022], an efficient sampling-based method for
CVaR optimization in RL, implemented on top of PPO. As another reference, we use the Unsuper-
vised Environment Design algorithm PAIRED [Dennis et al., 2020], which uses regret minimization
to learn robust policies on a diverse set of tasks.

Section 6.1 demonstrates the mean/CVaR tradeoff, as our methods learn substantially different
policies from their baseline. Section 6.2 demonstrates the difficulty of the naive CVaR-ML in more
challenging control benchmarks, and the RoML’s efficacy in them. The ablation test in Appendix D.4
demonstrates that RoML deteriorates significantly when the CEM is replaced by a naive adversarial
sampler. Section 6.3 presents an implementation of CVaR-ML and RoML on top of MAML [Finn
et al., 2017] for supervised meta-learning. In all the experiments, the running times of RoML and
CVaR-ML are indistinguishable from their baselines (RoML’s CEM computations are negligible).

Hyper-parameters: To test the practical applicability of RoML as a meta-algorithm, in every
experiment, we use the same hyper-parameters for RoML, CVaR-ML and their baseline. In
particular, we use the baseline’s default hyper-parameters whenever applicable (Zintgraf et al. [2019],
Rakelly et al. [2019] in Section 6.2, and Finn et al. [2017] in Section 6.3). That is, we use the
same hyper-parameters as originally tuned for the baseline, and test whether RoML improves the
robustness without any further tuning of them. As for the additional hyper-parameters of the meta-
algorithm itself: in Algorithm 1, we use M = 1 meta-rollout per task; and in Algorithm 2, we use
β = 0.2, ν = 0 unless specified otherwise (similarly to the CEM in Greenberg et al. [2022]). For
the references PAIRED and CeSoR, we use the hyper-parameters of Dennis et al. [2020], Greenberg
et al. [2022]. Each experiment is repeated for 30 seeds. See more details in Appendix D. The code is
available in our repositories: VariBAD, PEARL, CeSoR, PAIRED and MAML.

6.1 Khazad Dum

We demonstrate the tradeoff between mean and CVaR optimization in the Khazad Dum benchmark,
visualized in Fig. 3. The agent begins at a random point in the bottom-left part of the map, and has to
reach the green target as quickly as possible, without falling into the black abyss. The bridge is not
covered and thus is exposed to wind and rain, rendering its floor slippery and creating an additive
action noise (Fig. 3b) – to a level that varies with the weather. Each task is characterized by the rain
intensity, which is exponentially distributed. The CEM in RoML is allowed to modify the parameter
of this exponential distribution. Note that the agent is not aware of the current task (i.e, the weather),
but may infer it from observations. We set the target risk level to α = 0.01, and train each meta-agent
for a total of 5 · 106 frames. See complete details in Appendix D.1.

We implement CVaR-ML and RoML on top of VariBAD. As shown in Fig. 3, VariBAD learns to try
the short path – at the risk of rare falls into the abyss. By contrast, our CVaR-optimizing methods
take the longer path and avoid risk. This policy increases the cumulative cost of time-steps, but leads
to higher CVaR returns, as shown in Fig. 3f. In addition to superior CVaR, RoML also provides
competitive average returns in this example (Fig. 3e). Finally, in accordance with Proposition 1,
RoML learns significantly faster than CVaR-ML.
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(a) VariBAD (b) VariBAD

(c) CVaR-ML (d) RoML

(e) Mean (f) CVaR

Figure 3: Khazad-Dum: (a-d) Sample episodes.
(e-f) Test return vs. training iteration, with 95% con-
fidence intervals over 30 seeds.

(a) Hum-Mass
(VariBAD)

(b) HalfCheetah-Body

(c) Hum-Mass
(RoML) (d) HalfCheetah-Mass

Figure 4: MuJoCo: (a-c) Sample frames, where
tasks vary in mass, head size and damping level. No-
tice that in Humanoid, RoML handles the low-return
tasks of large mass by leaning the center of mass
forward, so that gravity pulls the humanoid forward.
(d) Average return per range of tasks in HalfCheetah-
Mass. RoML learns to act robustly: it is less sensitive
to the task, and in particular performs better on high-
risk tasks.

