
Fast Construction of Similarity Graphs
with Kernel Density Estimation:

Supplementary Material

Anonymous Author(s)
Affiliation
Address
email

The supplementary material of the paper is organised as follows: we present the complete proof of1

Theorem 1 in Section A, and present some additional experimental results in Section B.2

A Proof of Theorem 13

This section presents the complete proof of Theorem 1. To make the supplementary material self-4

contained, we first re-state the main theorem of our paper, and our presented algorithm is described5

in Algorithm 2.6

Theorem 1. Given a set of data points X = {x1, . . . , xn} ⊂ Rd as input, there is a randomised7

algorithm that constructs a sparse graph G of X , such that it holds with probability at least 9/10 that8

1. graph G has Õ(n) edges,9

2. graph G has the same cluster structure as the fully connected similarity graph K of X;10

that is, if K has k well-defined clusters, then it holds that ρG(k) = O(k · ρK(k)) and11

λk+1(NG) = Ω(λk+1(NK))
1.12

The algorithm uses an approximate KDE algorithm as a black-box, and has running time13

Õ(TKDE(n, n, ϵ)), where TKDE(n, n, ϵ) is the running time of solving the KDE problem for n data14

points up to a (1 + ϵ)-approximation.15

For simplicity, throughout the proof we always use K to stand for the fully connected similarity graph16

and G stands for the sparsifier constructed by Algorithm 2.17

For each xi in the input data, Algorithm 2 adds L = 6C · log(n)/λk+1 edges to the constructed18

graph G for some constant C. Let yi,1, . . . , yi,L be random variables which are equal to the L points19

sampled for xi. Recall that by the SZ algorithm, the “ideal” sampling probability for xj from xi is20

pi(xj) ≜ min

{
k(xi, xj)

degK(xi)
· C log(n)

λk+1
, 1

}
.

We denote the true sampling probability under Algorithm 2 to be21

p̃i(xj) ≜ P [xj ∈ {yi,1, . . . yi,L}] .
Finally, for each added edge, Algorithm 2 also computes an estimate of pi(xj) which we denote22

p̂i(xj) ≜ min

{
k(xi, xj)

g(xi)
· C log(n)

λk+1
, 1

}
.

Similarly, we define23

1The formal definition of ρG(k) and matrix NG can be found in Section 2. We show in Section 3 that these
two conditions guarantee that graph G and K have the same cluster structure.

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Algorithm 1 SAMPLE

1: Input: set S of {yi}
set X of {xi}

2: Output:
E = {(yi, xj) for some i and j}

3: if |X| = 1 then
4: return S ×X
5: else
6: X1 = {xj : j < |X| /2}
7: X2 = {xj : j ≥ |X| /2}
8: Compute gX1

(yi) for all i with a KDE al-
gorithm

9: Compute gX2
(yi) for all i with a KDE al-

gorithm

10: S1 = S2 = ∅
11: for yi ∈ S do
12: r ∼ Unif[0, 1]
13: if r ≤ gX1(yi)/(gX1(yi) + gX2(yi))

then
14: S1 = S1 ∪ {yi}
15: else
16: S2 = S2 ∪ {yi}
17: end if
18: end for
19: return SAMPLE(S1, X1)∪SAMPLE(S2, X2)
20: end if

Algorithm 2 FASTSIMILARITYGRAPH

1: Input: data point set X = {x1, . . . , xn}
2: Output: similarity graph G
3: E = ∅, L = C · log n
4: for ℓ ∈ [1, L] do
5: E = E ∪ SAMPLE(X,X)
6: end for
7: Compute g[1,n](xi) for each i with a KDE

algorithm

8: for (vi, vj) ∈ E do
9: p̂i(j) = min

{
L · k(xi, xj)/g[1,n](xi), 1

}
10: p̂j(i) = min

{
L · k(xi, xj)/g[1,n](xj), 1

}
11: p̂(i, j) = p̂i(j) + p̂j(i)− p̂i(j) · p̂j(i)
12: Set w(vi, vj) = k(xi, xj)/p̂(i, j)
13: end for
14: return graph G = (X,E,w)

