
A Hyperparameters for PNA dataset.584

In this section we provide the hyperparameters used for the different models on the PNA multitask585

benchmark. We train all models for 2000 steps and with 3 layers. The remaining hyperparameters586

for hidden size of each layer, learning rate, number of message passing steps (only valid for MPNN587

models), number of rotation matrices and same example frequency (when relevant) are provided in588

Table 6.589

Table 6: Training hyperparameters for PNA dataset

Model #Hidden size L. rate #MP steps #Rotation matrices #Same Examples

GAT 64 10−4 - - -
GCN 64 10−4 - - -
DGN 256 10−3 - - -

MPNN 256 10−3 2 - -
ER GNN 128 10−3 2 - -

ER (node) embed. 64 10−3 1 - -
ER (edge) embed. 256 10−3 2 - -
ER (edge) embed. 256 10−3 2 - -

All ER features 256 10−4 2 23 9
HT + ER (rand rot) 512 10−4 2 23 4

B Details of MPNN Framework590

As discussed previously, the architectures used in the experiments conform to the MPNN framework,591

which allows affinity measures to be added as additional node and edge features. We describe the592

details here for completeness.593

Assume that our input graph, G = (V, E), has node features xu ∈ Rn, edge features xuv ∈ Rm594

and graph-level features xG ∈ Rl, for nodes u, v ∈ V and edges (u, v) ∈ E . We provide encoders595

fn : Rn → Rk, fe : Rm → Rk and fg : Rl → Rk that transform these inputs into a latent space:596

h(0)
u = fn(xu) h(0)

uv = fe(xuv) h
(0)
G = fg(xG) (3)

Our MPNN then performs several message passing steps:597

H(t+1) = Pt+1(H
(t)) (4)

where H(t) =

({
h
(t)
u

}
u∈V

,
{
h
(t)
uv

}
(u,v)∈E

,h
(t)
G

)
contains all of the latents at a particular process-598

ing step t ≥ 0.599

This process is iterated for T steps, recovering final latents H(T ). These can then be decoded into600

node-, edge-, and graph-level predictions (as required), using analogous decoder functions gn, ge and601

gg:602

yu = gn(h
(T )
u ) yuv = ge(h

(T )
uv ) yG = gg(h

(T )
G ) (5)

Generally, f and g are simple MLPs, whereas we use the MPNN update rule for P . It computes603

message vectors, m(t)
uv , to be sent across the edge (u, v), and then aggregates them in the receiver604

nodes as follows:605

m(t+1)
uv = ψt+1

(
h(t)
u ,h(t)

v ,h(0)
uv

)
, h(t+1)

u = ϕt+1

(
h(t)
u ,

∑
u∈Nv

m(t+1)
vu

)
(6)

The message function ψt+1 and the update function ϕt+1 are both MLPs. All of our models have606

been implemented using the jraph library [16].607

We incorporate edge-based affinity features (e.g., effective resistances and hitting times) in fe608

and node-based affinity features (e.g., resistive embeddings) in fn. Note that node-based affinity609

14



features may also naturally be incorporated as edge features by concatenating the node features at the610

endpoints.611

Occasionally, the dataset in question will be easy to overfit with the most general form of message612

function (see (6)). In these cases, we resort to assuming that ψ factorises into an attention mechanism:613

m(t+1)
uv = at+1

(
h(t)
u ,h(t)

v ,h(0)
uv

)
ψt+1

(
h(t)
u

)
(7)

where the attention function a is scalar-valued. We will refer to this particular MPNN baseline as a614

graph attention network (GAT) [44].615

C Omitted Proofs616

Lemma 3.2. For any pair of nodes u, v, we have ∥ru − rv∥22 = Res(u, v).617

Proof.

∥ru − rv∥22 = ∥C1/2BL−1
G (1u − 1v)∥22

= (1u − 1v)
TL†(BTCB)L†(1u − 1v)

= (1u − 1v)
TL†LL†(1u − 1v)

= (1u − 1v)
TL†(1u − 1v) = Res(u, v).

Corollary 4.2. For any fixed vectors α, β ∈ Rn, if we let X :=
∑

i αixi, X̂ :=
∑

i αix̂i and618

similarly Y :=
∑

i βixi, Ŷ :=
∑

i βix̂i; then:619 ∣∣∣⟨X,Y ⟩ − ⟨X̂, Ŷ ⟩
∣∣∣ ≤ ϵ

2

(
∥X∥2 + ∥Y ∥2

)
.