6.2 Continuous Control

We rely on standard continuous control problems from the MuJoCo framework [Todorov et al.,
2012]: training a cheetah to run (HalfCheetah), and training a Humanoid and an Ant to walk. For
each of the 3 environments, we create 3 meta-learning versions: (1) Goal or Vel [Finn et al., 2017],
where each task corresponds to a different location or velocity objective, respectively; (2) Mass,
where each task corresponds to a different body mass; and (3) Body, where each task corresponds to
different mass, head size and physical damping level (similarly to Wang and Van Hoof [2022]). In
addition, to experiment with high-dimensional task spaces, we randomly draw 10 numeric variables
from env.model in HalfCheetah, and let them vary between tasks. We define 3 such environments
with different random sets of task variables (HalfCheetah 10D-task a,b,c). For each of the 12
environments above, we set a target risk level of α = 0.05 and optimize for K = 2 episodes per task.
Additional implementation details are specified in Appendix D.2.

Interestingly, the naive approach of CVaR-ML consistently fails to meta-learn in all the cheetah
environments. It remains unsuccessful even after large number of steps, indicating a difficulty beyond
sample inefficiency. A possible explanation is the effectively decreased batch size of CVaR-ML.
PAIRED and CeSoR also fail to adjust to the MRL environments, and obtain poor CVaR returns.

RoML, on the other hand, consistently improves the CVaR returns (Table 1) compared to its baseline
(VariBAD or PEARL), while using the same hyper-parameters as the baseline. The VariBAD baseline
presents better returns and running times than PEARL on HalfCheetah, and thus is used for the 6
extended environments (Humanoid and Ant). RoML improves the CVaR return in comparison to the
baseline algorithm in all the 18 experiments (6 with PEARL and 12 with VariBAD).

In 5 out of 18 experiments, RoML slightly improves the average return compared to its baseline, and
not only the CVaR (Table 2 in the appendix). This indicates that low-return tasks can sometimes be
improved at the cost of high-return tasks, but without hurting average performance. In addition, this
may indicate that over-sampling difficult tasks forms a helpful learning curriculum.

The robustness of RoML to the selected task is demonstrated in Fig. 4d. In multi-dimensional task
spaces, RoML learns to focus the sampling modification on the high-impact variables, as demonstrated
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Table 1: CVaR0.05 return over 1000 test tasks, for different models and MuJoCo environments.
Standard deviation is presented over 30 seeds. Mean returns are displayed in Table 2.

HalfCheetah HalfCheetah 10D-task
Vel Mass Body (a) (b) (c)

CeSoR −2606± 25 902± 36 478± 27 637± 26 981± 31 664± 26
PAIRED −725± 65 438± 37 218± 51 229± 59 354± 53 81± 65
CVaR-ML −897± 23 38± 6 76± 5 120± 11 141± 11 81± 4
PEARL −1156± 23 1115± 19 800± 5 1140± 33 1623± 23 1016± 51016± 51016± 5
VariBAD −202± 6 1072± 16 835± 30 1126± 6 1536± 39 988± 13
RoML (VariBAD) −184± 4−184± 4−184± 4 1259± 191259± 191259± 19 935± 17935± 17935± 17 1227± 131227± 131227± 13 1697± 241697± 241697± 24 999± 20
RoML (PEARL) −1089± 31 1186± 34 808± 6 1141± 27 1657± 181657± 181657± 18 1024± 61024± 61024± 6

Humanoid Ant
Vel Mass Body Goal Mass Body

VariBAD 801± 10 1283± 18 1290± 19 −500± 9 1370± 6 1365± 41365± 41365± 4
RoML (VariBAD) 833± 4833± 4833± 4 1378± 201378± 201378± 20 1365± 211365± 211365± 21 −454± 8−454± 8−454± 8 1385± 31385± 31385± 3 1368± 41368± 41368± 4

in Fig. 11 in the appendix. Finally, qualitative inspection shows that RoML learns to handle larger
masses, for example, by leaning forward and letting gravity pull the agent forward, as displayed in
Fig. 4c (see animations on GitHub).

6.3 Beyond RL: Robust Supervised Meta-Learning

Figure 5: Supervised Sine Regression:
CVaR loss over 10000 test tasks, against
the number of tuning gradient-steps at
test time. The 95% confidence intervals
are calculated over 30 seeds.

Our work focuses on robustness in MRL. However, the concept
of training on harder data to improve robustness, as embod-
ied in RoML, is applicable beyond the scope of RL. As a
preliminary proof-of-concept, we apply RoML to a toy super-
vised meta-learning problem of sine regression, based on Finn
et al. [2017]: The input is x ∈ [0, 2π), the desired output is
y = A sin(ωx+ b), and the task is defined by the parameters
τ = (A, b, ω). Similarly to Finn et al. [2017], the model is
fine-tuned for each task via a gradient-descent optimization
step over 10 samples {(xi, yi)}10i=1, and is tested on another
set of 10 samples. The goal is to find model weights that adapt
quickly to new task data.