• p(xi, xj) = pi(xj) + pj(xi)− pi(xj)pj(xi),24

• p̃(xi, xj) = p̃i(xj) + p̃j(xi)− p̃i(xj)p̃j(xi), and25

• p̂(xi, xj) = p̂i(xj) + p̂j(xi)− p̂i(xj)p̂j(xi).26

Following the convention of [2], we use pi(xj) to refer to the probability that a given edge is sampled27

from the vertex xi and p(xi, xj) is the probability that the given edge (xi, xj) is sampled at all by the28

algorithm. We use the same convention for p̃i(xj) and p̂i(xj).29

Before coming to the proof of Theorem 1, we first show a sequence of lemmas showing that these30

probabilities are all within a constant factor of each other.31

Lemma 1. For any point xi, the probability that a given sampled neighbour yi,l is equal to xj is32

given by33

k(xi, xj)

2 degK(xi)
≤ P [yi,l = xj] ≤

2k(xi, xj)

degK(xi)
.

Proof. Let X = x1, . . . , xn be the input data points for Algorithm 2, and X[a,b] = {xa, . . . , xb} be34

the subset of X with indices between a and b. Then, in each recursive call to Algorithm 1, we are35

given a range X[a,b] as input and assign yi,l to one half of it: either X[a,⌊b/2⌋] or X[⌊b/2⌋+1,b]. By36

Algorithm 1, we have that the probability of assigning yi,l to X[a,⌊b/2⌋] is37

P
[
yi,l ∈ X[a,⌊b/2⌋]|yi,l ∈ X[a,b]

]
=

g[a,⌊b/2⌋](xi)

g[a,b](xi)
,

where we write g[a,b] rather than gX[a,b]
for clarity. By our guarantee on the performance of the KDE38

algorithm, we have that g[a,b](xi) ∈ (1± ϵ) deg[a,b](xi), where we define39

deg[a,b](xi) ≜
b∑

j=a

k(xi, xj).

2

This gives40 (
1− ϵ

1 + ϵ

)
deg[a,⌊b/2⌋](xi)

deg[a,b](xi)
≤ P

[
Y ∈ X[a,⌊b/2⌋]|Y ∈ X[a,b]

]
≤
(
1 + ϵ

1− ϵ

)
deg[a,⌊b/2⌋](xi)

deg[a,b](xi)
. (1)

Then, notice that we can write41

P [yi,l = xj] = P
[
yi,l = xj |yi,l ∈ X[a1,b1]

]
× P

[
yi,l ∈ X[a1,b1]|yi,l ∈ X[a2,b2]

]
× . . .× P

[
yi,l ∈ X[ak,bk]|yi,l ∈ X[1,n]

]
,

where each term corresponds to one level of recursion of Algorithm 1, and there are at most ⌈log2(n)⌉42

terms. Then, by (1), and noticing that the denominator and numerator of adjacent terms cancel out,43

we have44 (
1− ϵ

1 + ϵ

)⌈log2(n)⌉ k(xi, xj)

deg(xi)
≤ P [yi,l = xj] ≤

(
1 + ϵ

1− ϵ

)⌈log2(n)⌉ k(xi, xj)

deg(xi)

since deg[j,j](xi) = k(xi, xj) and deg[1,n](xi) = deg(xi).45

For the lower bound, we have that46 (
1− ϵ

1 + ϵ

)⌈log2(n)⌉

≥ (1− 2ϵ)
⌈log2(n)⌉ ≥ 1− 3 log2(n)ϵ ≥ 1/2,

where the final inequality follows by the fact that ϵ ≤ 1/(6 log2(n)).47

For the upper bound, we similarly have48 (
1 + ϵ

1− ϵ

)⌈log2(n)⌉

≤ (1 + 3ϵ)
⌈log2(n)⌉ ≤ exp (3⌈log2(n)⌉ϵ) ≤ e2/3 ≤ 2,

where the first inequality follows since ϵ < 1/6.49

The next lemma shows that Algorithm 2 samples each edge with approximately the correct probability.50

Lemma 2. For every i and j ̸= i, we have51

9

10
pi(xj) ≤ p̃i(xj) ≤ 12pi(xj).

