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A Derivation for EBML

A.1 Derivation for Training Objective in Eqn. (8)

We start the derivation from maximizing the ELBO (Eqn. (5)) for a single training task T i w.r.t. the
parameters of the EBMs and the task latent posterior distribution, i.e., λ, ω and ψ,

argmax
λ,ψ,ω

log p(T i)
Eqn. (5)
====⇒ argmax

λ,ψ,ω
Eϕi∼qψ(ϕi| T si ) [log pω(Xi,Yi|ϕi)]︸ ︷︷ ︸

(I)

−KL(qψ(ϕi| T si )||pλ(ϕi))

(12)
where qψ , pω and pλ denote the model distributions of the latent posterior, the data EBM and the prior
EBM, respectively. Recall pλ and pω are EBMs where pω(Xi,Yi | ϕi) =

∏
j

exp (−Eω(xij ,yij ,ϕi))
Z(ω,ϕi)

and pλ = exp (−Eλ(ϕi))
Z(λ) . We rewrite the KL term as

−KL(qψ(ϕi| T si )||pλ(ϕi)) = −Eqψ(ϕi| T si )
[
log

qψ(ϕi| T si )
pλ(ϕi)

]
(13)

= −Eqψ(ϕi| T si )
[
log qψ(ϕi| T si

]
− Eqψ(ϕi| T si )

[ 1

log pλ(ϕi)

]
(14)

= H(qψ(ϕi| T si )︸ ︷︷ ︸
(III)

+Eqψ(ϕi| T si )[log pλ(ϕi)]︸ ︷︷ ︸
(II)

(15)

The two log-likelihood terms for EBMs, (I) and (II), can be rewritten using the learning gradient in
Eqn. (4), i.e.,

Eϕi∼qψ(ϕi| T si ) [log pω(Xi,Yi|ϕi)]
Eqn. (4)
====⇒Eϕi∼qψ(ϕi|T si )

[ Ni∑
j

−Eω(xij , yij ,ϕi)

+ Epω(x′,y′|ϕi)[Eω(x
′
ij , y

′
ij ,ϕi)]

]
(16)

Eqψ(ϕi| T si )[log pλ(ϕi)]
Eqn. (4)
====⇒Eqψ(ϕi|T si )

[
− Eλ(ϕi) + Epλ(ϕ′

i)
[Eλ(ϕ

′
i)

]
. (17)

Combining with the entropy term in (III) and take the expectation w.r.t. the training task distributing
PID we have our training objective in Eqn. (8).

A.2 Derivation for Energy Sum in Eqn. (9)

The log-likelihood of a task T i writes

log p(T i) = log

∫ Ni∏
j=1

p(xij , yij |ϕi)pλ(ϕi) dϕi. (18)

≥ Eϕi∼qψ(ϕi| T si ) [log pω(Xi,Yi|ϕi)]− KL(qψ(ϕi| T si )||pλ(ϕi)) (19)

= Eqψ(ϕi| T si ) [log pω(Xi,Yi|ϕi)︸ ︷︷ ︸
∝ − Eω(Xi,Yi, ϕi)

] + Eqψ(ϕi| T si )[log pλ(ϕi)︸ ︷︷ ︸
∝ − Eλ(ϕi)

] +H(qψ(ϕi| T si )
]
, (20)

which is lower-bounded by the ELBO in Eqn. (20) characterized by the learned qψ, pω and pλ. The
ELBO is proportional to the sum of two energy functions and the entropy of the posterior distribution
qψ , all of which can be easily calculated via feed-forward passes of the training samples.

Since the majority of the state-of-the-art meta-learning algorithms (including CNP [8] and SimpleC-
NAPS [1]) adopt the MAP estimation of the posterior qψ which is determinisitc, the entropy essential
becomes zero, and the expectations Eqψ(ϕi|T si ) in the first and second terms in Eqn. (20) simplify to
energy function evaluation at Xi,Yi and ϕi, respectively. Finally, we negate Eqn. (20) so that the
OOD scores for in-distribution tasks are lower than that of the out-of-distribution ones.
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A.3 Derivation for Eqn. (11) as an Approximation to Bayesian Posterior Inference