We implement CVaR-ML and RoML on top of MAML [Finn et al., 2017]. As shown in Fig. 5, RoML
achieves better CVaR losses over tasks than both CVaR-ML and MAML. The complete setting and
results are presented in Appendix E.

7 Summary and Future Work

We defined a robust MRL objective and derived the CVaR-ML algorithm to optimize it. In contrast to
its analogous algorithm in standard RL, we proved that CVaR-ML does not present biased gradients,
yet it does inherit the same data inefficiency. To address the latter, we introduced RoML and
demonstrated its advantage in sample efficiency and CVaR return.

Future research may address the CEM-related limitations of RoML discussed at the end of Section 5.
Another direction for future work is extension of RoML to other scenarios, especially where a
natural task structure can be leveraged to improve task robustness, e.g., in supervised learning and
coordinate-based regression [Tancik et al., 2020].

Finally, RoML is easy to implement, operates agnostically as a meta-algorithm on top of existing
MRL methods, and can be set to any desired robustness level. We believe that these properties, along
with our empirical results, make RoML a promising candidate for MRL in risk-sensitive applications.

Acknowledgements: This work has received funding from the European Union’s Horizon Europe
Programme, under grant number 101070568.
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A Policy Gradient for CVaR Optimization in Meta RL

In this section we provide the complete proof for Theorem 1. For completeness, Appendix A.1 recaps
of the analogous proof in standard (non-meta) RL, before moving on to the proof in Appendix A.2.
This allows us to highlight the differences between the two.

The substantial difference is that in RL, the CVaR is defined directly over the low-return trajectories,
and the policy parameter θ affects the probability of each trajectory in the tail (Eq. (10)). In MRL
(Eq. (2)), on the other hand, the CVaR is defined over the low-return tasks, whose probability is
not affected directly by θ (Eq. (12)). This allows a decoupling between θ and τ , which results in
Theorem 1.

Another high-level intuition is as follows. In RL, the CVaR-PG gradient is invariant to successful
strategies, hence must be explicitly negative for the unsuccessful ones (in order not to encourage
them, see Fig. 6). In MRL, within the tasks of interest, the gradient always encourages successful
strategies on account of the unsuccessful ones (Fig. 7).

A.1 Recap: PG for CVaR in (non-meta) RL

We briefly recap the calculation of Propositions 1 and 2 in Tamar et al. [2015] for CVaR policy
gradient under the standard RL settings.
Definition 3 (CVaR return in (non-meta) RL). Consider an MDP (S,A, P, γ, P0) with the cumulative
reward (i.e., return) R ∼ P θ, whose α-quantile is qθα(R). Recall the CVaR objective defined in
Section 3:

J̃θ
α(R) = CVaRαR∼P θ [R] =

∫ qθα(R)

−∞
x · P θ(x) · dx

To calculate the policy gradient of J̃θ
α(R), we begin with the conservation of probability mass below

the quantile qθα: ∫ qθα(R)

−∞
P θ(x)dx ≡ α.

Then, using the Leibniz integral rule, we have

0 = ∇θ

∫ qθα(R)

−∞
P θ(x)dx =

[∫ qθα(R)

−∞
∇θP

θ(x)dx

]
+

[
P θ(qθα(R)) · ∇θq

θ
α(R)

]
. (10)

Notice that as a particular consequence of the conservation rule Eq. (10), positive gradients of P θ(x)
cause the quantile qθα(R) to decrease. This phenomenon makes the CVaR policy gradient sensitive to
the selection of baseline, as visualized in Fig. 6b. In fact, the quantile qθα(R) itself is the only baseline
that permits unbiased gradients:

∇θJ̃
θ
α(R) = ∇θ

∫ qθα(R)

−∞
x · P θ(x) · dx =[∫ qθα(R)

−∞
x · ∇θP

θ(x)dx

]
+

[
qθα(R) · P θ(qθα(R)) · ∇θq

θ
α(R)

]Eq. (10)︷︸︸︷
=[∫ qθα(R)

−∞
x · ∇θP

θ(x)dx

]
−

[
qθα(R) ·

∫ qθα(R)

−∞
∇θP

θ(x)dx

]
=

∫ qθα(R)

−∞
(x− qθα(R)) · ∇θP

θ(x)dx,

(11)

which gives us Eq. (4).

