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Abstract

We study the problem of vector set search with vector set queries. This task
is analogous to traditional near-neighbor search, with the exception that both
the query and each element in the collection are sets of vectors. We identify
this problem as a core subroutine for semantic search applications and find that
existing solutions are unacceptably slow. Towards this end, we present a new
approximate search algorithm, DESSERT (DESSERT Effeciently Searches Sets
of Embeddings via Retrieval Tables). DESSERT is a general tool with strong
theoretical guarantees and excellent empirical performance. When we integrate
DESSERT into ColBERT, a state-of-the-art semantic search model, we find a 2-5x
speedup on the MS MARCO and LoTTE retrieval benchmarks with minimal loss
in recall, underscoring the effectiveness and practical applicability of our proposal.

1 Introduction

Similarity search is a fundamental driver of performance for many high-profile machine learning
applications. Examples include web search [16], product recommendation [33], image search [21],
de-duplication of web indexes [29] and friend recommendation for social media networks [39]. In this
paper, we study a variation on the traditional vector search problem where the dataset D consists of a
collection of vector sets D = {S1, ...SN} and the query Q is also a vector set. We call this problem
vector set search with vector set queries because both the collection elements and the query are sets
of vectors. Unlike traditional vector search, this problem currently lacks a satisfactory solution.

Furthermore, efficiently solving the vector set search problem has immediate practical implications.
Most notably, the popular ColBERT model, a state-of-the-art neural architecture for semantic search
over documents [23], achieves breakthrough performance on retrieval tasks by representing each
query and document as a set of BERT token embeddings. ColBERT’s current implementation of
vector set search over these document sets, while superior to brute force, is prohibitively slow for
real-time inference applications like e-commerce that enforce strict search latencies under 20-30
milliseconds [34, 5]. Thus, a more efficient algorithm for searching over sets of vectors would have
significant implications in making state-of-the-art semantic search methods feasible to deploy in
large-scale production settings, particularly on cost-effective CPU hardware.

Given ColBERT’s success in using vector sets to represent documents more accurately, and the
prevailing focus on traditional single-vector near-neighbor search in the literature [1, 41, 19, 12,
14, 28, 18], we believe that the potential for searching over sets of representations remains largely
untapped. An efficient algorithmic solution to this problem could enable new applications in domains
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where multi-vector representations are more suitable. To that end, we propose DESSERT, a novel
randomized algorithm for efficient set vector search with vector set queries. We also provide a general
theoretical framework for analyzing DESSERT and evaluate its performance on standard passage
ranking benchmarks, achieving a 2-5x speedup over an optimized ColBERT implementation on
several passage retrieval tasks.

1.1 Problem Statement

More formally, we consider the following problem statement.
Definition 1.1. Given a collection of N vector sets D = {S1, ...SN}, a query set Q, a failure
probability δ ≥ 0, and a set-to-set relevance score function F (Q,S), the Vector Set Search Problem
is the task of returning S∗ with probability at least 1− δ:

S⋆ = argmax
i∈{1,...N}

F (Q,Si)

Here, each set Si = {x1, ...xmi
} contains mi vectors with each xj ∈ Rd, and similarly Q =

{q1, ...qmq
} contains mq vectors with each qj ∈ Rd.

We further restrict our consideration to structured forms of F (Q,S), where the relevance score
consists of two “set aggregation” or “variadic” functions. The inner aggregation σ operates on the
pairwise similarities between a single vector from the query set and each vector from the target set.
Because there are |S| elements in S over which to perform the aggregation, σ takes |S| arguments.
The outer aggregation A operates over the |Q| scores obtained by applying A to each query vector
q ∈ Q. Thus, we have that

F (Q,S) = A({Innerq,S : q ∈ Q})
Innerq,S = σ({sim(q, x) : x ∈ S})

Here, sim is a vector similarity function. Because the inner aggregation is often a maximum or other
non-linearity, we use σ(·) to denote it, and similarly since the outer aggregation is often a linear
function we denote it with A(·). These structured forms for F = A ◦ σ are a good measure of set
similarity when they are monotonically non-decreasing with respect to the similarity between any
pair of vectors from Q and S.

1.2 Why is near-neighbor search insufficient?

It may at first seem that we could solve the Vector Set Search Problem by placing all of the individual
vectors into a near-neighbor index, along with metadata indicating the set to which they belonged.
One could then then identify high-scoring sets by finding near neighbors to each q ∈ Q and returning
their corresponding sets.

There are two problems with this approach. The first problem is that a single high-similarity
interaction between q ∈ Q and x ∈ S does not imply that F (Q,S) will be large. For a concrete
example, suppose that we are dealing with sets of word embeddings and that Q is a phrase where
one of the items is “keyword.” With a standard near-neighbor index, Q will match (with 100%
similarity) any set S that also contains “keyword,” regardless of whether the other words in S bear
any relevance to the other words in Q. The second problem is that the search must be conducted
over all individual vectors, leading to a search problem that is potentially very large. For example, if
our sets are documents consisting of roughly a thousand words and we wish to search over a million
documents, we now have to solve a billion-scale similarity search problem.

Contributions: In this work, we formulate and carefully study the set of vector search problem with
the goal of developing a more scalable algorithm capable of tackling large-scale semantic retrieval
problems involving sets of embeddings. Specifically, our research contributions can be summarized
as follows:

1. We develop the first non-trivial algorithm, DESSERT, for the vector set search problem that
scales to large collections (n > 106) of sets with m > 3 items.

2. We formalize the vector set search problem in a rigorous theoretical framework, and we
provide strong guarantees for a common (and difficult) instantiation of the problem.
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3. We provide an open-source C++ implementation of our proposed algorithm that has been
deployed in a real-world production setting1. Our implementation scales to hundreds
of millions of vectors and is 3-5x faster than existing approximate set of vector search
techniques. We also describe the implementation details and tricks we discovered to achieve
these speedups and provide empirical latency and recall results on passage retrieval tasks.

2 Related Work

Near-Neighbor Search: Near-neighbor search has received heightened interest in recent years
with the advent of vector-based representation learning. In particular, considerable research has
gone into developing more efficient approximate near-neighbor (ANN) search methods that trade
off an exact solution for sublinear query times. A number of ANN algorithms have been proposed,
including those based on locality-sensitive hashing [1, 41], quantization and space partition methods
[19, 12, 14], and graph-based methods [28, 18]. Among these classes of techniques, our proposed
DESSERT framework aligns most closely with the locality-sensitive hashing paradigm. However,
nearly all of the well-known and effective ANN methods focus on searching over individual vectors;
our work studies the search problem for sets of entities. This modification changes the nature of the
problem considerably, particularly with regards to the choice of similarity metrics between entities.

