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A Proofs of the Theorems

In this section, we provide proofs of our theoretical claims. In many applications, the marginal
distributions of the positive pairs px and px̃ coincide, e.g., when x and x̃ are sampled as successive
frames from a temporally stationary process. We consider here the case where px may also be
different from px̃ and the distribution of negative samples px- is chosen to be nonzero on the support
X . In practice, given two batches of corresponding observations, it is often convenient to select
the negative samples from the first, second, or both batches, resulting in px- = px, px- = px̃, or
px- = 1

2 (px + px̃).
Lemma 1. Let the data generating process follow Eq. 1 and g be differentiable and invertible. Further,
assume that f and δ have universal approximation capability. Then for the optimal estimators of
Lδ-NCE(f, δ), Lδ-INCE(f, δ;K), Lδ-SCL(f, δ) and Lδ-NWJ(f, δ), it holds that

δ(h(s), h(s̃)) = − log ps̃|s(s̃|s) + ps-(s̃) + γ(s), (11)

where h = f ◦ g and γ is some function that only depends on s.

Proof. We will show below for each loss function separately that the optimal estimators satisfy the
form

δ(f(x), f(x̃)) = − log px̃|x(x̃|x) + log px-(x̃) + γx(x), (12)

where γx is a function that depends only on x and is zero for all but Lδ-INCE(f, δ;K).

We can then use the fact that the data generating function g is injective and differentiable. This
allows us to apply the probability transformations px̃|x(x̃|x) = ps̃|s(g

−1(x̃)|g−1(x)) vol Jg−1(x̃)

and px-(x̃) = ps-(g
−1(x̃)) vol Jg−1(x̃), where vol Jg−1(x̃) is the product of the singular values of

the Jacobian [1]. Thus, we obtain

δ(f(x), f(x̃)) = − log ps̃|s(g
−1(x̃)|g−1(x)) + log ps-(g

−1(x̃)) + γx(x),

where the Jacobians nicely cancel. Finally, we substitute x = g(s) and x̃ = g(s̃) and get

δ(h(s), h(s̃)) = − log ps̃|s(s̃|s) + log ps-(s̃) + γ(s),

where γ(s) = γx(g(s)).

Part 1 (δ-NCE loss):

It is known that the NCE loss converges towards the log difference of the two data distributions of the
positive and negative class [3, 6], that is

δ(f(x), f(x̃)) = − log
ppos(x, x̃)

px(x)px-(x̃)
= − log px̃|x(x̃|x) + log px-(x̃).
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Part 2 (δ-INCE loss):

The stated result can be obtained using Theorem 3.2 from Ma and Collins [9]. In addition, we give an
alternative proof in Section B. Theorem 3.2 in [9] assumes (Assumption 2.1 in their work) that there
exist functions f and δ such that for all (x, x̃) ∈ X × X

px̃|x(x̃|x)
px-(x̃)

=
1

Z(x)
e−δ(f(x),f(x̃)), (13)

where Z(x) = Ẽ
x

e−δ(f(x),f(x̃)). This assumption is satisfied since we optimize both f and δ

using universal function approximators. Then the theorem states that in the limit of infinite data,
this relation holds for the global optimum when we optimize the InfoNCE loss. To obtain their
notation, simply replace y = x̃ and s(x,y) = log px-(x̃) − δ(f(x), f(x̃)). Therefore, we get
δ(f(x), f(x̃)) = − log px̃|x(x̃|x) + log px-(x̃) + γx(x) with γx(x) = − logZ(x).

Part 3 (δ-SCL loss):

To simplify the notation, we substitute ψ(x, x̃) = −δ(f(x), f(x̃)) in the δ-SCL loss and obtain

L̃δ-SCL(ψ) = E
(x,x̃)
∼ppos

−2 eψ(x,x̃) + E
x∼px
x-∼px-

e2ψ(x,x
-) . (14)

First we derive the Taylor series of L̃δ-SCL:

L̃δ-SCL(ψ + ϵη) = L̃δ-SCL(ψ) + 2ϵ

 E
(x,x̃)
∼ppos

− eψ(x,x̃) η(x, x̃) + E
x∼px
x-∼px-

e2ψ(x,x
-) η(x,x-)