Given a new test task T i, Bayesian inference aims to infuse the meta-learned prior knowledge with
the observed support set Xs

i ,Y
s
i for inferring a small set of unknown task-specific parameters ζ . This

is akin to maximizing the log-likelihood of the support set w.r.t. the task-specific parameters ζ which
defines the posterior latent distribution qψ∪ζ(ϕi | T si ) under the regularization of a prior. First, the
tractable ELBO for the prior predictive likelihood is

log pλ,ψ,ω(T si ) = log

∫ Nsi∏
j=1

pω(xij , yij |ϕi)pλ(ϕi) dϕi. (21)

≥ Eqψ(ϕi| T si ) [
Nsi∑
j=1

log pω(xij , yij |ϕi)]− KL(qψ(ϕi| T si )||pλ(ϕi)). (22)

Next, we introduce the task-specific parameter ζ in the latent posterior and formulate the Bayesian
posterior inference objective as

argmin
ζ

Eqψ∪ζ(ϕi| T si ) [−
Nsi∑
j=1

log pω(xij , yij |ϕi)] + KL(qψ∪ζ(ϕi| T si )||pλ(ϕi)). (23)

Assuming a maximum a posterior (MAP) estimate of the task-specific latent distribution which
approximates qψ∪ζ(ϕi| T si ) by a Dirac-delta function qψ(ϕi| T si ) = δ(ϕi − ϕ̂i | T si ). As a
result, the second KL term reduces to a likelihood evaluation, i.e., KL(qψ(ϕi| T si )||pλ(ϕi)) =

Eqψ(ϕi| T si )[log qψ(ϕi| T
s
i )

pλ(ϕi)
] = − log pλ(ϕi) = Eλ(ϕi) + log Z(λ). Since the (log-

)partition function log Z(λ) is a constant w.r.t. the argmin parameter ζ, we then have
argminζ KL(qψ(ϕi| T si )||pλ(ϕi)) = argminζ Eλ(ϕi). From here, we see that minimizing the
task prior energy approximates the minimization of the KL-divergence between the task-specific
posterior qψ∪ζ and the meta-learned ID prior pλ in the Bayesian posterior inference objective, thus
it acts as a meta-regularizer to combat over-fitting in adaptation. In practice, we found that using a
margin loss for this prior energy minimization, i.e., argminζ max(Eλ(ϕi)−m, 0), can yield better
empirical performance.

While for the first log-likelihood term inside the expectation, −
∑Nsi
j=1 log pω(xij , yij |ϕi) which is

equivalent to the sum of data energy scores
∑Nsi
j=1[Eω(xij , yij , ϕi) + log Z(ω, ϕi)], we use the

decoder ω2 with the task-specific prediction loss i.e., cross-entropy loss, in the base meta-learning
algorithm as a tractable surrogate, as discussed in implementation of the Experiment section 5
and also in Appendix B.4.1. This thus maintains the data-level predictive ability of model during
adaptation.
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B Experiment Details

B.1 OOD Detection Evaluation Metrics

Conventionally [17, 16, 27], OOD detection is treated as a binary classification problem in which the
trained detector is expected to assign a positive label for an OOD task if its estimated OOD score
exceeds some threshold τ To evaluate the performance of the OOD detector, we use three metrics:
area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve
(AUPR), and the false positive rate at N% true positive rate (FPRN), where N=95 in our experiments.

As discussed in [17], the AUROC and AUPR are holistic metrics that summarize the performance of
a detection method across multiple thresholds. The AUROC can be thought of as the probability that
an OOD example is given a higher OOD score than an ID example. Thus, a higher AUROC is better,
and an uninformative detector has an AUROC of 50%. The AUPR is useful when OOD inputs are
infrequent, as it takes the base rate of OOD inputs into account.

Whereas the previous two metrics represent the detection performance across various thresholds,
the FPRN metric represents performance at one strict threshold. By observing performance at a
strict threshold, we can make clear comparisons among strong detectors. The FPRN metric is
the probability that an in-distribution example (ground-truth negative sample) raises a false alarm
(detected as a positive sample) when N% of ground-truth OOD examples (positive samples) are
correcty detected, so a lower FPRN is better. Capturing nearly all anomalies with few false alarms
can be of high practical value.