Vector Set Search: The general problem of vector set search has been relatively understudied in
the literature. A recent work on database lineage tracking [25] addresses this precise problem, but
with severe limitations. The proposed approximate algorithm designs a concatenation scheme for
the vectors in a given set, and then performs approximate search over these concatenated vectors.
The biggest drawback to this method is scalability, as the size of the concatenated vectors scales
quadratically with the size of the vector set. This leads to increased query latency as well as substantial
memory overhead; in fact, we are unable to apply the method to the datasets in this paper without
terabytes of RAM. In this work, we demonstrate that DESSERT can scale to thousands of items per
set with a linear increase (and a slight logarithmic overhead) in query time, which, to our knowledge,
has not been previously demonstrated in the literature.

Document Retrieval: In the problem of document retrieval, we receive queries and must return
the relevant documents from a preindexed corpus. Early document retrieval methods treated each
documents as bags of words and had at their core an inverted index [30]. More recent methods
embed each document into a single representative vector, embed the query into the same space, and
performed ANN search on those vectors. These semantic methods achieve far greater accuracies than
their lexical predecessors, but require similarity search instead of inverted index lookups [15, 33, 26].

ColBERT and PLAID: ColBERT [23] is a recent state of the art algorithm for document retrieval
that takes a subtly different approach. Instead of generating a single vector per document, ColBERT
generates a set of vectors for each document, approximately one vector per word. To rank a query,
ColBERT also embeds the query into a set of vectors, filters the indexed sets, and then performs
a brute force sum of max similarities operation between the query set and each of the document
sets. ColBERT’s passage ranking system is an instantiation of our framework, where sim(q, x) is the
cosine similarity between vectors, σ is the max operation, and A is the sum operation.

In a similar spirit to our work, PLAID [37] is a recently optimized form of ColBERT that includes
more efficient filtering techniques and faster quantization based set similarity kernels. However, we
note that these techniques are heuristics that do not come with theoretical guarantees and do not
immediately generalize to other notions of vector similarity, which is a key property of the theoretical
framework behind DESSERT.

3 Algorithm

At a high level, a DESSERT index D compresses the collection of target sets into a form that makes
set to set similarity operations efficient to calculate. This is done by replacing each set Si with a sketch
D[i] that contains the LSH values of each xj ∈ Si. At query time, we compare the corresponding

1https://github.com/ThirdAIResearch/Dessert
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Figure 1: The DESSERT indexing and querying algorithms. During indexing (left), we represent
each target set as a set of hash values (L hashes for each element). To query the index (right), we
approximate the similarity between each target and query element by averaging the number of hash
collisions. These similarities are used to approximate the set relevance score for each target set.

LSH values of the query set Q with the hashes in each D[i] to approximate the pairwise similarity
matrix between Q and S (Figure 1). This matrix is used as the input for the aggregation functions A
and σ to rank the target sets and return an estimate of S∗.

We assume the existence of a locality-sensitive hashing (LSH) family H ⊂ (Rd → Z) such that for
all LSH functions h ∈ H, p(h(x) = h(y)) = sim(x, y). LSH functions with this property exist for
cosine similarity (signed random projections) [8], Euclidean similarity (p-stable projections) [11],
and Jaccard similarity (minhash or simhash) [6]. LSH is a well-developed theoretical framework with
a wide variety of results and extensions [4, 3, 20, 40]. See Appendix C for a deeper overview.

Algorithm 1 describes how to construct a DESSERT index D. We first take L LSH functions ft
for t ∈ [1, L], ft ∈ H. We next loop over each Si to construct D[i]. For a given Si, we arbitrarily
assign an identifier j to each vector x ∈ Si, j ∈ [1, |Si|]. We next partition the set [1,mi] using each
hash function ht, such that for a partition pt, indices j1 and j2 are in the same set in the partition iff
h(Sj1) = h(Sj2). We represent the results of these partitions in a universal hash table indexed by
hash function id and hash function value, such that D[i]t,h = {j |xj ∈ Si ∧ ft(xj) = h}.

Algorithm 2 describes how to query a DESSERT index D. At a high level, we query each sketch Di

to get an estimate of F (Q,Si), scorei, and then take the argmax over the estimates to get an estimate
of argmaxi∈{1,...N} F (Q,Si). To get these estimates, we first compute the hashes ht,q for each
query q and LSH function ft. Then, to get an estimate scorei for a set Si, we loop over the hashes
ht,q for each query vector q and count how often each index j appears in D[i]t,ht,q . After we finish
this step, we have a count for each j that represents how many times ht(q) = ht(xj). Equivalently,
since p(h(x) = h(y)) = sim(x, y), if we divide by L we have an estimate for sim(xj , q). We then
apply σ to these estimates and save the result in a variable aggq to build up the inputs to A, and then
apply A to get our final estimate for F (Q,Si), which we store in scorei.

4 Theory

In this section, we analyze DESSERT’s query runtime and provide probabilistic bounds on the
correctness of its search results. We begin by finding the hyperparameter values and conditions that
are necessary for DESSERT to return the top-ranked set with high probability. Then, we use these
results to prove bounds on the query time. In the interest of space, we defer proofs to the Appendix.

Notation: For the sake of simplicity of presentation, we suppose that all target sets have the same
number of elements m, i.e. |Si| = m. If this is not the case, one may replace mi with mmax in our
analysis. We will use the boldface vector s(q, Si) ∈ R|Si| to refer to the set of pairwise similarity
calculations {sim(q, x1), . . . , sim(q, xmi

)} between a query vector and the elements of Si, and we
will drop the subscript (q, Si) when the context is clear. See Table 1 for a complete notation reference.
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Table 1: Notation table with examples from the document search application.