Proof. Algorithm 2 samples 6C log(n)/λk+1 neighbours of xi, and Lemma 1 guarantees that the52

chosen neighbour is equal to xj with probability roughly proportional to k(xi, xj)/ deg(xi).53

Let Y = {yi,1, . . . , yi,L} be the neighbours of xi sampled by Algorithm 2, where L =54

6C log(n)/λk+1. Then,55

P [xj ∈ Y] = 1−
L∏

l=1

(1− P [yi,l = xj]) ≥ 1−
(
1− k(xi, xj)

2 deg(xi)

)L

≥ 1− exp

(
−L · k(xi, xj)

2 deg(xi)

)
The proof proceeds by case distinction.56

Case 1: pi(xj) ≤ 0.9. In this case, we have,57

P [xj ∈ Y] ≥ 1− exp (−6pi(xj)/2) ≥ pi(xj).

Case 2: pi(xj) > 0.9. In this case, we have58

P [xj ∈ Y] ≥ 1− exp

(
−9 · 6

20

)
≥ 9

10
,

which completes the proof of the lower bound of p̃(xj).59

For the upper bound, we have60

P [xj ∈ Y] ≤ 1−
(
1− 2k(xi, xj)

deg(xi)

)L

≤ 2k(xi, xj)

deg(xi)
· L =

12Ck(xi, xj)

deg(xi)

log(n)

λk+1
,

from which the statement follows.61

3

An immediate corollary of Lemma 2 is as follows.62

Corollary 1. For all xi and xj , it holds that63

8

10
p(xi, xj) ≤ p̃(xi, xj) ≤ 144p(xi, xj)

and64
1

216
p̃(xi, xj) ≤ p̂(xi, xj) ≤

30

16
p̃(xi, xj).

We now come to the proof of Theorem 1. It is important to note that although some of the analysis is65

parallel to that of [2], our analysis is more involved since we need to carefully take into account the66

error introduced by the approximate KDE algorithm which changes the edge sampling probabilities67

slightly. We also need to be careful since the edges of G are not sampled independently in our68

algorithm.69

The proof makes use of the following concentration inequalities.70

Lemma 3 (Bernstein’s Inequality [1]). Let X1, . . . , Xn be independent random variables such that71

|Xi| ≤ M for any i ∈ {1, . . . , n}. Let X =
∑n

i=1 Xi, and R =
∑n

i=1 E
[
X2

i

]
. Then, it holds that72

P [|X − E [X] | ≥ t] ≤ 2 exp

(
− t2

2(R+Mt/3)

)
.

Lemma 4 (Matrix Chernoff Bound [3]). Consider a finite sequence {Xi} of independent, random,73

PSD matrices of dimension d that satisfy ∥Xi∥ ≤ R. Let µmin ≜ λmin(E [
∑

i Xi]) and µmax ≜74

λmax(E [
∑

i Xi]). Then, it holds that75

P

[
λmin

(∑
i

Xi

)
≤ (1− δ)µmin

]
≤ d

(
e−δ

(1− δ)1−δ

)µmin/R

for δ ∈ [0, 1], and76

P

[
λmax

(∑
i

Xi

)
≥ (1 + δ)µmax

]
≤ d

(
eδ

(1 + δ)1+δ

)µmax/R

forr δ ≥ 0.77

Proof of Theorem 1. We first show that the degrees of all nodes in the similarity graph K are preserved78

with high probability in the sparsifier G. We follow SZ and consider only the edges with pi(j) < 179

since we can assume with high probability that the other edges are included in the sparsifier G. For80

any node xi, and let yi,1, . . . , yi,L be the neighbours of xi sampled by Algorithm 2.81

We fix an arbitrary node xi, and let Y1, . . . , YL be random variables defined by82

Yl ≜
k(xi, yi,l)

p̂(xi, yi,l)
.

For each j ̸= i, we define the random variable Zj,i by83

Zj,i ≜

{
k(xi,xj)
p̂(xi,xj)

if xi ∈ {yj,1 . . . yj,L},
0 otherwise.

Then, we can write84

degG(xi) =

L∑
l=1

Yl +
∑
j ̸=i

Zj,i.