Proof. Since ⟨X,Y ⟩ = 1
4

(
∥X + Y ∥2 − ∥X − Y ∥2

)
, we can bound A =

∣∣⟨X,Y ⟩ − ⟨X̂, Ŷ ⟩
∣∣ from620

above as:621

A =

∣∣∣∣14 (∥X + Y ∥2 − ∥X̂ + Ŷ ∥2 − ∥X − Y ∥2 + ∥X̂ − Ŷ ∥2
)∣∣∣∣

≤ 1

4

(∣∣∣∥X̂ + Ŷ ∥2 − ∥X + Y ∥2
∣∣∣+ ∣∣∣∥X̂ − Ŷ ∥2 − ∥X − Y ∥2

∣∣∣)
≤ 1

4

(
ϵ · ∥X + Y ∥2 + ϵ · ∥X − Y ∥2

)
(8)

=
ϵ

4

(
∥X + Y ∥2 + ∥X − Y ∥2

)
=
ϵ

2

(
∥X∥2 + ∥Y ∥2

)
,

where (8) follows from Lemma 4.1 with probability 1 − o(1), by our choice of k (as Lemma 4.1622

guarantees that each of ∥X̂ + Ŷ ∥2 = (1± ϵ)∥X + Y ∥2 and ∥X̂ − Ŷ ∥2 = (1± ϵ)∥X − Y ∥2 holds623

with probability 1− o(1), and one can take a union bound over the two events).624

Lemma 4.3. Hu,v = 2M⟨rv − ru, rv − p⟩ where p :=
∑

u πuru.625

Proof. Consider the following expression of hitting times in terms of commute times by [43].626

Hu,v =
1

2

[
Ku,v +

∑
i

πi (Kv,i −Ku,i)

]
. (9)

Dividing both sides of eq. (9) and using the relation Ku,v = 2MRes(u, v), we see that:627

Hu,v

2M
=

1

2

[
Res(u, v) +

∑
i

πi (Res(v, i)− Res(u, i))

]

=
1

2

[
∥ru − rv∥2 +

∑
i

πi
(
∥rv − ri∥2 − ∥ru − ri∥2

)]
. (10)

15



Let’s focus on the inner summation. After expanding out the squared norms, we see that:628 ∑
i

πi
(
∥rv − ri∥2 − ∥ru − ri∥2

)
=
∑
i

πi
(
∥rv∥2 − ∥ru∥2

)
− 2

∑
i

πi⟨rv − ru, ri⟩

=
(
∥rv∥2 − ∥ru∥2

)
− 2⟨rv − ru,

∑
i

πiri⟩

=
(
∥rv∥2 − ∥ru∥2

)
− 2⟨rv − ru,p⟩.

Substituting this back into eq. (10), we can express 1
2MHu,v as:629

1

2

(
∥rv − ru∥2 + ∥rv∥2 − ∥ru∥2 − 2⟨rv − ru,p⟩

)
= ∥rv∥2 − ⟨ru, rv⟩ − ⟨rv − ru,p⟩ = ⟨rv − ru, rv − p⟩.

Lemma 4.4. |Ĥu,v −Hu,v| ≤ 3ϵHmax.630

Proof. Using Lemma 4.3, we see that631

|Ĥu,v −Hu,v| = 2M |⟨r̂v − r̂u, r̂v − p̂⟩ − ⟨rv − ru, rv − p⟩|
≤ ϵM

(
∥rv − ru∥2 + ∥rv − p∥2

)
≤ 3ϵHmax,

where we used Corollary 4.2 in the first inequality and Definition 3.4 in the last inequality.632

D Comparison: Effective Resistances vs. Shortest Path Distances633

Given that effective resistance (ER) captures times associated with random walks in a graph, it is634

tempting to ask how effective resistances compare to shortest path distances (SPDs) between nodes in635

a graph. Indeed, for some simple graphs, e.g., trees, shortest path distances and effective resistances636

turn out to be identical. However, in general, effective resistances and shortest path distances behave637

quite differently.638

Nevertheless, it is tempting to ask how effective resistance features compare to SPD features in639