Notation Definition Intuition (Document Search)

D Set of target vector sets Collection of documents
N Cardinality |D| Number of documents
D DESSERT index of D Search index data structure
Si Target vector set i ith document
Q Query vector set Multi-word query (e.g., a question)
S∗ See Definition 1.1 The most relevant document to Q

xj ∈ Si jth vector in target set Si Embedding from document i
qj ∈ Q jth vector in query set Q Embedding from a query

d sj , xj ∈ Rd Embedding dimension
mi, m Cardinality |Si|, mi = m Number of embeddings in ith document

F (Q,Si) Q and Si relevance score Measures query-document similarity
scorei Estimate of F (Q,Si) Approximation of relevance score
D[i] Sketch of ith target set Estimates relevance score for Si and any Q

sim(a, b) a and b vector similarity Embedding similarity
A, σ See Section 1.1 Components of relevance score
L Number of hashes Larger L increases accuracy and latency
fi ith LSH function Often maps nearby points to the same value

s(q, Si), s sim(q, xj) for xj ∈ Si Query embedding similarities with Si

Algorithm 1 Building a DESSERT
Index

1: Input: N sets Si, |Si| = mi

2: Output: A DESSERT index D
3: D = an array of N hash tables,

each indexed by x ∈ Z2

4: for i = 1 to N do
5: for xj in Si do
6: for t = 1 to L do
7: h = ft(xj)
8: D[i]t,h = D[i]t,h ∪ {j}
9: Return D

Algorithm 2 Querying a DESSERT Index
1: Input: DESSERT index D, query set Q, |Q| = mq .
2: Output: Estimate of argmaxi∈{1...N} A ◦ σ(Q,Si)
3: for q in Q do
4: h1,q, . . . , hL,q = f1(q), . . . , fL(q)
5: for i = 1 to N do
6: for q in Q do
7: ŝ = 0
8: for t = 1 to L do
9: for j in D[i]t,ht,q

do
10: ŝj = ŝj + 1
11: ŝ = ŝ / L
12: aggq = σ(ŝ)
13: scorei = A({aggq | q ∈ Q})
14: Return argmaxi∈{1...N} scorei

4.1 Inner Aggregation

We begin by introducing a condition on the σ component of the relevance score that allows us to
prove useful statements about the retrieval process.

Definition 4.1. A function σ(x) : Rm → R is (α, β)-maximal on U ⊂ Rm if for 0 < β ≤ 1 ≤ α,
∀x ∈ U :

βmaxx ≤ σ(x) ≤ αmaxx

The function σ(x) = maxx is a trivial example of an (α, β)-maximal function on Rm, with
β = α = 1. However, we can show that other functions also satisfy this definition:

Lemma 4.1.1. If φ(x) : R → R is (α, β)-maximal on an interval I , then the following function

σ(x) : Rm → R is
(
α, β

m

)
-maximal on U = Im:

σ(x) =
1

m

m∑
i=1

φ(xi)
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Note that in R, the (α, β)-maximal condition is equivalent to lower and upper bounds by linear
functions βx and αx respectively, so many natural functions satisfy Lemma 4.1.1. We are particularly
interested in the case I = [0, 1], and note that possible such φ include φ(x) = x with β = α = 1,
the exponential function φ(x) = ex − 1 with β = 1, α = e− 1, and the debiased sigmoid function
φ(x) = 1

1+e−x − 1
2 with β ≈ 0.23, α = 0.25. Our analysis of DESSERT holds when the σ

component of the relevance score is an (α, β) maximal function.

In line 12 of Algorithm 2, we estimate σ(s) by applying σ to a vector of normalized counts ŝ. In
Lemma 4.1.2, we bound the probability that a low-similarity set (one for which σ(s) is low) scores
well enough to outrank a high-similarity set. In Lemma 4.1.3, we bound the probability that a
high-similarity set scores poorly enough to be outranked by other sets. Note that the failure rate in
both lemmas decays exponentially with the number of hash tables L.
Lemma 4.1.2. Assume σ is (α, β)-maximal. Let 0 < smax < 1 be the maximum similarity between a
query vector and the vectors in the target set and let ŝ be the set of estimated similarity scores. Given
a threshold αsmax < τ < α, we write ∆ = τ − αsmax, and we have

Pr[σ(ŝ) ≥ αsmax +∆] ≤ mγL

for γ =
(

smax(α−τ)
τ(1−smax)

) τ
α
(

α(1−smax)
α−τ

)
∈ (smax, 1). Furthermore, this expression for γ is increasing

in smax and decreasing in τ , and γ has one sided limits limτ↘αsmax
γ = 1 and limτ↗α γ = smax.

Lemma 4.1.3. With the same assumptions as Lemma 4.1.2 and given ∆ > 0, we have:

Pr[σ(ŝ) ≤ βsmax −∆] ≤ 2e−2L∆2/β2

4.2 Outer Aggregation

Our goal in this section is to use the bounds established previously to prove that our algorithm
correctly ranks sets according to F (Q,S). To do this, we must find conditions under which the
algorithm successfully identifies S⋆ based on the approximate F (Q,S) scores.

Recall that F (Q,S) consists of two aggregations: the inner aggregation σ (analyzed in Section 4.1)
and the outer aggregation A. We consider normalized linear functions for A, where we are given a
set of weights 0 ≤ w ≤ 1 and we rank the target set according to a weighted linear combination of σ
scores.

F (Q,S) =
1

m

m∑
j=1

wjσ(̂s(qj , S))

With this instantiation of the vector set search problem, we will proceed in Theorem 4.2 to identify
a choice of the number of hash tables L that allows us to provide a probabilistic guarantee that the
algorithm’s query operation succeeds. We will then use this parameter selection to bound the runtime
of the query operation in Theorem 4.3.
Theorem 4.2. Let S⋆ be the set with the maximum F (Q,S) and let Si be any other set. Let B⋆

and Bi be the following sums (which are lower and upper bounds for F (Q,S⋆) and F (Q,Si),
respectively)

B⋆ =
β

mq

mq∑
j=1

wjsmax(qj , S
⋆) Bi =

α

mq

mq∑
j=1

wjsmax(qj , Si)

Here, smax(q, S) is the maximum similarity between a query vector q and any element of the target
set S. Let B′ be the maximum value of Bi over any set Si ̸= S. Let ∆ be the following value
(proportional to the difference between the lower and upper bounds)

∆ = (B⋆ −B′)/3

If ∆ > 0, a DESSERT structure with the following value2 of L solves the search problem from
Definition 1.1 with probability 1− δ.

L = O

(
log

(
Nmqm

δ

))
2L additionally depends on the data-dependent parameter ∆, which we elide in the asymptotic bound; see

the proof in the appendix for the full expression for L.
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4.3 Runtime Analysis

Theorem 4.3. Suppose that each hash function call runs in time O(d) and that |D[i]t,h| < T ∀i, t, h
for some positive threshold T , which we treat as a data-dependent constant in our analysis. Then,
using the assumptions and value of L from Theorem 4.2, Algorithm 2 solves the Vector Set Search
Problem in query time

O (mq log(Nmqm/δ)d+mqN log(Nmqm/δ))

This bound is an improvement over a brute force search of O(mqmNd) when m or d is large. The
above theorem relies upon the choice of L that we derived in Theorem 4.2.

5 Implementation Details

Filtering: We find that for large N it is useful to have an initial lossy filtering step that can cheaply
reduce the total number of sets we consider with a low false-negative rate. We use an inverted index
on the documents for this filtering step.