We have85

E [degG(xi)] =

L∑
l=1

E [Yl] +
∑
j ̸=i

E [Zj,i]

=

L∑
l=1

∑
j ̸=i

P [yi,l = xj] ·
k(xi, xj)

p̂(xi, xj)
+
∑
j ̸=i

p̃j(i) ·
k(xi, xj)

p̂(xi, xj)
.

4

By Lemmas 1 and 2 and Corollary 1, we have86

E [degG(xi)] ≥
∑
j ̸=i

k(xi, xj)

p̂(xi, xj)

(
L · k(xi, xj)

2 deg(xi)
+ p̃j(xi)

)

≥
∑
j ̸=i

k(xi, xj)

4 · p̂(xi, xj)
(p̃i(xj) + p̃j(xi))

≥
∑
j ̸=i

2 · k(xi, xj)

15
=

2 · degK(xi)

15
.

Similarly, we have87

E [degG(xi)] ≤
∑
j ̸=i

k(xi, xj)

p̂(xi, xj)

(
2 · L · k(xi, xj)

deg(xi)
+ p̃j(xi)

)

≤
∑
j ̸=i

40 · k(xi, xj)

3 · p̂(xi, xj)
(p̃i(xj) + p̃j(xi))

≤
∑
j ̸=i

5760 · k(xi, xj) = 5760 · degK(xi).

In order to prove a concentration bound on this degree estimate, we would like to apply the Bernstein88

inequality for which we need to bound89

R =

L∑
l=1

E
[
Y 2
l

]
+
∑
j ̸=i

E
[
Z2
j,i

]
=

L∑
l=1

∑
j ̸=i

P [yi,l = xj]
k(xi, xj)

2

p̂(xi, xj)2
+
∑
j ̸=i

p̃j(i)
k(xi, xj)

2

p̂(xi, xj)2

≤
∑
j ̸=i

40 · k(xi, xj)
2

3 · p̂(xi, xj)2
(p̃i(j) + p̃j(i))

≤
∑
j ̸=i

5760 · k(xi, xj)
2

p̂(xi, xj)

≤
∑
j ̸=i

6720 · k(xi, xj)
2

pi(xj)

=
∑
j ̸=i

6720 · k(xi, xj) · degK(xi) · λk+1

C log(n)

≤ 6720 · degK(xi)
2 · λk+1

C log(n)
.

Then, by applying Bernstein’s inequality we have for any constant C2 that90

P
[
|degG(xi)− E[degG(xi)]| ≥

1

C2
degK(xi)

]
≤ 2 · exp

− degK(xi)
2/C2

2
6720 degK(xi)2λk+1

C log(n) + 1
6
degK(xi)2λk+1

C2C log(n)


≤ 2 exp

(
− C · log(n)
6721 · λk+1 · C2

2

)
= o(1/n).

Therefore, by taking C to be sufficiently large and by the union bound, it holds with high probability91

that the degree of all the nodes in G are preserved up to a constant factor. For the remainder of the92

proof, we assume that this is the case. Note in particular that this implies volG(S) = Θ(volK(S)) for93

any subset S ⊆ V .94

5

Next, we prove it holds for G that ϕG(Si) = O (k · ϕK(Si)) for any 1 ≤ i ≤ k, where S1, . . . , Sk95

form an optimal clustering in K.96

By the definition of Zi,j , it holds for any 1 ≤ i ≤ k that97

E [wG(Si, V \ Si)] = E

∑
j∈Si

∑
l ̸∈Si

Zl,j + Zj,l


=
∑
j∈Si

∑
l ̸∈Si

k(xj , xl)

p̂(xj , xl)
(p̃(xj , xl) + p̃(xl, xj))

= O (wK(Si, V \ Si))

where the last line follows by Corollary 1. By Markov’s inequality and the union bound, with constant98

probability it holds for all i = 1, . . . , k that99

wG(Si, V \ Si) = O(k · wK(Si, V \ Si)).

Therefore, it holds with constant probability that100

ρG(k) ≤ max
1≤i≤k

ϕG(Si) = max
1≤i≤k

O(k · ϕK(Si)) = O(k · ρK(k)).