B.2 Single and Multi-sinusoid Regression

Model Architecture Both the the data EBM Eω(x,y, ϕi) and the prior EBM are MLPs. Follow
the encoder implementation in CNPs [8], qψ(ϕi| T si ) composes of a within-task mean pooling
operation sandwiched between two arbitrary learnable transformations parameterized by MLP,
i.e., qψ(ϕi| T s

i ) = MLPψ1(
1
Nsi

∑Nsi
j=1 MLPψ2([x

s
ij , y

s
ij ])). The output of qψ is the task latent variable

ϕi ∈ R2.

Hyperparameters We use a training batch size of 50 and learning rate of 0.0005 for all methods.
The additional method-specific hyperparameters are stated below

Metafun [53] num-inner-loop: 5; initial representation: zero; outer learning rate: 10−4; initial
inner learning rate: 0.1; Dropout rate: 0.0; Orthogonality penalty weight: 0.0; L2 penalty weight:
0.0.
MAML [6] batch size: 4; num-inner-loop: 5; inner learning rate: 0.01; outer learning rate: 0.001;
ABML [41] batch size: 4; num-inner-loop: 5; inner learning rate: 0.005; outer learning rate:
0.001; alpha 1.0; beta 0.01; num reparameterizatio samples: 4;
F-POACH-GP [43] prior outputscale: 2.0; prior lengthscale: 0.2; prior weight: 0.001; learnable
prior mean: True; learnable prior covariance: True.
EBML-CNPs Prior SGLD η: 0.01; Data SGLD η: 0.001; num-SGLD-iter: 20; energy L2 penalty
1.0;

B.3 Drug Activity Prediction

Preprocessing Molecular Graph Inputs Each input x is a SMILES representation of a chemical
molecule, which essentially is a list of string characters of variable length. To transform the SMILE
representation into numerical values, we use a pre-trained SMILES-transformer [18] for converting
the sring input x into vector representation x̃ in R1024. We treat this x̃ as the inputs for all methods.

Model Architecture We use the same EBML-CNPs architecture as in the sinusoids experiments.
However, we expand the latent variable dimension to R128, and the number of neurons in each hidden
layer to 256. Furthermore, additional Batch Normalization layers [20] are interleaved with layers of
the MLPs.

Hyperparameters We use a training batch size of 10 and learning rate of 0.0005 for all methods.
The additional method-specific hyperparameters are stated below
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Metafun [53] num-inner-loop: 5; initial representation: zero; outer learning rate: 10−4; initial
inner learning rate: 0.1; Dropout rate: 0.0; Orthogonality penalty weight: 0.0; L2 penalty weight:
0.0.

MAML [6] batch size: 4; num-inner-loop: 5; inner learning rate: 0.001; outer learning rate:
0.001;

ABML [41] batch size: 4; num-inner-loop: 5; inner learning rate: 0.001; outer learning rate:
0.001; alpha 1.0; beta 0.01; num reparameterizatio samples: 4;

F-POACH-GP [43] prior outputscale: 1.0; prior lengthscale: 0.5; prior weight: 0.001; learnable
prior mean: True; learnable prior covariance: True.

EBML-CNPs Prior SGLD η: 0.1; Data SGLD η: 0.1; num-SGLD-iter: 40; energy L2 penalty
0.1;

B.4 Meta-dataset Few-shot Classification

B.4.1 Details of EBML-SimpleCNAPs and EBML-TSA

Model Architecture TSA [28] pre-trains a feature representation using available ID training domains,
and incooperates additional task-specific adaptation modules at test time in the form of residual-
connected transformation matrices to each convolution block. The parameters of these modules
are inferred by gradient descent on the support set from scratch at meta-testing. The transformed
feature representations of the support set samples are then used to build the class prototypes in
a non-parametric classifier for inference of the query sample labels. SimpleCNAPs [1] also first
pre-trains a feature extractor on a large dataset, i.e., ImageNet. However, unlike TSA, SimpleCNAPs
meta-learns task-specific adaptations during meta-training by learning a parametrized task-encoding
function that estimates the task-specific modules in the form of additional FILM parameters from the
support set . Similar to TSA, the adapted support set features are used to construct the class centers
in a non-parametric predictive function for classification of the query samples.

Thus for both methods, the set of prototypes in each ID training task resemble a task-specific
predictive function, and is a suitable choice as the meta-learned prior knowledge. By specifying the
latent variable ϕi to be a set of class prototypes used in the cosine classifier of each ID meta-training
task, our EBM prior pλ(ϕi) resembles a distribution over task-specific predictive functions from the
ID domains. The architecture for the Prior EBM is depicted in Figure 7.