A.2 PG for CVaR in Meta RL

We now turn to PG for CVaR optimization in MRL. We rely on the definitions and notations of
Section 3, as well as Definition 1 and Assumption 1 in Section 4. Notice that Jθ

α(R) of Eq. (2) can be
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(a) Mean PG

(b) CVaR PG, Eq. (4)

Figure 6: Illustration of the policy gradient estimation in standard RL. (a) In Mean PG, the expected gradient is
independent of the baseline: even if most of the distribution Pπθ seems to be "pushed upwards", its normalization
to a total probability of 1 forces the probability of low returns to decrease for that of high returns will increase.
(b) In CVaR PG, due to the effect of Eq. (10), any baseline except for qθα(R) leads to biased gradients.

written in integral form as

Jθ
α(R) = CVaRατ∼D

[
ER∼P θ

τ
[R]

]
=

∫
Ωθ

α

D(z)

∫ ∞

−∞
x · P θ

z (x) · dx · dz.

In Eq. (11) above, the boundary of the integral over the α-tail is simply the scalar qθα. In MRL, this is
replaced by the boundary of the set Ωθ

α, defined in a general topological space. Thus, we begin by
characterizing this boundary.
Lemma 1 (The boundary of Ωθ

α). Under Assumption 1, ∀z ∈ ∂Ωθ
α :

∫∞
−∞ x ·P θ

z (x) · dx = qα(V
θ
τ ).

Proof. Since v(z) = V θ
z is a continuous function between topological spaces, by denoting B =

(−∞, qα(V
θ
τ )] we have

∂Ωθ
α = ∂v−1(B)

continuous v︷︸︸︷
⊆ v−1(∂B) = v−1({qα(V θ

τ )}) = {z ∈ Ω |V θ
z = qα(V

θ
τ )},

hence ∀z ∈ ∂Ωθ
α : V θ

z = qα(V
θ
τ ). Notice that V θ

z =
∫∞
−∞ xP θ

z (x) · dx.

Finally, we can prove Theorem 1.

Proof of Theorem 1. First, we consider the conservation of probability:∫
Ωθ

α

D(z)dz ≡ α

The gradient of this integral can be calculated using a high-dimensional generalization of the Leibniz
integral rule, named Reynolds Transport Theorem (RTT, Tromba and Marsden [1996]):

0

derivative of
a constant︷︸︸︷

= ∇θ

∫
Ωθ

α

D(z)dz
RTT︷︸︸︷
=

∫
Ωθ

α

∇θD(z)dz +

∫
∂Ωθ

α

D(z) · (vb · n) · dA

∇θD(z)≡0︷︸︸︷
=

∫
∂Ωθ

α

D(z) · (vb · n) · dA,

(12)

where n(z, θ) is the outward-pointing unit vector that is normal to the surface ∂Ωθ
α, and vb(z, θ) is

the velocity of the area element on the surface with area dA. Notice that ∇θD(z) ≡ 0 in the last
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Figure 7: Illustration of the meta policy gradient estimation. In Mean meta-PG (left, Eq. (3)), the PG is
estimated for all tasks. In CVaR meta-PG (center, Eq. (6)), it is only calculated over the low-return tasks. Since
the returns distribution is decoupled from the tasks distribution, shifting the baseline (right) does not insert bias
to the PG, in accordance with Theorem 1.

equality expresses a substantial difference from the standard RL settings in Eq. (10): there, we have
∇θP

θ(x), which does not necessarily vanish.

Next, we turn to the meta policy gradient itself, again using Reynolds Transport Theorem:

∇θJ
θ
α(R) = ∇θ

∫
Ωθ

α

D(z)

∫ ∞

−∞
xP θ

z (x) · dx · dz
RTT︷︸︸︷
=[∫

Ωθ
α

D(z)

∫ ∞

−∞
x∇θP

θ
z (x) · dx · dz

]
+

[∫
∂Ωθ

α

D(z)

(∫ ∞

−∞
xP θ

z (x) · dx
)
· (vb · n) · dA

]
Lemma 1︷︸︸︷

=[∫
Ωθ

α

D(z)

∫ ∞

−∞
x∇θP

θ
z (x) · dx · dz

]
+

[
qα(V

θ
τ )

∫
∂Ωθ

α

D(z) · (vb · n) · dA

]
Eq. (12)︷︸︸︷
=∫

Ωθ
α

D(z)

∫ ∞

−∞
x∇θP

θ
z (x) · dx · dz.