Next, we prove that λk+1(NG) = Ω(λk+1(NK)). Let NK be the projection of NK on its top n− k101

eigenspaces, and notice that NK can be written102

NK =

n∑
i=k+1

λifif
⊺
i

where f1, . . . , fn are the eigenvectors of NK. Let N
−1/2

K be the square root of the pseudoinverse of103

NK.104

We prove that the top n − k eigenvalues of NK are preserved, which implies that λk+1(NK) =105

Θ(λk+1(NG)). To prove this, for each data point xi and sample 1 ≤ l ≤ L, we define a random106

matrix Xi,l ∈ Rn×n by107

Xi,l = wG(xi, yi,l) ·N
−1/2

K beb
⊺
eN

−1/2

K ,

where be = χxi
− χyi,l

is the edge indicator vector. Notice that108

n∑
i=1

L∑
l=1

Xi,l =
∑

sampled edges e=(xi,xj)

wG(xi, xj)N
−1/2

K beb
⊺
eN

−1/2

K = N
−1/2

K N
′

GN
−1/2

K

where109

N
′

G =
∑

sampled edges e=(xi,xj)

wG(xi, xj)beb
⊺
e

is the Laplacian matrix of G normalised with respect to the degrees of the nodes in K. We prove that,110

with high probability, the top n− k eigenvectors of N
′

G and NK are approximately the same. Then,111

we show the same for NG and N
′

G which implies that λk+1(NG) = Ω(λk+1(NK)).112

We begin by looking at the first moment of the expression above:113

λmin

(
E

[
n∑

i=1

L∑
l=1

Xi,l

])
= λmin

 n∑
i=1

L∑
l=1

∑
j ̸=i

P [yi,l = xj]
k(xi, xj)

p̂(xi, xj)
·N−1/2

K beb
⊺
eN

−1/2

K


≥ λmin

 n∑
i=1

∑
j ̸=i

p̃i(xj)

4

k(xi, xj)

p̂(xi, xj)
·N−1/2

K beb
⊺
eN

−1/2

K


≥ λmin

(
2

15
·N−1/2

K NKN
−1/2

K

)
=

2

15
.

6

Similarly,114

λmax

(
E

[
n∑

i=1

L∑
l=1

Xi,l

])
= λmax

 n∑
i=1

L∑
l=1

∑
j ̸=i

P [yi,l = xj]
k(xi, xj)

p̂(xi, xj)
·N−1/2

K beb
⊺
eN

−1/2

K


≤ λmax

 n∑
i=1

∑
j ̸=i

120 · p̃i(xj)

9

k(xi, xj)

p̂(xi, xj)
·N−1/2

K beb
⊺
eN

−1/2

K


≤ λmax

(
5760 ·N−1/2

K NKN
−1/2

K

)
= 5760.

Additionally, for any i and l, we have that115

∥Xi,l∥ ≤ wG(xi, yi,l) · b⊺eN
−1/2

K N
−1/2

K be

=
k(xi, yi,l)

p̂(xi, yi,l)
· b⊺eN

−1

K be

≤ k(xi, yi,l)

p̂(xi, yi,l)
· 1

λk+1
∥be∥2

≤ 2(1 + ϵ)λk+1

C log(n)
(

1
degK(u)

+ 1
degK(yi,l)

) · 1

λk+1

(
1

degK(xi)
+

1

degK(yi,l)

)

≤ 2(1 + ϵ)

C log(n)
.

Now, we apply the matrix Chernoff bound and have that116

P

[
λmax

(
n∑

i=1

L∑
l=1

Xi,l

)
≥ 8640

]
≤ n

(
e1/2

(1 + 1/2)3/2

)2C log(n)/15(1+ϵ)

= O(1/nc)

for some constant c. The other side of the matrix Chernoff bound gives us that117

P

[
λmin

(
n∑

i=1

L∑
l=1

Xi,l

)
≤ 1/15

]
≤ O(1/nc).

Combining these, with probability 1 − O(1/nc) it holds for any non-zero x ∈ Rn in the space118

spanned by fk+, . . . , fn that119

x⊺N
−1/2

K N
′

GN
−1/2

K x

x⊺x
∈ {1/15, 8640}.

By setting y = N
−1/2

K x, we can rewrite this as120

y⊺N
′

Gy

y⊺N
1/2

K N
1/2

K y
=

y⊺N
′

Gy

y⊺NKy
=

y⊺N
′

Gy

y⊺y

y⊺y

y⊺NKy
∈ {1/240, 1280}.