+ ϵ2

 E
(x,x̃)
∼ppos

− eψ(x,x̃) η(x, x̃)2 + 2 E
x∼px
x-∼px-

e2ψ(x,x
-) η(x,x-)2

+O(ϵ3). (15)

A necessary optimality condition is that in the expansion of L̃δ-SCL, the term of order ϵ is zero for any
perturbation η. We have

0 = E
(x,x̃)
∼ppos

− eψ(x,x̃) η(x, x̃) + E
x∼px
x-∼px-

e2ψ(x,x
-) η(x,x-)

=

∫
px(x)px-(x-) e2ψ(x,x

-) η(x,x-) dx dx- −
∫
ppos(x, x̃) eψ(x,x̃) η(x, x̃) dx dx̃

=

∫
px(x)px-(x̃) e2ψ(x,x̃) η(x, x̃) dx dx̃−

∫
ppos(x, x̃) eψ(x,x̃) η(x, x̃) dx dx̃

=

∫ (
px(x)px-(x̃) e2ψ(x,x̃) −ppos(x, x̃) eψ(x,x̃)

)
η(x, x̃) dx dx̃.

This term vanishes if and only if

eψ(x,x̃) =
ppos(x, x̃)

px(x)px-(x̃)
,

that is ψ∗(x, x̃) = log px̃|x(x̃|x)− log px-(x̃).

To verify that the critical point is indeed a minimizer, we insert the solution back into Eq. 15 and
check if the order ϵ2 term is strictly positive for any direction η. This leads to

L̃δ-SCL(ψ
∗ + ϵη) = L̃δ-SCL(ψ

∗)

+ ϵ2

 E
(x,x̃)
∼ppos

−
ppos(x, x̃)

px(x)px-(x̃)
η(x, x̃)2 + 2 E

x∼px
x-∼px-

(
ppos(x,x

-)

px(x)px-(x-)

)2

η(x,x-)2

+O(ϵ3). (16)
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The order ϵ2 term can be simplified to∫
ppos(x, x̃)

2

px(x)px-(x̃)
η(x, x̃)2 dx dx̃,

which is clearly positive for any direction η. Thus, L̃δ-SCL reaches indeed a minimum at ψ∗, or in
terms of δ and f , we have δ(f(x), f(x̃)) = − log px̃|x(x̃|x) + log px-(x̃).

Part 4 (δ-NWJ loss):

The proof for Lδ-NWJ is analogous to Lδ-SCL. We use the same substitution as in the last part, i.e.,
ψ(x, x̃) = −δ(f(x), f(x̃)), and get

L̃δ-NWJ(ψ) = E
(x,x̃)
∼ppos

−ψ(x, x̃) + E
x∼px
x-∼px-

eψ(x,x
-) . (17)

The Taylor expansion of L̃δ-NWJ is given by

L̃δ-NWJ(ψ + ϵη) = L̃δ-NWJ(ψ) + ϵ

 E
(x,x̃)
∼ppos

−η(x, x̃) + E
x∼px
x-∼px-

eψ(x,x
-) η(x,x-)


+

1

2
ϵ2 E

x∼px
x-∼px-

eψ(x,x
-) η(x,x-)2 +O(ϵ3). (18)

Again, the term of order ϵ is zero at ψ∗(x, x̃) = log px̃|x(x̃|x)− log px-(x̃) and we directly see that
the ϵ2 term is strictly positive for any direction η.

Lemma 2. Let the data generating process follow Eq. 1, where d is a semi-metric (i.e., the triangle
inequality does not necessarily hold), and S is open. Let us further assume that δ has the form as
in Eq. 2 and satisfies δ(h(s), h(s̃)) = − log ps̃|s(s̃|s) + log ps-(s̃) + γ(s). Then, for the optimal
estimators of the contrastive losses presented above, h is a homeomorphism between S and h(S).