(13)
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Finally, we show that any θ-independent additive baseline (highlighted in the equation) does not
change the gradient calculation:∫
Ωθ

α

D(z)

∫ ∞

−∞
(x−b)∇θP

θ
z (x) · dx · dz =[∫

Ωθ
α

D(z)

∫ ∞

−∞
x∇θP

θ
z (x) · dx · dz

]
−

[∫
Ωθ

α

D(z)

∫ ∞

−∞
b∇θP

θ
z (x) · dx · dz

]
=

[∫
Ωθ

α

D(z)

∫ ∞

−∞
x∇θP

θ
z (x) · dx · dz

]
−

[∫
Ωθ

α

D(z) · b · ∇θ

(∫ ∞

−∞
P θ
z (x) · dx

)
· dz

] ∫ ∞
−∞ P θ

z (x)dx≡1︷︸︸︷
=[∫

Ωθ
α

D(z)

∫ ∞

−∞
x∇θP

θ
z (x) · dx · dz

]
− 0 = ∇θJ

θ
α(R),

(14)

which completes the proof. Notice that we used the identity∇θ

∫∞
−∞ P θ

z (x)dx = ∇θ1 = 0; this does

not hold for the analogous term in the standard RL settings in Eq. (10), ∇θ

∫ qθα(x)

−∞ P θ(x)dx, whose
gradient depends on∇θq

θ
α(x) according to the Leibniz integral rule.

B Proof of Proposition 1

Proof. Recall that by Eq. (8), G = 1
αN

∑N
i=1 111Ri≤q̂θα

∑M
m=1 gi,m. Denoting Gi =

∑M
m=1 gi,m and

substituting q̂θα = qθα, we have

G =
1

N

N∑
i=1

α−1111Ri≤qθα
Gi.

Expectation: Since {Gi} are i.i.d, and using the law of total probability, we obtain

ED[α−1111Ri≤qθα
Gi] =α ·

(
α−1 · 1 · ED[G1 |R1 ≤ qθα]

)
+ (1− α) ·

(
α−1 · 0 · ED[G1 |R1 > qθα]

)
=ED[G1 |R1 ≤ qθα].

By switching the task sample distribution to Dθ
α, and using the definition of Dθ

α, we simply have

EDθ
α
[α−1111Ri≤qθα

Gi] = α−1EDθ
α
[G1] = α−1ED[G1 |R1 ≤ qθα].

Together, we obtain EDθ
α
[αG] = ED[G] as required.

Variance: For the original distribution, since {Gi} are i.i.d, we have

N ·VarD(G) = VarD(α−1111R1≤qθα
G1)

= ED[α−2111R1≤qθα
G2

1]− ED[α−1111R1≤qθα
G1]

2

= ED[αα−2G2
1 |R1 ≤ qθα]− ED[αα−1G1 |R1 ≤ qθα]

2

= α−1EDθ
α
[G2

1]− EDθ
α
[G1]

2

≥ α−1(EDθ
α
[G2

1]− EDθ
α
[G1]

2)

= α−1VarDθ
α
(G1).

For the tail distribution Dθ
α, however,

N ·VarDθ
α
(αG) = α2VarDθ

α
(α−1111R1≤qθα

G1) = VarDθ
α
(G1),

which completes the proof.
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C The Cross Entropy Method

C.1 Background

The Cross Entropy Method (CEM, de Boer et al. [2005]) is a general approach to rare-event sampling
and optimization. In this work, we use its sampling version to sample high-risk tasks from the tail of
D. As described in Section 5, the CEM repeatedly samples from the parameterized distribution Dϕ,
and updates ϕ according to the β-tail of the sampled batch. Since every iteration focuses on the tail of
its former, we intuitively expect exponential convergence to the tail of the original distribution. While
theoretical convergence analysis does not guarantee the exponential rate [de Mello and Rubinstein,
2003], practically, the CEM often converges within several iterations. For clarity, we provide the
pseudo-code for the basic CEM in Algorithm 3. In this version, the CEM repeatedly generates
samples from the tail of the given distribution Dϕ0

.

Algorithm 3: The Cross Entropy Method (CEM)
1 Input: distribution Dϕ0

; score function R; target level q; batch size N ; CEM quantile β.

2 ϕ← ϕ0

3 while true do
// Sample

4 Sample z ∼ DN
ϕ

5 wi ← Dϕ0(zi)/Dϕ(zi) (1 ≤ i ≤ N)
6 Print z

// Update
7 q′ ← max

(
q, qβ

(
{R(zi)}Ni=1

))
8 ϕ← argmaxϕ′

∑N
i=1 wi111R(zi)≤q′ logDϕ′(zi)

C.2 Discussion

The CEM is the key to the flexible robustness level of RoML (Algorithm 2): it can learn to sample
not only the single worst-case task, but all the α tasks with the lowest returns.

The CEM searches for a task distribution within a parametric family of distributions. This approach
can handle infinite task spaces, and learn the difficulty of tasks in the entire task space from a mere
finite sample of tasks. For example, assume that the tasks correspond to environment parameters that
take continuous values within some bounded box (as in Section 6.2 and Section 6.3). The CEM can
fit a distribution over an entire subset of the box – from a mere finite batch of tasks. This property
lets the CEM learn the high-risk tasks quickly and accelerates the meta-training, as demonstrated in
Section 6 and Appendix D.3.