To build the inverted index, we first perform k-means clustering on a representative sample of
individual item vectors at the start of indexing. The inverted index we will build is a map from
centroid ids to document ids. As we add each set Si to D in Algorithm 1, we also add it into the
inverted index: we find the closest centroid to each vector x ∈ Si, and then we add the document id i
to all of the buckets in the inverted index corresponding to those centroids.

This method is similar to PLAID, the recent optimized ColBERT implementation [37], but our query
process is much simpler. During querying, we query the inverted index buckets corresponding to the
closest filter_probe centroids to each query vector. We aggregate the buckets to get a count for each
document id, and then only rank the filter_k documents with DESSERT that have the highest count.

Space Optimized Sketches: DESSERT has two features that constrain the underlying hash table
implementation: (1) every document is represented by a hash table, so the tables must be low memory,
and (2) each query performs many table lookups, so the lookup operation must be fast. If (1) is not
met, then we cannot fit the index into memory. If (2) is not met, then the similarity approximation for
the inner aggregation step will be far too slow. Initially, we tried a naive implementation of the table,
backed by a std::vector, std::map, or std::unordered_map. In each case, the resulting structure did not
meet our criteria, so we developed TinyTable, a compact hash table that optimizes memory usage
while preserving fast access times. TinyTables sacrifice O(1) update-access (which DESSERT does
not require) for a considerable improvement to (1) and (2).

A TinyTable replaces the universal hash table in Algorithm 1, so it must provide a way to map pairs
of (hash value, hash table id) to lists of vector ids. At a high level, a TinyTable is composed of L
inverted indices from LSH values to vector ids. Bucket b of table i consists of vectors xj such that
hi(xj) = b. During a query, we simply need to go to the L buckets that correspond to the query
vector’s L lsh values to find the ids of Si’s colliding vectors. This design solves (1), the fast lookup
requirement, because we can immediately go to the relevant bucket once we have a query’s hash
value. However, there is a large overhead in storing a resizable vector in every bucket. Even an empty
bucket will use 3 ∗ 8 = 24 bytes. This adds up: let r be the hash range of the LSH functions (the
number of buckets in the inverted index for each of the L tables). If N = 1M , L = 64, and r = 128,
we will use N · L · r · 24 = 196 gigabytes even when all of the buckets are empty.

Thus, a TinyTable has more optimizations that make it space efficient. Each of the L hash table
repetitions in a TinyTable are conceptually split into two parts: a list of offsets and a list of vector
ids. The vector ids are the concatenated contents of the buckets of the table with no space in between
(thus, they are always some permutation of 0 through m - 1). The offset list describes where one
bucket ends and the next begins: the ith entry in the offset list is the (inclusive) index of the start of
the ith hash bucket within the vector id list, and the i + 1th entry is the (exclusive) end of the ith
hash bucket (if a bucket is empty, indices[i] = indices[i+ 1]). To save more bytes, we can further
concatenate the L offset lists together and the L vector id lists together, since their lengths are always
r and mi respectively. Finally, we note that if m ≤ 256, we can store all of the the offsets and ids
can be safely be stored as single byte integers. Using the same hypothetical numbers as before, a
filled TinyTable with m = 100 will take up just N(24 + L(m+ r + 1)) = 14.7GB.
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The Concatenation Trick: In our theory, we assumed LSH functions such that p(h(x) = h(y)) =
sim(x, y). However, for practical problems such functions lead to overfull buckets; for example,
GLOVE has an average vector cosine similarity of around 0.3, which would mean each bucket in
the LSH table would contain a third of the set. The standard trick to get around this problem is to
concatenate C hashes for each of the L tables together such that p(h(x) = h(y)) = sim(x, y)C .
Rewriting, we have that

sim(x, y) = exp

(
ln [p(h(x) = h(y))]

C

)
(1)

During a query, we count the number of collisions across the L tables and divide by L to get
p̂(h(x) = h(y)) on line 11 of Algorithm 2. We now additionally pass count/L into Equation 1 to
get an accurate similarity estimate to pass into σ on line 12. Furthermore, evaluating Equation 1 for
every collision probability estimate is slow in practice. There are only L+ 1 possible values for the
count/L, so we precompute the mapping in a lookup table.

6 Experiments

Datasets: We tested DESSERT on both synthetic data and real-world problems. We first examined
a series of synthetic datasets to measure DESSERT’s speedup over a reasonable CPU brute force
algorithm (using the PyTorch library [35] for matrix multiplications). For this experiment, we leave
out the prefiltering optimization described in Section 5 to better show how DESSERT performs on its
own. Following the authors of [25], our synthetic dataset consists of random groups of Glove [36]
vectors; we vary the set size m and keep the total number of sets N = 1000.

We next experimented with the MS MARCO passage ranking dataset (Creative Commons Li-
cense) [32], N ≈ 8.8M . The task for MS MARCO is to retrieve passages from the corpus relevant
to a query. We used ColBERT to map the words from each passage and query to sets of embedding
vectors suitable for DESSERT [37]. Following [37], we use the development set for our experiments,
which contains 6980 queries.

Finally, we computed the full resource-accuracy tradeoff for ten of the LoTTE out-of-domain
benchmark datasets, introduced by ColBERTv2 [38]. We excluded the pooled dataset, which is
simply the individual datasets merged.

Experiment Setup: We ran our experiments on an Intel(R) Xeon(R) CPU E5-2680 v3 machine with
252 GB of RAM. We restricted all experiments to 4 cores (8 threads). We ran each experiment with
the chosen hyperparameters and reported overall average recall and average query latency. For all
experiments we used the average of max similarities scoring function.

6.1 Synthetic Data

Figure 2: Query time for DESSERT vs. brute force
on 1000 random sets of m glove vectors with the
y-axis as a log scale. Lower is better.

The goal of our synthetic data experiment was to
examine DESSERT’s speedup over brute force
vector set scoring. Thus, we generated synthetic
data where both DESSERT and the brute force
implementation achieved perfect recall so we
could compare the two methods solely on query
time.

The two optimized brute force implementations
we tried both used PyTorch, and differed only
in whether they computed the score between
the query set and each document set individ-
ually ("Individual") or between the query set
and all document sets at once using PyTorch’s
highly performant reduce and reshape opera-
tions ("Combined").

In each synthetic experiment, we inserted
1000 documents of size m for m ∈
[2, 4, 8, 16, ..., 1024] into DESSERT and the
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brute force index. The queries in each experiment were simply the documents with added noise. The
DESSERT hyperparameters we chose were L = 8 and C = log2(m) + 1. The results of our experi-
ment, which show the relative speedup of using DESSERT at different values of m, are in Figure 2.
We observe that DESSERT achieves a consistent 10-50x speedup over the optimized Pytorch brute
force method and that the speedup increases with larger m (we could not run experiments with even
larger m because the PyTorch runs did not finish within the time allotted).