Proof. After inserting ps̃|s(s̃|s) from Eq. 1 and δ from Eq. 2, we obtain

d(h(s), h(s̃)) + α(h(s)) + α̃(h(s̃)) = d(s, s̃)− logQ(s̃) + logZ(s) + log ps-(s̃) + γ(s). (19)

This must also hold for all s, s̃, including s = s̃, and since d(s, s) = d(h(s), h(s)), we have

α(h(s)) + α̃(h(s)) = − logQ(s) + logZ(s) + log ps-(s) + γ(s). (20)

Now we subtract the last two equations and get

d(h(s), h(s̃))+ α̃(h(s̃))− α̃(h(s)) = d(s, s̃)− logQ(s̃)+ logQ(s)+ log ps-(s̃)− log ps-(s). (21)

Because of the symmetry of d we can conclude

d(h(s), h(s̃)) = d(s, s̃). (22)

If h were not injective, there would be some s ̸= s̃ with h(s) = h(s̃). This would imply that
0 = d(h(s), h(s̃)) = d(s, s̃) > 0, which is a contradiction.

Since h is an injective continuous mapping and S is open, h is a homeomorphism due to the domain
invariance theorem (see [2]).

From Eq. (19), we also see that α̃◦h = log ps-−logQ and, except for Lδ-INCE(f, δ;K), α◦h = logZ.

Before we continue, let us recall an important theorem by Mankiewicz [10] and the definition of
2-extremal points [11].
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Theorem A. (Mankiewicz, 1972) Suppose X and Y are real normed vector spaces, U a nonempty
subset of X , and let f : U → f(U) be a surjective isometry, where f(U) is a subset of Y . If either
both U and f(U) are convex bodies or open and connected, then f can be uniquely extended to an
affine isometry from X to Y .

Proof. See [10].

Definition 1. As a 2-extremal point of a set U of a vector space we denote each element x ∈ U such
that from u,u′ ∈ U and u+ u′ = 2x follows u = u′ = x.

Theorem 1 (Weak identifiability). Let S ⊆ Rn be open and connected, X ⊆ Rm, and g : S → X
invertible and differentiable. Let us further assume that the observed data satisfy the generative
model given in Eq. (1). If d = d̂ has one of the following properties:

(i) there exists a function ξ : R+ → R+, such that ξ ◦ d is a norm-induced metric,

(ii) d(s, s̃) =
∑
i di(|si − s̃i|), where each di is continuous and strictly increasing,

then the optimal estimator of any of the contrastive losses presented above identifies the true latent
factors up to affine transformations, i.e., h = f ◦ g is an affine mapping.

Proof. By Lemma 1 and Lemma 2, h is injective. Furthermore, since h is continuous and S is open,
h(S) is also open. Additionally, h(S) is connected because S is connected.

Assume that condition (i) holds. Then, h is an isometry and we can apply Mankiewicz’s theorem,
which tells us that h is an affine mapping.

Let us now consider condition (ii). We show that h is affine using central ideas of Lemma 2 in [11].
Let s0 be a 2-extremal point of Br = {s ∈ Rn : d(0, s) ≤ r}. Then −s0 is also a 2-extremal point of
Br, since d is symmetric. Now define ϕ(s) = h(s)− h(0) and A = (Br + s+ s0) ∩ (Br + s− s0)
for s ∈ S . It is straightforward to verify that s is the only element contained in A. Since h is injective
and d is translation invariant, we have

ϕ(A) = (ϕ(Br) + ϕ(s+ s0)) ∩ (ϕ(Br) + ϕ(s− s0)),

and because d is symmetric we can conclude

ϕ(s) =
1

2
(ϕ(s+ s0) + ϕ(s− s0)) . (23)

It is obvious that for the standard basis vectors ei ∈ Rn each aiei with d(0, aiei) = r is a 2-extremal
point of Br since each di is strictly monotonically increasing. For each pair of different s, s′ ∈ Br
with s + s′ = 2aiei we would have either si = s′i = ai and for at least one coordinate j ̸= i
−sj = s′j ̸= 0 or one of s, s′ would have a higher value than ai at the i-th coordinate. So in
both cases s or s′ would lie outside Br, which is a contradiction. It follows from Eq. (23) that
straight lines in the direction of one of the standard basis vectors are mapped to straight lines, i.e.,
ϕ(s+ aiei) = ϕ(s) + ai (ϕ(s+ ei)− ϕ(s)).

Furthermore we have

d(0, aiei) = d(s, s+ aiei) = d(ϕ(s), ϕ(s+ aiei)) = d(0, ai(ϕ(s+ ei)− ϕ(s))),

and since the distance does not depend on s, we obtain ϕ(s+ aiei) = ϕ(s)+ aiϕ(ei). After iterating
over all ei, we can conclude ϕ(s+

∑
i aiei) = ϕ(s) +

∑
i aiϕ(ei).