On the other hand, this approach relies on the structure in the task space. If the tasks do not have
a natural structure like the ones in the bounded box, it is not trivial to define the parametric family
of distributions. This is the case in certain supervised meta learning problems. For example, in the
common meta-classification problem [Finn et al., 2017], the task space consists of subsets of classes
to classify. This is a discrete space without a trivial metric between tasks. Hence, it is difficult for
the CEM to learn the α lowest-return tasks from a finite sample. Thus, while RoML is applicable to
supervised meta learning as well as MRL, certain task spaces require further adjustment, such as a
meaningful embedding of the task space. This challenge is left for future work.

D Experiments: Detailed Settings and Results

D.1 Khazad Dum

At the end of the hall the floor vanished and fell to an unknown depth. The outer
door could only be reached by a slender bridge of stone, without kerb or rail, that
spanned the chasm with one curving spring of fifty feet. It was an ancient defence
of the Dwarves against any enemy that might capture the First Hall and the outer
passages. They could only pass across it in single file. [Tolkien, 1954]
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The detailed settings of the Khazad Dum environment presented in Section 6.1 are as follows. Every
task is carried for K = 4 episodes of T = 32 times steps. The return corresponds to the undiscounted
sum of the rewards (γ = 1). Every time step has a cost of 1/T points if the L1-distance of the agent
from the target is larger than 5; and for distances between 0 and 5, the cost varies linearly between 0
and 1/T . By reaching the destination, the agent obtains a reward of 5/T , and has no more costs for
the rest of the episode. By falling to the abyss, the agent can no longer reach the goal and is bound to
suffer a cost of 1/T for every step until the end of the episode. Every step, the agent observes its
location (represented using a soft one-hot encoding, similarly to Greenberg et al. [2022]) and chooses
whether to move left, right, up or down. If the agent attempts to move into a wall, it remains in place.

The tasks are characterized by the rain intensity, distributed τ ∼ Exp(0.1). The rain only affects
the episode when the agent crosses the bridge: then, the agent suffers from an additive normally-
distributed action noise N (0, τ2), in addition to a direct damage translated into a cost of 3 · τ . For
RoML, the CEM is implemented over the exponential family of distributions Exp(ϕ) with ϕ0 = 0.1
and β = 0.05. In this toy benchmark we use no regularization (ν = 0).

In addition to the test returns throughout meta-training shown in Fig. 3, Fig. 8 displays the final test
returns at the end of the meta-training, over 30 seeds and 3000 test tasks per seed.

Figure 8: Khazad-Dum: Mean and CVaR returns over 30 seeds and 3000 test tasks.

D.2 Continuous Control

In all the MuJoCo benchmarks introduced in Section 6.2, each task’s meta-rollout consists of 2
episodes × 200 time-steps per episode. Below we describe the task distributions, as well as their
parameterization for the CEM. In each benchmark, we used CEM quantile β = 0.2 and regularization
of ν = 0.2 samples per batch.

• HalfCheetah-Vel: The original task distribution is uniform τ ∼ U([0, 7]) in HalfCheetah
(the task space [0, 7] was extended in comparison to Zintgraf et al. [2019], to create a more
significant tradeoff between tasks). We rewrite it as τ = 7τ̃ , τ̃ ∼ Beta(2ϕ, 2− 2ϕ) with
ϕ0 = 0.5 (leading to Beta(1, 1), which is indeed the uniform distribution). The CEM learns
to modify ϕ. Notice that this parameterization satisfies EDϕ

[τ̃ ] = ϕ.

• Humanoid-Vel: Same as HalfCheetah-Vel, with task space [0, 2.5] instead of [0, 7].

• Ant-Goal: The target location is random within a circle of radius 5. We represent the target
location in polar coordinates, and write r ∼ Beta(2ϕ1, 2−2ϕ1) and θ ∼ Beta(2ϕ2, 2−2ϕ2)
(up to multiplicative factors 5 and 2π). The original distribution parameter is ϕ0 = (0.5, 0.5),
and the CEM learns to modify it.

• HalfCheetah-Mass, Humanoid-Mass, Ant-Mass: The task τ ∈ [0.5, 2] corresponds to
the multiplicative factor of the body mass (e.g., τ = 2 is a doubled mass). The original
task distribution is uniform over the log factor, i.e., log2 τ ∼ U([−1, 1]). Again, we
re-parameterize the uniform distribution as Beta, and learn to modify its parameter.