Since dim(span{fk+1, . . . , fn}) = n− k, we have shown that there exist n− k orthogonal vectors121

whose Rayleigh quotient with respect to N
′

G is Ω(λk+1(NK)). By the Courant-Fischer Theorem, we122

have λk+1(N
′

G) = Ω(λk+1(NK)).123

It only remains to show that λk+1(NG) = Ω(λk+1(N
′

G)), which implies that λk+1(NG) =124

Ω(λk+1(NK)). By the definition of N
′

G, we have that NG = D
−1/2
G D

1/2
K N

′

GD
1/2
K D

−1/2
G . Therefore,125

for any x ∈ Rn and y = D
1/2
K D

−1/2
G x, it holds that126

x⊺NGx

x⊺x
=

y⊺N
′

Gy

x⊺x
= Ω

(
y⊺N

′

Gy

y⊺y

)
,

where the final guarantee follows from the fact that the degrees in G are preserved up to a constant127

factor. The conclusion of the theorem follows by the Courant-Fischer Theorem.128

7

Finally, we bound the running time of Algorithm 2 which is dominated by the recursive calls to129

Algorithm 1. We note that although the number of nodes doubles at each level of the recursion tree130

(visualised in Figure 4), the total number of samples S and data points X remain constant for each131

level of the tree. Then, since the running time of the KDE algorithm is superadditive, the total running132

time of the KDE algorithms at level i of the tree is133

Ti =

2i∑
j=1

TKDE(|Si,j |, |Xi,j |, ϵ)

≤ TKDE

 2i∑
j=1

|Si,j |,
2i∑
j=1

|Xi,j |, ϵ

 = TKDE(|S|, |X|, ϵ).

Since there are O(log2(n)) levels of the tree, the total running time of Algorithm 1 is134

Õ(TKDE(|S|, |X|, ϵ)) which completes the proof.135

B Additional Experimental Results136

In this section, we include in Figures 1 and 2 some additional examples of the performance of the137

six spectral clustering algorithms on the BSDS image segmentation dataset. Due to the quadratic138

memory requirement of the SKLEARN GK algorithm, it cannot be used on the full-resolution image.139

Therefore, we present its results on each image downsampled to 20,000 pixels. For every other140

algorithm, we show the results on the full-resolution image. In every case, we find that our algorithm141

is able to identify more refined detail of the image when compared with the alternative algorithms.142

References143

[1] Fan Chung and Linyuan Lu. Concentration inequalities and martingale inequalities: a survey.144

Internet mathematics, 3(1):79–127, 2006.145

[2] He Sun and Luca Zanetti. Distributed graph clustering and sparsification. ACM Transactions on146

Parallel Computing, 6(3):17:1–17:23, 2019.147

[3] Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Computa-148

tional Mathematics, 12(4):389–434, 2012.149

8

(a) Original Image (b) SKLEARN GK (c) OUR ALGORITHM

(d) SKLEARN k-NN (e) FAISS EXACT (f) FAISS HNSW (g) FAISS IVF

(h) Original Image (i) SKLEARN GK (j) OUR ALGORITHM

(k) SKLEARN k-NN (l) FAISS EXACT (m) FAISS HNSW (n) FAISS IVF

(o) Original Image (p) SKLEARN GK (q) OUR ALGORITHM

(r) SKLEARN k-NN (s) FAISS EXACT (t) FAISS HNSW (u) FAISS IVF

Figure 1: Further examples of the performance of the spectral clustering algorithms for image
segmentation.

9

(a) Original Image (b) SKLEARN GK (c) OUR ALGORITHM

(d) SKLEARN k-NN (e) FAISS EXACT (f) FAISS HNSW (g) FAISS IVF

(h) Original Image (i) SKLEARN GK (j) OUR ALGORITHM

(k) SKLEARN k-NN (l) FAISS EXACT (m) FAISS HNSW (n) FAISS IVF

Figure 2: Further examples of the performance of the spectral clustering algorithms for image
segmentation.

10

	Proof of Theorem 1
	Additional Experimental Results