Theorem 2 (Strong identifiability). Assume that all conditions in Theorem 1 are satisfied. Let the
function d in Eq. (1) be defined by

d(s, s̃) =
∑
i

(|si − s̃i|/σi)β , (24)

with β ∈ (0, 2) ∪ (2,∞) and σi > 0 for all i, then h = f ◦ g is a generalized permutation matrix,
i.e., a composition of a permutation and element-wise scaling and sign flips.
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Proof. From Theorem 1 we know that h(s) = As+ b. For p ≥ 1 we can define ξ(x) = x1/p. Thus,
h preserves the p-norm. In this case it has already been proved that A is a generalized permutation
matrix (see, for example, [8]).

Let us now look at the case 0 < p < 1. We denote the element in the i-th row and j-th column of A
with aij . For any standard basis vector ei, it holds

1 = d(0, ei) = d(0,Aei) =
∑
j

|aji|p.

Similarly for two different basis vectors ei and ej , we have

2 = d(0, ei + ej) = d(0,A(ei + ej)) =
∑
k

|aki + akj |p ≤
∑
k

|aki|p +
∑
k

|akj |p.

The last part is due to the triangle inequality. This implies that aki and akj must have the same sign
or at least one of them must be zero.

On the other hand we have
2 = d(0, ei − ej) = d(0,A(ei − ej)) =

∑
k

|aki − akj |p ≤
∑
k

|aki|p +
∑
k

|akj |p.

Therefore, aki and akj must have different signs or at least one of them must be zero. Taken together,
this means that each row of A can have at most one nonzero entry. And since A is invertible, it is a
generalized permutation matrix.

B Alternative Convergence Proof for the δ-INCE Loss

Proof. We first make the substitution ψ(x, x̃) = −δ(f(x), f(x̃)) and replace x̃ with x̃0 and x-
i with

x̃i for i ̸= 0. The δ-INCE loss can then be formulated as

L̃δ-INCE(ψ) = E
(x,x̃0)∼ppos

{x̃i}K
i=1

i.i.d.∼ px-

− log
eψ(x,x̃0)

K∑
i=0

eψ(x,x̃i)

. (25)

The logarithmic term can be also written as

r(ψ) = − log
eψ(x,x̃0)∑
i eψ(x,x̃i)

= −ψ(x, x̃0) + log
∑
i

eψ(x,x̃i)

and has the following Gateaux derivatives:

d

dϵ
r(ψ + ϵη)

∣∣∣∣
ϵ=0

=

∑
j eψ(x,x̃j)(η(x, x̃j)− η(x, x̃0))∑

i eψ(x,x̃i)

d2

dϵ2
r(ψ + ϵη)

∣∣∣∣
ϵ=0

=

∑
i eψ(x,x̃i)

∑
j eψ(x,x̃j) η(x, x̃j)

2 −
(∑

j eψ(x,x̃j) η(x, x̃j)
)2

(∑
i eψ(x,x̃i)

)2 .

Thus, the Tylor series of L̃δ-INCE is given by

L̃δ-INCE(ψ + ϵη) = L̃δ-INCE(ψ) + ϵ E
(x,x̃0)∼ppos

{x̃i}K
i=1

i.i.d.∼ px-

∑
j eψ(x,x̃j)(η(x, x̃j)− η(x, x̃0))∑

i eψ(x,x̃i)

+
1

2
ϵ2 E

(x,x̃0)∼ppos

{x̃i}K
i=1

i.i.d.∼ px-

∑
i eψ(x,x̃i)

∑
j eψ(x,x̃j) η(x, x̃j)

2 −
(∑

j eψ(x,x̃j) η(x, x̃j)
)2

(∑
i eψ(x,x̃i)

)2 +O(ϵ3).