Figure 7: Model architecture for the prior EBM for classification.

To simultaneously achieve the best of both classification and OOD detection, we follow similar
strategies in [50, 37] which learn an another decoder for prediction. The modified EBML architecture
is shown in Figure 8.

Hyper-parameters We use the reported hyperparameters in TSA [28] and SimpleCNAPs [1] for
training the base models. We report here the additional hyperparameters specific to EBML below in
Table 6, which are found on the validation split of Meta-dataset [49].
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Figure 8: Overview of the EBML framework for image classification tasks. The task latent variable
ϕi are inferred from the support set T si following the implementation of the base algorithm. The data
and task energy scores are evaluated by the data and prior EBMs Eω1

and Eλ, respectively; while the
query labels are predicted by the classifier pω2

of the base algorithm. The feature extractor f is a
pre-trained ResNet-18 identical to the one used in SimpleCNAPs [1] and TSA [28].

Table 6: Hyperparameters for EBML on Meta-dataset 5-way 1-shot classification tasks.
Groups Hyperparameters Values

Training

num SGLD steps 40
Data SGLD η 1.0
Prior SGLD η 10.0
Energy L2 penalty 1.0
EBM Spectral Norm True

Adaptation

num steps 10
TSA learning rate β [28] 0.00091
TSA learning rate α [28] 0.000267
weight on prior energy 0.1
m in prior energy margin loss 0.4
optimizer Adam

B.4.2 Baseline OOD Detection Methods for Classification

We used the following traditional OOD input detection methods as baselines for computing the task
OOD scores in Table 2 main body of the paper. We compute the task OOD score for a task T i. as the
average instance-level OOD scores over its input images {x}Ni . More specifically:

max softmax score [16], is taken as the maximum softmax prediction probability over N
possible classes, that is Sŷ(x) = maxc

exp(logit[c](x))∑N−1
c=0 exp(logit[c](x))

.

ODIN [30], extends the softmax-score by introducing temperature scaling and input prepro-
cessing. More concretely, the input is perturbed following x̂ = x+ϵ sign(∇x logSŷ(x;T )),
which moves x in the direction that increases the temperature-scaled softmax score
Sŷ(x;T )), computed as maxc

exp(logit[c](x)/T )∑N−1
c=0 exp(logit[c](x)/T )

. The final ODIN confidence score

writes Sŷ(x̂;T )).
max logits score [15]. This is simply the maximal prediction logit of input image x, which
is an alternative to the max-softmax prediction score.
MAH Detector [27]. We compute the MAH OOD score of x as the Mahalanobis distance
from its feature representation to its nearest class mean which we estimate for each class
using the empirical average of training inputs in class c. The shared covariance matrix used
in estimating the Mahalanobis distance is computed on a subset of training samples from all
training classes.
Domain Selector. When given the domain-IDs during training, a few methods [34] on
Meta-dataset classification problems adapt a domain classifier network for inferring the task-
specific parameters from a set of candidate domain-specific feature modulation parameters.
The max softmax score of the trained domain selector can be used to compute the OOD
score for x.
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The perturbation magnitude ϵ and the temperature scale T used in ODIN and MAH are
determined using the validation set of meta-dataset, with a a grid-search over the parame-
ter space for ϵ ∈ {0, 0.00002, 0.00005, 0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005} and T ∈
{1, 2, 10, 50, 100, 200, 500}. ODID and MAH on average improves the OOD task detection re-
sults using max softmax and max logits scores for the same baseline model.
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C Additional Experiment Results

C.1 Multi-sinusoids Few-shot Regression and OOD Task Detection

Task generation The multi-target regression tasks are synthesised by superposing each generated
sinusoid from the ID and OOD distribution with a phase-shifted version of itself at a constant phase
lag of 0.3π, such that now in each task every input x has two possible target values y. We give both y
values for each x in the support set.

Results In Table 7, 8 we see that EBML-CNPs achieved both the best regression and OOD detection
performance. In Table 9, our proposed energy outperform all ablated models.

Table 7: Regression performance for multi-
sinusoids experiments.