6.2 Passage Retrieval

Passage retrieval refers to the task of identifying and returning the most relevant passages from a large
corpus of documents in response to a search query. In these experiments, we compared DESSERT to
PLAID, ColBERT’s heavily-optimzed state-of-the-art late interaction search algorithm, on the MS
MARCO and LoTTE passage retrieval tasks.

We found that the best ColBERT hyperparameters were the same as reported in the PLAID paper, and
we successfully replicated their results. Although PLAID offers a way to trade off time for accuracy,
this tradeoff only increases accuracy at the sake of time, and even then only by a fraction of a percent.
Thus, our results represent points on the recall vs time Pareto frontier that PLAID cannot reach.

MS MARCO Results For MS MARCO, we performed a grid search over DESSERT pa-
rameters C = {4, 5, 6, 7}, L = {16, 32, 64}, filter_probe = {1, 2, 4, 8}, and filter_k =
{1000, 2048, 4096, 8192, 16384}. We reran the best configurations to obtain the results in Table 2.
We report two types of results: methods tuned to return k = 10 results and methods tuned to return
k = 1000 results. For each, we report DESSERT results from a low latency and a high latency
part of the Pareto frontier. For k = 1000 we use the standard R@1000 metric, the average recall of
the top 1 passage in the first 1000 returned passages. This metric is meaningful because retrieval
pipelines frequently rerank candidates after an initial retrieval stage. For k = 10 we use the standard
MRR@10 metric, the average mean reciprocal rank of the top 1 passage in the first 10 returned
passages. Overall, DESSERT is 2-5x faster than PLAID with only a few percent loss in recall.

Method Latency (ms) MRR@10

DESSERT 9.5 35.7 ± 1.14
DESSERT 15.5 37.2 ± 1.14

PLAID 45.1 39.2 ± 1.15

Method Latency (ms) R@1000

DESSERT 22.7 95.1 ± 0.49
DESSERT 32.3 96.0 ± 0.45

PLAID 100 97.5 ± 0.36

Table 2: MS MARCO passage retrieval, with methods optimized for k=10 (left) and k=1000 (right).
Intervals denote 95% confidence intervals for average latency and recall.

LoTTE Results For LoTTE, we performed a grid search over C = {4, 6, 8}, L = {32, 64, 128},
filter_probe = {1, 2, 4}, and filter_k = {1000, 2048, 4096, 8192}. In Figure 3, we plot the full
Pareto tradeoff for DESSERT on the 10 LoTTE datasets (each of the 5 categories has a "forum" and
"search" split) over these hyperparameters, as well as the single lowest-latency point achievable by
PLAID. For all test datasets, DESSERT provides a Pareto frontier that allows a tradeoff between
recall and latency. For both Lifestyle test splits, both Technology test splits, and the Recreation and
Science test-search splits, DESSERT achieves a 2-5x speedup with minimal loss in accuracy. On
Technology, DESSERT even exceeds the accuracy of PLAID at half of PLAID’s latency.

7 Discussion

We observe a substantial speedup when we integrate DESSERT into ColBERT, even when compared
against the highly-optimized PLAID implementation. While the use of our algorithm incurs a slight
recall penalty – as is the case with most algorithms that use randomization to achieve acceleration –
Table 2 and Figure 3 shows that we are Pareto-optimal when compared with baseline approaches.

We are not aware of any algorithm other than DESSERT that is capable of latencies in this range
for set-to-set similarity search. While systems such as PLAID are tunable, we were unable to get
them to operate in this range. For this reason, DESSERT is likely the only set-to-set similarity search
algorithm that can be run in real-time production environments with strict latency constraints.
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Figure 3: Full Pareto frontier of DESSERT on the LoTTE datasets. The PLAID baseline shows the
lowest-latency result attainable by PLAID (with a FAISS-IVF base index and centroid pre-filtering).

We also ran a single-vector search baseline using ScaNN, the leading approximate kNN index [14].
ScaNN yielded 0.77 Recall@1000, substantially below the state of the art. This result reinforces our
discussion in Section 1.2 on why single-vector search is insufficient.

Broader Impacts and Limitations: Ranking and retrieval are important steps in language modeling
applications, some of which have recently come under increased scrutiny. However, our algorithm is
unlikely to have negative broader effects, as it mainly enables faster, more cost-effective search over
larger vector collections and does not contribute to the problematic capabilities of the aforementioned
language models. Due to computational limitations, we conduct our experiments on a relatively small
set of benchmarks; a larger-scale evaluation would strengthen our argument. Finally, we assume
sufficiently high relevance scores and large gaps in our theoretical analysis to identify the correct
results. These hardness assumptions are standard for LSH.

8 Conclusion

In this paper, we consider the problem of vector set search with vector set queries, a task understudied
in the existing literature. We present a formal definition of the problem and provide a motivating
application in semantic search, where a more efficient algorithm would provide considerable immedi-
ate impact in accelerating late interaction search methods. To address the large latencies inherent
in existing vector search methods, we propose a novel randomized algorithm called DESSERT that
achieves significant speedups over baseline techniques. We also analyze DESSERT theoretically
and, under natural assumptions, prove rigorous guarantees on the algorithm’s failure probability and
runtime. Finally, we provide an open-source and highly performant C++ implementation of our pro-
posed DESSERT algorithm that achieves 2-5x speedup over ColBERT-PLAID on the MS MARCO
and LoTTE retrieval benchmarks. We also note that a general-purpose algorithmic framework for
vector set search with vector set queries could have impact in a number of other applications, such as
image similarity search [42], market basket analysis [22], and graph neural networks [43], where it
might be more natural to model entities via sets of vectors as opposed to restricting representations
to a single embedding. We believe that DESSERT could provide a viable algorithmic engine for
enabling such applications and we hope to study these potential use cases in the future.
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A Proofs of Main Results

Lemma 4.1.1. If φ(x) : R → R is (α, β)-maximal on an interval I , then the following function

σ(x) : Rm → R is
(
α, β

m

)
-maximal on U = Im:

σ(x) =
1

m

m∑
i=1

φ(xi)

Proof. Take some x ∈ D (so each xi ∈ I). Since in R, max(x) = x, we have from the definition of
(α, β)-maximal that

βx ≤ x ≤ αx

For the upper bound, we have

σ(x) =
1

m

m∑
i=1

φ(xi) ≤
1

m

m∑
i=1

αxi =
α

m

m∑
i=1

xi ≤
α

m
(mmax(x)) = αmax(x)

where the second inequality follows by the properties of the max function.