(26)
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A sufficient condition for L̃δ-INCE to reach an optimum is that the term of order ϵ vanishes and the
term of order ϵ2 is strictly positive for all directions η. Note that the choice of the variable x̃0 for the
positive example was arbitrary. By iteratively renaming the positive example to x̃k for k = 0, . . . ,K
and calculating the mean, we can transform the term of order ϵ in the following way:

E
(x,x̃0)∼ppos

{x̃i}K
i=1

i.i.d.∼ px-

∑
j eψ(x,x̃j)(η(x, x̃j)− η(x, x̃0))∑

i eψ(x,x̃i)

=
1

K + 1

K∑
k=0

E
(x,x̃k)∼ppos

{x̃i}K
i̸=k

i.i.d.∼ px-

∑
j eψ(x,x̃j)(η(x, x̃j)− η(x, x̃k))∑

i eψ(x,x̃i)
. (27)

This expression vanishes for all η if and only if∏
l

px-(x̃l)
∑
k

p(x|x̃k)
∑
j eψ(x,x̃j)(η(x, x̃j)− η(x, x̃k))∑

i eψ(x,x̃i)
= 0,

which can be simplified to∑
k

p(x|x̃k)
∑
j

eψ(x,x̃j) η(x, x̃j) =
∑
j

eψ(x,x̃j)
∑
k

p(x|x̃k)η(x, x̃k).

Since this must hold for all x̃i and arbitrary η, we obtain

eψ(x,x̃i)∑
j eψ(x,x̃j)

=
p(x|x̃i)∑
j p(x|x̃j)

.

Obviously, for any solution ψ∗, the function ψ∗(x, x̃) + c(x) is also a solution, where c(x) is a
function that only depends on x. Thus, we finally obtain ψ∗(x, x̃) = log p(x|x̃)+c(x) or equivalently
ψ∗(x, x̃) = log p(x̃|x)−log px-(x̃)+γx(x) using Bayes’ theorem, where γx(x) = c(x)+log px(x).

Plugging this back into L̃δ-INCE we get

L̃δ-INCE(ψ
∗ + ϵη) = L̃δ-INCE(ψ

∗)

+
1

2
ϵ2 E

(x,x̃0)∼ppos

{x̃i}K
i=1

i.i.d.∼ px-

∑
i p(x|x̃i)

∑
j p(x|x̃j)η(x, x̃j)2 −

(∑
j p(x|x̃j)η(x, x̃j)

)2

(
∑
i p(x|x̃i))

2 +O(ϵ3). (28)

The term of order ϵ2 can be rearranged into

1

4
ϵ2 E

(x,x̃0)∼ppos

{x̃i}K
i=1

i.i.d.∼ px-

∑
i

∑
j p(x|x̃i)p(x|x̃j) (η(x, x̃i)− η(x, x̃j))

2

(
∑
i p(x|x̃i))

2 , (29)

which is strictly positive in any direction.

C Experimental Details

In all our experiments, we largely follow the experimental setup and evaluation protocol of [12], with
some differences due to our novel approach and hardware limitations, which we describe below. Both
α and α̃ are parameterized by separate three-layer neural networks with dimensions 20, 20, and 1.
The second layer has an additional skip connection and we use GELUs [5] as hidden activation. We
normalize both networks to a mean of zero over a batch and use an additional learnable bias c.
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Table 5: Identifiability on synthetic data. R2 [%] mean ± standard deviation over 2 random seeds
Scenario β δ-NCE δ-INCE δ-SCL δ-NWJ

Box (simple) 1/2 99.48 ± 0.03 99.26 ± 0.35 86.38 ± 2.55 99.71 ± 0.03
Box (simple) 1 99.89 ± 0.01 99.88 ± 0.01 92.80 ± 1.03 99.83 ± 0.04
Box (simple) 3 99.68 ± 0.17 94.49 ± 4.90 97.21 ± 0.14 99.65 ± 0.11
Box (simple) 5 99.74 ± 0.06 94.31 ± 4.66 97.85 ± 0.59 99.73 ± 0.02

Box (complex) 1 98.72 ± 0.54 99.80 ± 0.09 91.51 ± 1.25 97.17 ± 2.75
Box (complex) 3 99.87 ± 0.01 99.76 ± 0.01 97.37 ± 0.18 99.79 ± 0.04