• HalfCheetah-Body, Humanoid-Body, Ant-Body: The 3 components of the task correspond
to multiplicative factors of different physical properties, and each of them is distributed
independently and uniformly in log, i.e., ∀1 ≤ j ≤ 3 : log2 τj ∼ U([−1, 1]). We
re-parameterize this as 3 independent Beta distributions with parameters ϕ = (ϕ1, ϕ2, ϕ3).

• HalfCheetah 10D-task: Again, the task components correspond to multiplicative factors
of different properties of the model. This time, there are 10 different properties (i.e.,
the task space is 10-dimensional), but each of them varies in a smaller range: log2 τj ∼
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Table 2: Mean return over 1000 test tasks, for different models and MuJoCo environments. Standard
deviation is presented over 30 seeds. CVaR returns are displayed in Table 1.

HalfCheetah HalfCheetah 10D-task
Vel Mass Body (a) (b) (c)

CeSoR −1316± 18 1398± 31 1008± 34 1222± 23 1388± 20 1274± 32
PAIRED −545± 55 662± 30 492± 51 551± 53 706± 36 561± 65
CVaR-ML −574± 22 113± 8 193± 6 263± 15 250± 11 192± 5
PEARL −534± 15 1726± 131726± 131726± 13 1655± 61655± 61655± 6 1843± 9 1866± 13 1425± 6
VariBAD −82± 2−82± 2−82± 2 1558± 32 1616± 28 1893± 61893± 61893± 6 1984± 671984± 671984± 67 1617± 121617± 121617± 12
RoML (VariBAD) −95± 3 1581± 32 1582± 21 1819± 8 1950± 201950± 201950± 20 1616± 131616± 131616± 13
RoML (PEARL) −519± 15 1553± 18 1437± 8 1783± 7 1859± 10 1399± 8

Humanoid Ant
Vel Mass Body Goal Mass Body

VariBAD 880± 4880± 4880± 4 1645± 221645± 221645± 22 1678± 171678± 171678± 17 −229± 3−229± 3−229± 3 1473± 31473± 31473± 3 1476± 11476± 11476± 1
RoML (VariBAD) 883± 4883± 4883± 4 1580± 17 1618± 18 −224± 3−224± 3−224± 3 1475± 21475± 21475± 2 1472± 1

U([−0.5, 0.5]). Each such property is a vector, and is multiplied by τj when executing
the task τ . The 10 properties are selected randomly, among all the variables of type float
ndarray in env.model. We generate 3 such MRL environments – with 3 different random
sets of 10 task-variables each. Some examples for properties are inertia, friction and mass.

In the experiments, we rely on the official implementations of VariBAD [Zintgraf et al., 2019]
and PEARL [Rakelly et al., 2019], both published under the MIT license. CVaR-ML and RoML
are implemented on top of these baseline, and their running times are indistinguishable from the
baselines. All experiments were performed on machines with Intel Xeon 2.2 GHZ CPU and NVIDIA’s
V100 GPU. Each experiment (meta-training and testing) required 12-72 hours, depending on the
environment and the baseline algorithm.

Table 2 and Fig. 9 present detailed results for our MuJoCo experiments, in addition to the results
presented in Section 6.2.
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(a) HalfCheetah-Vel (b) HalfCheetah-Body (mass, damping and head-size)

(c) Humanoid-Vel (d) Humanoid-Body (mass, damping and head-size)

(e) Humanoid-Mass (f) Ant-Mass (g) Ant-Goal

Figure 9: Average return per range of tasks in the various MuJoCo environments (global average in parentheses).
HalfCheetah-Mass is displayed in Fig. 4d.

D.3 The Cross Entropy Method

We implemented RoML using the Dynamic Cross Entropy Method implementation of Greenberg
[2022]. Below we concentrate results related to the CEM functionality in all the experiments:

• Learned sample distribution: One set of figures corresponds to the learned sample distri-
bution, as measured via ϕ throughout the meta-training.

• Sample returns: A second set of figures corresponds to the returns over the sampled tasks
(corresponding to Dϕ): ideally, we would like them to align with the α-tail of the reference
returns (corresponding to Dϕ0). Thus, the figures present the mean sample return along
with the mean and CVaR reference returns (the references are estimated from the sample
returns using Importance Sampling weights). In most figures, we see that the sample returns
(in green) shift significantly from the mean reference return (in blue) towards the CVaR
reference return (orange), at least for part of the training. Note that in certain environments,
the distinction between difficulty of tasks can only be made after the agent has already
learned a basic meaningful policy, hence the sample returns do not immediately deviate
from the mean reference.