For the lower bound, we have that

σ(x) =
1

m

m∑
i=1

φ(xi) ≥
1

m

m∑
i=1

βxi =
β

m

m∑
i=1

xi ≥
β

m
maxx

where the the second inequality again follows by the properties of the max function.

Lemma 4.1.2. Assume σ is (α, β)-maximal. Let 0 < smax < 1 be the maximum similarity between a
query vector and the vectors in the target set and let ŝ be the set of estimated similarity scores. Given
a threshold αsmax < τ < α, we write ∆ = τ − αsmax, and we have

Pr[σ(ŝ) ≥ αsmax +∆] ≤ mγL

for γ =
(

smax(α−τ)
τ(1−smax)

) τ
α
(

α(1−smax)
α−τ

)
∈ (smax, 1). Furthermore, this expression for γ is increasing

in smax and decreasing in τ , and γ has one sided limits limτ↘αsmax
γ = 1 and limτ↗α γ = smax.

Proof. We first apply a generic Chernoff bound to σ(ŝ), which gives us the following bounds for any
t > 0:

Pr[σ(ŝ) ≥ τ ] = Pr[etσ(ŝ) ≥ etτ ] ≤ E[etσ(ŝ)]
etτ

We now proceed by continuing to bound the numerator. Because σ is (α, β)-maximal, we can
bound σ(ŝ) with αmax ŝ. We can further bound max ŝ by bounding the maximum with the sum
and the sum with m times the maximal element. We are now left with the formula for the moment
generating function for ŝmax. ŝmax ∼ scaled binomial L−1B(smax, L), so we can directly substitute
the binomial moment generating function into the expression:

E[etσ(ŝ)] ≤ E[etαmaxj ŝj ] ≤
mi∑
j=1

E[etαŝj ] ≤ mE[etαŝmax ]

= m(1− smax + smaxe
αt
L )L

Combining these two equations yields the following bound:

Pr[σ(ŝ) ≥ τ ] ≤ me−tτ (1− smax + smaxe
αt
L )L

We wish to select a value of t to minimize the upper bound. By setting the derivative of the upper
bound to zero, and imposing 0 < τ < α, α ≥ 1, and 0 < smax < 1, we find that
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t⋆ =
L

α
ln

(
τ(1− smax)

smax(α− τ)

)
This is greater than zero when the numerator inside the ln is greater than the denominator, or
equivalently when τ > smaxα. Thus the valid range for τ is (smaxα, α) (and similarly the valid range
for smax is (0, τ/α)). These bounds have a natural interpretation: to be meaningful, the threshold
must be between the expected value and the maximum value for α times a p = smax binomial.
Substituting t = t⋆ into our upper bound, we obtain:

Pr[σ(ŝ) ≥ τ ] ≤ m

((
τ(1− smax)

smax(α− τ)

)− τ
α
(
α(1− smax)

α− τ

))L

Thus we have that

γ =

(
smax(α− τ)

τ(1− smax)

) τ
α
(
α(1− smax)

α− τ

)
We will now prove our claims about γ viewed as a function of smax ∈ (0, τ/α) and τ ∈ (smaxα, α).
We will first examine the limits of γ with respect to τ at the ends of its range. Since γ is continuous,
we can find one of the limits by direct substitution:

lim
τ↘smaxα

γ = lim
smax↗τ/α

γ =

(
τ/α(α− τ)

τ(1− τ/α)

) τ
α
(
α(1− τ/α)

α− τ

)
= 1

τ
α ∗ 1 = 1

The second limit is harder; we merge γ into one exponent and then simplify:

lim
τ↗α

γ = lim
τ↗α

(
smax(α− τ)1−α ταα/τ

τ(1− smax)1−α/τ

) τ
α

= lim
τ↗α

smax(α− τ)1−α ταα/τ

τ(1− smax)1−α/τ

= lim
τ↗α

smax(α− τ)1−α/τ = lim
τ↗α

(
smax(α− τ)α−τ

)−1/τ

= smax

(
lim

α−τ↘0

(
(α− τ)α−τ

))−1/α

= smax(1)
−1/α = smax

where we use the fact that limx↘0 x
x = elimx↘0 x ln(x) = 1 (we can see that limx→0 x ln(x) =

limx→0 ln(x)/(1/x) = 0 with L’Hopital’s rule). We next find the partial derivatives of γ:

δγ

δsmax
=

(τ − αsmax)
(

αsmax−smaxτ
τ−smaxτ

) τ
α

smax(α− τ)

δγ

δτ
=

(smax − 1)
(

αsmax−smaxτ
τ−smaxτ

) τ
α

ln
(

τ−smaxτ
αsmax−smaxτ

)
α− τ

We are interested in the signs of these partial derivatives. First examining δγ
δsmax

, τ > αsmax =⇒
τ − αsmax > 0. Similarly, α > τ =⇒ α − τ > 0 and smax(α − τ) = smaxα − smaxτ > 0.
Finally, smax < 1 =⇒ τ(1 − smax) = τ − τsmax > 0. Thus every term is positive and the
entire fraction is positive. Next examining δγ

δτ , by similar logic α− τ > 0 and τ − smaxτ > 0 and
αsmax − smaxτ > 0. For the ln, since τ > αsmax, τ − smaxτ > αsmax − smaxτ , so the numerator
is greater than the denominator and the ln is positive. Finally, since smax < 1, smax − 1 < 0, and
thus the entire fraction has a single negative term in the product, so it is negative.

This completes our lemma: γ is a strictly decreasing function of τ and a strictly increasing function
of smax. Since τ is decreasing and has a leftward limit of 1 and a rightward limit of smax, all values
for γ are in (smax, 1).
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First, we will make a substitution. We note that γ is a strictly decreasing function on this interval of τ
with range (smax, 1). To see this, we will first make the following change of variabls:

τ =
α(k + s)

k + 1

for k ∈ (0,∞). This parameterizes τ ∈ (smaxα, α) as a weighted sum of smaxα and α. Plugging in
and simplifying, we have that

γ =

(
smax

k + smax

) k+smax
k+1

(k + 1)

This is a continous function over k ∈ (0,∞) and smax ∈ ()

Lemma 4.1.3. With the same assumptions as Lemma 4.1.2 and given ∆ > 0, we have:

Pr[σ(ŝ) ≤ βsmax −∆] ≤ 2e−2L∆2/β2

Proof. We will prove this lemma with a chain of inequalities, starting with Pr[σ(ŝ) ≤ βsmax −∆]:

Pr[σ(ŝ) ≤ βsmax −∆] ≤ Pr[βmax ŝ ≤ βsmax −∆]

≤ Pr[β ˆsmax ≤ βsmax −∆]

= Pr[βsmax − β ˆsmax ≥ ∆]

≤ Pr[|βsmax − β ˆsmax| ≥ ∆] = Pr[|β ˆsmax − βsmax| ≥ ∆]

≤ 2e−2L∆2/β2

The explanations for each step are as follows:

1. Because σ(ŝ) ≥ βmax s, we can replace σ(ŝ) with βmax s and the probability will be
strictly larger.

2. By the definition of the max operator, each individual ŝi ≤ max ŝ, and in particular this
is true for ˆsmax (the estimated similarity for the ground-truth maximum similarity vector).
Thus, we have β ˆsmax ≤ βmax ŝ, so we can again apply a replacement to get a further upper
bound.