Hollow ball 1 99.54 ± 0.21 99.51 ± 0.13 87.88 ± 6.63 99.56 ± 0.14
Hollow ball 3 95.39 ± 4.34 96.78 ± 0.03 96.05 ± 0.09 98.41 ± 0.15
Hollow ball 5 97.61 ± 0.33 94.08 ± 0.87 95.98 ± 0.16 97.90 ± 0.29

Cube grid 1 99.82 ± 0.03 99.54 ± 0.03 95.67 ± 2.37 99.72 ± 0.01
Cube grid 5 96.80 ± 0.09 88.74 ± 1.03 94.65 ± 0.06 97.83 ± 0.01

Table 6: R2 [%] scores on synthetic data for α = α̃ = c

Scenario β δ-NCE δ-INCE δ-SCL δ-NWJ

Box (simple) 1/2 99.21 99.69 86.83 88.30
Box (simple) 1 99.77 99.91 92.85 99.70
Box (simple) 3 99.61 99.31 99.65 99.59
Box (simple) 5 99.84 99.13 94.15 99.83

Box (complex) 1 99.54 99.71 85.08 99.45
Box (complex) 3 99.46 99.70 91.79 99.10

Hollow ball 1 97.13 98.91 79.50 96.06
Hollow ball 3 97.55 95.64 94.21 97.69
Hollow ball 5 97.19 93.77 97.11 97.18

Cube grid 1 99.75 99.14 97.20 99.62
Cube grid 5 95.88 83.73 97.20 97.41

Our model is optimized using Adam [7] with a base learning rate of 10−4 for the encoder and c. For
α and α̃ we use a learning rate of 10−2.

We train all models for 3× 105 iterations, except for 3DIdent, where we train for 1× 105 iterations,
and the experiments in Section 4.5 when n > 10, where we set the number of iterations to 8× 105.

We use the same encoder architecture and batch size as in [12] on KITTI Masks (64) and 3DIdent
(512). However, for the experiments in sections 4.1, 4.2 and 4.5, we use a smaller neural network
with residual connections and a smaller batch size of 5120 when n ≤ 10 and 4096 when n > 10. The
residual network has 2 hidden layers with n · 10 and n · 20 dimensions followed by 3 residual blocks
and the output layer. Each residual block has 2 layers with n · 20 dimensions each. In all hidden
layers we use leaky ReLU activations and batch normalization.

The experiments in Section 4.1 and Section 4.2 ran on a GeForce GTX 1080 Ti GPU for between
7 and 30 hours, depending on the space configuration, shape parameter, and loss function. The
experiments on KITTI Masks took on average 2 hours on a GeForce GTX 1080 Ti GPU and the
experiments on 3DIdent took on average 24 hours on four GeForce GTX 1080 Ti GPUs.

D Additional Experiments

Table 5 and Table 6 contain the corresponding R2 values for the experiments in Section 4.1 and
Section 4.2, respectively. Figure 4 shows the learned functions α and α̃ for the three configurations
box (complex), hollow ball and cube grid. Furthermore, Table 7 shows R2 and MCC values for the
original SCL [4] loss.
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(a) Box (complex)

(b) Hollow ball

(c) Cube grid

Figure 4: Learned functions α ◦ h (top rows) and α̃ ◦ h (bottom rows) for configurations (a) box
(complex), (b) hollow ball and (c) cube grid. In the case of δ-INCE, α is set to zero.
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Table 7: Identifiability on synthetic data for the original SCL [4]. R2 and MCC [%] mean ± standard
deviation over 2 random seeds

Scenario β R2 MCC

Box (simple) 1/2 94.46 ± 2.94 55.52 ± 4.63
Box (simple) 1 89.06 ± 0.09 57.38 ± 0.89
Box (simple) 3 88.80 ± 0.08 57.05 ± 1.62
Box (simple) 5 89.84 ± 0.71 55.51 ± 2.19

Box (complex) 1 91.12 ± 0.07 56.02 ± 0.83
Box (complex) 3 91.02 ± 0.06 51.45 ± 3.14

Hollow ball 1 84.69 ± 1.81 52.97 ± 2.08
Hollow ball 3 22.59 ± 1.11 22.16 ± 1.24
Hollow ball 5 19.97 ± 1.31 23.46 ± 1.22

Cube grid 1 43.88 ± 4.91 32.45 ± 4.24
Cube grid 5 20.09 ± 1.64 23.53 ± 2.19
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