(a) Learned sample distribution (b) Sample returns

Figure 10: The CEM in Khazad-Dum. Note that the effect of the CEM concentrates at the first half of the
meta-training; once the meta-policy learns to focus on the long path, the agent becomes invariant to the sampled
tasks, and the sampler gradually returns to the original task distribution ϕ ≈ ϕ0.
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(a) HalfCheetah-Vel (b) HalfCheetah-Mass (c) HalfCheetah-Body (d) Humanoid-Mass

Figure 11: Learned sample distribution in MuJoCo benchmarks. Notice that for HalfCheetah-Body, the CEM
has to control 3 different task parameters simultaneously.

(a) HalfCheetah-Vel (b) HalfCheetah-Mass (c) HalfCheetah-Body (d) Humanoid-Mass

Figure 12: Sample returns in MuJoCo benchmarks.

Figure 13: Sine Regression: The 3 left figures show the learned sample distribution, corresponding to average
amplitudes, phases and frequencies. The CEM immediately learns that the amplitude has the strongest effect on
test loss, whereas frequency has a moderate effect and phase has none. The right figure shows in green the mean
sample scores (in supervised learning these are the negative losses instead of the returns).

D.4 Ablation Test: RoML with a Naive Sampler

RoML learns to be robust to high-risk tasks by using the CEM to over-sample them throughout
training. The dynamic CEM presented in Section 5 is designed to identify and sample high-risk tasks
from a possibly-infinite task-space, where the task values change with the evolving policy throughout
training.

In this section, we conduct an ablation test to demonstrate the importance of the CEM to this task.
To that end, we implement a naive adversarial task sampler. The firstM = 100 tasks are sampled
from the original distribution D, and the naive sampler memorizes the αM lowest-return tasks, and
samples randomly from them for the rest of the training.

As displayed in Table 3, switching to the naive sampler decreases the CVaR returns significantly.
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Table 3: Ablation test: CVaR0.05 return, compared to the naive sampler baseline.
HalfCheetah HalfCheetah 10D-task

Body (a) (b) (c)

VariBAD 835± 30 1126± 6 1536± 39 988± 13
Naive sampler 839± 20 1056± 34 1340± 57 978± 12
RoML (VariBAD) 935± 17 1227± 13 1697± 24 999± 20

E Supervised Meta-Learning

Below we provide the complete details for the toy Sine Regression experiment of Section 6.3. The
input in the problem is x ∈ [0, 2π), the desired output is y = A sin(ωx+b), and the task is defined by
the parameters τ = (A, b, ω), distributed uniformly over Ω = [0.1, 5]× [0, 2π]× [0.3, 3]. Similarly
to Finn et al. [2017], the model is fine-tuned for each task via a gradient-descent optimization step
over 10 samples {(xi, yi)}10i=1, and is tested on another set of 10 samples. The goal is to find model
weights that adapt quickly to new task data.

CVaR-ML and RoML are implemented with robustness level of α = 0.05, on top of MAML. For the
CEM of RoML, we re-parameterize the uniform task distribution using Beta distributions (see CEM
details below).

As shown in Fig. 13, RoML learns to focus on tasks (sine functions) with high amplitudes and slightly
increased frequencies, without changing the phase distribution. Fig. 14 displays the test losses over 30
seeds, after meta-training for 10000 tasks. Similarly to the MRL experiments, again RoML achieves
better CVaR losses than both CVaR-ML and the baseline.

(a) Mean (b) CVaR0.05

Figure 14: Sine Regression: Mean and CVaR losses over 10000 test tasks, against the number of tuning
gradient-steps at test time. The 95% confidence intervals are calculated over 30 seeds.

CEM implementation details: In comparison to Finn et al. [2017], we added the sine frequency as
a third parameter in the task space, since the original problem was to simplistic to pose a mean/CVaR
tradeoff. The tasks are distributed uniformly, and we reparameterize them for the CEM using the Beta
distribution, similarly to Appendix D.2: τ = {τj}3j=1, τj ∼ Beta(2ϕj , 2− 2ϕj). On top of this, we
add a linear transformation from the Beta distribution domain [0, 1] to the actual task range ([0.1, 5]
for amplitude, [0, 2π] for phase and [0.3, 3] for frequency). Note that the original uniform distribution
is recovered by ϕ0 = (0.5, 0.5, 0.5). The parameter ϕj ∈ [0, 1], which is controlled by the CEM,
equals the expected task Eτ∼Dϕ

[τj ]. The other hyper-parameters of RoML are set to β = 0.2 (CEM
quantile) and ν = 0 (no regularization).
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