3. Rearranging.

4. Because Pr[|a− b| ≥ c] = Pr[a− b ≥ c] + Pr[b− a ≥ c]

5. ŝmax is the sum of L Bernoulli trials with success probability smax and scaled by β/L.
Thus, we can directly apply the Hoeffding ineuqliaty with L trials with success probability
βsmax

L .

Theorem 4.2. Let S⋆ be the set with the maximum F (Q,S) and let Si be any other set. Let B⋆

and Bi be the following sums (which are lower and upper bounds for F (Q,S⋆) and F (Q,Si),
respectively)

B⋆ =
β

mq

mq∑
j=1

wjsmax(qj , S
⋆) Bi =

α

mq

mq∑
j=1

wjsmax(qj , Si)

Here, smax(q, S) is the maximum similarity between a query vector q and any element of the target
set S. Let B′ be the maximum value of Bi over any set Si ̸= S. Let ∆ be the following value
(proportional to the difference between the lower and upper bounds)

∆ = (B⋆ −B′)/3
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If ∆ > 0, a DESSERT structure with the following value3 of L solves the search problem from
Definition 1.1 with probability 1− δ.

L = O

(
log

(
Nmqm

δ

))

Proof. For set S⋆ to have the highest estimated score F̂ (Q,S⋆), we need all other sets to have lower
scores. Our overall proof strategy will find a minimum L that upper bounds the probability that each
inner aggregation of a set S ̸= S∗ is greater than ∆+ αs′j,max and a minimum L that lower bounds
the probability that the inner aggregation of S∗ is less βs∗j,max −∆. Finally, we will show that an L
that is a maximum of these two values solves the search problem.

Upper Bound: We start with the upper bound on Si ̸= S∗: we have from Lemma 4.1.2 that

Pr[σ(ŝi, qj) ≥ αsi,max +∆] ≤ mγL
i

with

γi =

(
(∆ + αsi,max)(1− si,max)

si,max(α− (∆ + αsi,max))

)−
∆+αsi,max

α
(

α(1− si,max)

α− (∆ + αsi,max)

)
and γi ∈ (0, 1). To make our analysis simpler, we are interested in the maximum γmax of all these γi
as a function of ∆, since then all of these bounds will hold with the same γ, making it easy to solve for
L. Since limsmax↘0 γ = 0 and limsmax↗1−∆ = 1−∆/α, there must be some γmax ∈ (1−∆/α, 1)
that maximizes this expression over any smax. This exact maximum is hard to find analytically, but
we are guaranteed that it is less than 1 by Lemma 4.1.2. We will use the term γmax in our analysis,
since it is data dependent and guaranteed to be in the range (0, 1). We also numerically plot some
values of γmax here with α = 1 to give some intuition for what the function looks like over different
∆; we note that it is decreasing in ∆ and approximates a linear function for ∆ >> 0.

To hold with the union bound over all N − 1 target sets and all mq query vectors with probability
δ
2 , we want the probability that our bound holds on a single set and query vector to be less than

δ
2(N−1)mq

. We find that this is true with L ≥ log
2(N−1)mqm

δ log( 1
γmax

)−1 for any qj and Si:

Pr[σ(ŝi, qj) ≥ αsi,max+∆] ≤ mγL
i ≤ mγL

max ≤ m (γmax)
log

2(N−1)mqm

δ log( 1
γmax

)−1

=
δ

2(N − 1)mq

3L additionally depends on the data-dependent parameter ∆, which we elide in the asymptotic bound; see
the proof in the appendix for the full expression for L.
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Lower Bound We next examine the lower bound on S∗: we have from Lemma 4.1.3 that

Pr[σ(ŝ∗, qj) ≤ βs∗,max −∆] ≤ 2e−2L∆2/β2

To hold with the union bound over all mq query vectors with probability δ
2 , we want the probability

that our bound holds on a single set and query vector to be less than δ
2mq

. We find that this is true

with L ≥ log(
4mq

δ )β2

2∆2 for any qj :

Pr[σ(ŝ∗, qj) ≤ βs∗,max −∆] ≤ 2e−2L∆2/β2

≤ 2e−2
log(

4mq
δ

)β2

2∆2 ∆2/β2

=
δ

2mq

Putting it Together

Let

L = max

(
log

2(N−1)mqm
δ

log( 1
γmax

)
,
log(

4mq

δ )β2

2∆2

)
Then the upper and lower bounds we derived in the last two sections both apply. Let 1 be the random
variable that is 1 when the m ∗mq ∗ (N − 1) upper bounds and the mq lower bounds hold and that is
0 otherwise. Consider all sets Si ̸= S∗. Then the probability we solve the Vector Set Search Problem
from Definition 1.1 is equal to the probability that all ∀i, (F̂ (Q,S∗)− F̂ (Q,Si) > 0). We now lower
bound this probability:

Pr
(
∀i(F̂ (Q,S∗)− F̂ (Q,Si) > 0)

)
= Pr

∀i

 1

mq

mq∑
j=1

wjσ(ŝ
∗, qj)−

1

mq

mq∑
j=1

wjσ(ŝi, qj) > 0

 Definition of F̂

= Pr

∀i

mq∑
j=1

wj(σ(ŝ
∗, qj)− σ(ŝi, qj)) > 0


= Pr

∀i

mq∑
j=1

wj(σ(ŝ
∗, qj)− σ(ŝi, qj)) > 0

∣∣∣∣1 = 1

Pr(1 = 1) Pr(A) ≥ Pr(A ∧B)

≥ Pr

∀i

mq∑
j=1

wj(βs∗,max −∆− (αsi,max +∆)) > 0

Pr(1 = 1) Bounds hold on 1 = 1

= Pr

∀i

mq∑
j=1

wj(βs∗,max − αsi,max) > 2∆

mq∑
j=1

wj

Pr(1 = 1)

= Pr

∀i

mq(B
∗ −Bi) > 2∆

mq∑
j=1

wj

Pr(1 = 1) Definition of B∗, Bi

≥ Pr

∀i

mq(B
∗ −B′) > 2∆

mq∑
j=1

wj

Pr(1 = 1) Definition of B′

≥ Pr

∀i

3mq∆ > 2∆

mq∑
j=1

wj

Pr(1 = 1) Definition of ∆

≥ Pr (∀i (3mq∆ > 2mq∆))Pr(1 = 1) wj ≤ 1

= 1 ∗ (1 = 1) ∆ > 0
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= 1− (1 = 0)

≥ 1− (m ∗mq ∗ (N − 1) ∗ δ

2(N − 1)mq
+

δ

2mq
∗mq) = 1− δ Union bound

and thus DESSERT solves the Vector Set Search Problem with this choice of L. Finally, we can
now examine the expression for L to determine its asymptotic behavior. Dropping the positive data
dependent constants 1

γmax
, 1
2∆2 , and β2, the left term in the max for L is O(log(

Nmqm
δ )) and the

right term in the max is O(log(
mq

δ )), and thus L = O
(
log(

Nmqm
δ )

)
.