GNNs, especially as there have been a number of recent model architectures that make use of SPD640

features (e.g., Graphormer [49], Position-Aware GNNs [52], DE-GNN [29]). We first note that641

the most natural direct comparison of our ER-based MPNNs with SPD-based networks does not642

quite make sense. The reason is that the analogous comparison would be to determine the effect of643

replace ERs with SPDs as features in our MPNNs. However, since our networks only use ER features644

along edges of the given graph, the corresponding SPD features would then be trivial (as the SPD645

between two nodes directly connected by an edge in the graph is 1, resulting in a constant feature on646

every edge)!647

As a result, graph learning architectures that use SPDs typically either (a.) use a densely-connected648

network (e.g., Graphormer [49], which uses a densely-connected attention mechanism) that incurs649

O(n2) overhead, or (b.) pick a small set of anchor nodes or landmark nodes to which SPDs from650

all other nodes are computed and incorporated as node features (e.g., Position-Aware GNNs [52],651

DE-GNN [29]). We stress that the former approach generally modifies the graph (by connecting652

all pairs of nodes) and therefore does not fall within the standard MPNN approach, while the latter653

includes architectures that fall within the MPNN paradigm.654

Furthermore, we note that DE-GNNs are arguably one of the closest proposals to ours, as they655

compute distance-encoded features. These features can be at least as powerful as our proposed656

affinity-based features if polynomially many powers of the adjacency matrix are used. However,657

for all but the smallest graphs, using this many powers will be impractical—in fact, [29] only use658

powers of A up to 3, which would not be able to reliably approximate affinity-based features. We also659

16



observe that the DE-GNN paper is concerned with learning representations of small sets of nodes660

(e.g., node-, link-, and triangle-prediction) and does not show how to handle graph prediction tasks,661

which the authors mention as possible future work. This makes a direct comparison of our methods662

with DE-GNNs difficult.663

D.1 Empirical Results664

In an effort to empirically compare the expressivity of ER features with that of SPD features, we once665

again perform experiments on the PNA dataset, picking the following baselines that make use of SPD666

features:667

• The first baseline is roughly an MPNN with Graphormer-based features. More precisely, it668

is a densely-connected MPNN with SPDs from the original graph as edge features. In order669

to retain the structure of the original graph, we also use additional edge features to indicate670

whether or not an edge in the dense (complete) graph is a true edge of the original graph.671

We also explore the use of the centrality encoding (in-degree and out-degree embeddings)672

from Graphormer as additional node features.673

• The second baseline is the Position-Aware GNN (P-GNN), which makes use of “anchor sets”674

of nodes and encodes distances to these nodes.675

The results of these baselines are shown in Table 7. In particular, we note that our ER-based MPNNs676

outperform all aforementioned baselines.

Table 7: Results on the PNA dataset for MPNNs with Graphormer-based features (yellow) as well
as SPD-based P-GNNs (orange). Here, CE refers to the centrality encoding, which is incorporated
in the relevant MPNNs as additional node features. Similarly, SPD refers to shortest path distance
features — in the relevant MPNNs, shortest path distances between all pairs of nodes in the graph are
incorporated as edge features, along with an additional edge feature indicating whether an edge exists
in the input graph. Therefore, the MPNN baselines are all variants of the same model with additional
node/edge features. Similarly, P-GNN [52] uses SPD features with respect to a set of chosen anchor
nodes. The average score metric is, as before, the average of the log(MSE) metric over all six tasks,
as in Table 1.

Model Average score
*MPNN + CE -2.728

*MPNN (dense) + SPD -2.157
*MPNN (dense) + CE + SPD -2.107

*P-GNN -2.650
MPNN w/ resistive (edge) embeddings -2.789
MPNN w/ all affinity measure features -3.106

677

D.2 Theory: ER vs. SPD678

In addition to experimental results, we would like to provide some theory for why effective resistances679

can capture structure in GNNs that SPDs are unable to.680

We will call an initialization function u 7→ h
(0)
u on nodes of a graph node-based if it assigns values681

that are independent of the edges of the graph. Such an initialization is, however, allowed to depend682

on node identities (e.g., for the single-source shortest path problem from a source s, one might find it683

natural to define h
(0)
s = 0 and h

(0)
u = +∞ for all u ̸= s).684

Consider the task of computing “single-source effective resistances,” i.e., the effective resistance685

from a particular node to every other node. We show that a GNN with a limited number of message686

passing steps cannot possibly learn single-source effective resistances, even to nearby nodes.687