Theorem 4.3. Suppose that each hash function call runs in time O(d) and that |D[i]t,h| < T ∀i, t, h
for some positive threshold T , which we treat as a data-dependent constant in our analysis. Then,
using the assumptions and value of L from Theorem 4.2, Algorithm 2 solves the Vector Set Search
Problem in query time

O (mq log(Nmqm/δ)d+mqN log(Nmqm/δ))

Proof. If we suppose that each call to the hash function ft is O(d), the runtime of the algorithm is

O

(
nLd+

n−1∑
i=0

N−1∑
k=0

L−1∑
t=0

|Mk,t,ft(qj)|

)
To bound this quantity, we use the sparsity assumption we made in the theorem: no set Si contains
too many elements that are very similar to a single query vector qj . Formally, we require that

|D[i]t,h| < T ∀i, t, h

for some positive threshold T . With this assumption, the runtime of Algorithm 2 is

O (mqLd+mqNLT )

Plugging in the L we found in our previous theorem, and treating T as data dependent constant, we
have that the runtime of Algorithm 2 is

O (mq log(Nmqm/δ)d+mqN log(Nmqm/δ))

which completes the proof.

B Hyperparameter Settings

Settings for DESSERT corresponding to the first row in the left part of Table 2, where DESSERT
was optimized for returning 10 documents in a low latency part of the Pareto frontier:

hashes_per_table (C) = 7
num_tables (L) = 32
filter_k = 4096
filter_probe = 1

Settings for DESSERT corresponding to the second row in the left part of Table 2, where DESSERT
was optimized for returning 10 documents in a high latency part of the Pareto frontier:

hashes_per_table (C) = 7
num_tables (L) = 64
filter_k = 4096
filter_probe = 2

Settings for DESSERT corresponding to the first row in the right part of Table 2, where DESSERT
was optimized for returning 1000 documents in a low latency part of the Pareto frontier:
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hashes_per_table (C)= 6
num_tables (L) = 32
filter_k = 8192
filter_probe = 4

Settings for DESSERT corresponding to the second row in the right part of Table 2, where DESSERT
was optimized for returning 1000 documents in a high latency part of the Pareto frontier:

hashes_per_table (C) = 7
num_tables (L) = 32
filter_k = 16384
filter_probe = 4

Intuitively, these parameter settings make sense: increase the initial filtering size and the number of
total hashes for higher accuracy, and increase the initial filtering size for returning more documents
(1000 vs. 10).

C Background on Locality-Sensitive Hashing and Inverted Indices for
Similarity Search

Here, we offer a refresher on using locality-sensitive hashing for similarity search with a basic
inverted index structure.

Consider a set of distinct vectors X = {x1, . . . , xN} where each xi ∈ Rd. A hash function h with a
range m maps each xi to an integer in the range [1,m]. Two vectors xi and xj are said to "collide"
when h(xi) = h(xj).

As a warmup, we will first consider the case of a hash function h drawn from a set of universal hash
functions H . Under such a function, if i ̸= j, p(h(x) = h(y)) = 1

m ; such families exist in practice
[7]. We can build an inverted index using this hash function by mapping each hash value in [1,m]
to the set of vectors Xv that have this hash value. Then, given a new vector y, we can query the
inverted index with v = h(y). We can see that y ∈ X iff y ∈ Xv . Such an index is in a sense solving
a search problem, if we only care about finding exact duplicates of our search query. Additionally,
we can solve the nearest neighbor problem with this index in time O(N), by going to every bucket
and checking the distance of a query against every vector in the bucket.

Now, in a similar way as in the universal case, let h to be drawn from a family of locality-sensitive
hash functions H . At a high level, instead of mapping vectors uniformly to [1,m], h maps vectors
that are close together to the same hash value more often. Formally, if we define a "close" threshold
r1, a "far" threshold r2, a "close" probability p1, and a "far" probability p2, with p1 > p2 and r1 < r2,
then we say H is (r1, r2, p1, p2)-sensitive if

d(x, y) < r1 =⇒ Pr(h(x) = h(y)) > p1
d(x, y) > r2 =⇒ Pr(h(x) = h(y)) < p2

where d is a distance metric. See [17] for the origin of locality-sensitive hashing and this definition.
Intuitively, if we build an inverted index using h in the same way as before, it now seems we have a
strategy to solve the (approximate) nearest neighbor problem more efficiently: given a query q, only
search for nearest neighbors in the bucket h(q), since each of these points x likely has d(q, x) < r1.
However, this strategy has a problem: with our definition, even a close neighbor might not be a
collision with probability (1− p1). Thus, we can repeat our inverted index L times with different hi

drawn independently from H , such that our probability of not finding a close neighbor in any bucket
is (1 − p1)

L. FALCONN [2] is an LSH inverted index algorithm that uses this basic idea, along
with concatenation and probing tricks, to achieve an asymptotically optimal (and data-dependent
sub-linear) runtime; see the paper and associated code repository for more details.

One final note is that in practice, most LSH families satisfy a much stronger condition than the above.
Consider a similarity function sim ∈ [0, 1], where s(x, y) = 1 =⇒ x = y. As x and y get more
dissimilar (e.g. their distance increases according to some distance metric), s(x, y) decreases. For
most LSH families, there exists an explicit similarity function that their collision probability satisfies,
such that p(h(x) = h(y)) = sim(x, y). Such LSH families exist for most common similarity
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functions, including cosine similarity (signed random projections) [8], Euclidean similarity (p-stable
projections) [11], and Jaccard similarity (minhash or simhash) [6]. Following [13, 9, 10, 27, 24, 31],
in our work, we use LSH families with this explicit similarity description to provide tight analyses
and strong guarantees for similarity-search algorithms.
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