Theorem D.1. Suppose we fix k > 0. Then, given any node-based initialization function h
(0)
u , it688

is impossible for a GNN to compute single-source effective resistances from a given node w to any689

nodes within a k-hop neighborhood.690

17



More specifically, for any update rule691

m(t+1)
uv = ψt+1

(
h(t)
u ,h(t)

v , fe(xuv)
)

h(t+1)
u = ϕt+1

(
h(t)
u , f ({muv : v ∈ N (u)})

), (11)

there exists a graph G = (V,E) and u ∈ V such that after k rounds of message passing, h(k)v ̸=692

Res(u, v) for some v ̸= u within a k-hop neighborhood of u.693

On the other hand, there exists an initialization with respect to which k rounds of message passing694

will compute the correct shortest path distances to all nodes within k-hop neighborhood.695

Note that the assumption on the initialization function in the above theorem is reasonable because696

enabling the use of arbitrary, unrestricted functions would allow for the possibility of precomputing697

effective resistances in the graph and trivially incorporating them as node features, which would698

defeat the purpose of computing them using message-passing.699

Proof. Consider the following set of graphs, each on 4k + 1 nodes:700

Figure 2: Both of the above graphs are on 4k+1 vertices, labeled v0, v1, . . . , v4k. The only difference
is a single edge, i.e., the graph on the left has an edge between v2k and v2k+1, while the one on the
right does not have this edge.

v0

v1

v2

v2k v2k+1

v4k

v0

v1

v2

v2k v2k+1

v4k

Let V = {v0, v1, . . . , v4k}. The first graph G = (V,E) is a cycle, while the second graph G′ =701

(V,E′) is a path, obtained by removing a single edge from the first graph (namely, the one between702

vk and vk+1). Suppose the edge weights are all 1 in the above graphs.703

Let w = v0 be the source and let {h(0)
v : v ∈ V } be a “local” node feature initializa-704

tion. Note that for any GNN (i.e., update and aggregation rules in (11), add the formal update705

rule somewhere), the computation tree after k rounds of message passing is identical for nodes706

v0, v1, . . . , vk, v3k+1, v3k+2, . . . , v4k (i.e., the nodes within the k-hop neighborhood of v0) in both707

G and G′. This is because the only difference between G and G′ is the existence of the edge708

between v2k and v2k+1, and this edge is beyond a k-hop neighborhood centered at any one of the709

aforementioned nodes. Therefore, we will necessarily have that h(k)
vi is identical in both G and G′ for710

i = 1, . . . , k, 3k + 1, 3k + 2, . . . , 4k.711

However, it is easy to calculate the effective resistances in both graphs. In G, we have ResG(v0, vi) =712
i(4k+1−i)

4k+1 , while in G′, we have ResG′(v0, vi) = min{i, 4k + 1 − i}. Therefore, ResG(v0, vi) ̸=713

ResG′(v0, vi) for all i = 1, 2, . . . , k, 3k + 1, 3k + 2, . . . , 4k.714

It follows that for any i = 1, 2, . . . , k, 3k + 1, 3k + 2, . . . , 4k, the execution of k message passing715

steps of a GNN cannot result in h
(k)
vi = Res(v0, vi) for both G and G′, which proves the first claim716

of the theorem.717

18



For the second part (regarding single-source shortest paths), observe that single-source shortest path718

distances can, indeed, be realized via aggregation and update rules for a message passing network. In719

particular, for k rounds of message passing, it is possible to learn shortest path distances of all nodes720

within a k-hop neighborhood. Specifically, for a source w, we can use the following setup: Take721

hw = 0 and hu = ∞ for all u ̸= w. Moreover, for any edge (u, v), let the edge feature xuv ∈ R722

simply be the weight of (u, v) in the graph. Then, take the update rule (11) with fe, ψt+1 as identity723

functions and724

fe(xuv) = xuv

ψt+1

(
h(t)
u ,h(t)

v , fe(xuv)
)
= h(t)

u + xuv

f(S) = min
S

{s ∈ S}

ϕt+1(a, b) = min{a, b}.

It is clear that the above update rule simply simulates the execution of an iteration of the Bellman-Ford725

algorithm. Therefore, k message passing steps will simulate k iterations of Bellman-Ford, resulting726

in correct shortest path distances from the source w for every node within a k-hop neighborhood.727

19