Models ID NLL↓
ABML [41] 0.886±0.048

F-PACOH-GP [43] 1.289±0.023

CNPs [8] 0.865±0.069

Metafun[53] 0.874±0.051

EBML-CNPs 0.282 ±0.041

Table 8: OOD detection performance on multi-sinusoids
tasks.

OOD Scores Models AUROC↑ AUPR↑ FPR95↓

Std ABML [41] 74.14 72.15 73.67
Metafun [53] 76.52 77.34 88.12

SNLL

ABML [41] 54.75 56.32 99.60
F-PACOH-GP [43] 55.24 68.95 100.00
CNPs [8] 70.43, 79.71 92.4
Metafun [53] 79.21 77.03 90.98
EBML-CNPs (Ours) 92.77 94.25 46.20

Energy Sum EBML-CNPs (Ours) 94.91 96.15 34.60

Table 9: Ablation study for Energy Sum on Multi-sinusoids few-shot regression tasks.
OOD Scores Models AUROC↑ AUPR↑ FPR95↓
ABML [41] SNLL 54.75 56.32 99.60

+Gauss Prior 86.64 86.45 50.00

CNPs [8] SNLL 70.19 79.49 95.20
+Gauss Prior 82.90 87.23 76.60

EBML-CNPs SNLL 92.77 94.25 46.20
+EBM Prior 94.91 96.15 34.60

C.2 Meta-dataset 5-way-1-shot Classification and OOD Task Detection

C.2.1 TSA-EBML vs TSA on Unshuffled 5-way-1-shot Meta-dataset Tasks

Table 10: Classification performance
on Meta-dataset 5-way 1-shot tasks,
with shuffle_buffer_size=0. ∗ indicates
results reported by [28].

Datasets TSA∗ EBML-TSA
[28] (Ours)

Omniglot 96.3±0.4 96.3±0.5

Textures 54.5±0.9 54.5±0.8

Aircraft 79.6±0.9 79.0±0.9

Birds 74.5±0.9 75.3±0.9

VGG Flower 80.3±0.8 80.2±0.8

Fungi 75.3±1.0 77.1±0.9

Quickdraw 79.3±0.9 79.9±0.9

MSCOCO 59.9±1.0 60.2±1.0

Traffic Sign 57.2±1.0 58.2±0.9

CIFAR10 55.8±0.9 56.8±0.9

CIFAR100 63.7±1.0 64.6±1.0

MNIST 80.1±0.9 82.0±0.9

Avg ID 77.1 77.5
Avg OOD 63.4 64.4
Avg All 71.4 72.0

To ensure our few-shot classification results in Table 5 are
fair and up-to-date, we follow the latest evaluation protocols
in Meta-dataset which sets shuffle_buffer_size=1000, and test
TSA (reproduced using their official code) and EBML-TSA on
the same set of sampled testing tasks. However, the official
5-way-1-shot classification results of TSA (Table 8 in [28]) are
reported on an earlier version of Meta-dataset before the fix of
issue 54 2. This explains the observed differences between TSA
results in Table 5 and Table 8 in [28].

In this section, we verify that the improved classification per-
formance of EBML-TSA over TSA is indeed not a result of the
change in evaluation protocols in Meta-dataset. To do so, we
evaluate EBML-TSA under identical settings to TSA in Table 8
of [28], i.e., 5-way-1-shot settings with shuffle_buffer_size=0.

In Table 10, we compare our results with the official results
of TSA. The performance of both methods are largely similar
to that in Table 5, except that the classification accuracy for

2As mentioned in https://github.com/google-research/meta-dataset/issues/54, the shuffle_buffer_size was set
to zero in an earlier version of Meta-dataset which can lead to some biased results in evaluation.
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Table 11: 5-way-1-shot classification accuracy of OOD tasks in Meta-datasets [49].

Datasets SimpleCNAPs EBML-SimpleCNAPs URL EBML-URL
[1] (Ours) [29] (Ours)

MSCOCO 49.37±0.99 51.75±0.96 59.14±0.95 59.82±0.97

Traffic Sign 55.63±0.96 56.12±0.97 57.62±0.90 58.26±0.90

CIFAR10 50.79±0.85 51.16±0.89 54.37±0.83 54.39±0.86

CIFAR100 54.15±0.95 55.23±0.93 63.03±0.97 62.74±0.96

MNIST 80.25±0.85 81.01±0.85 78.85±0.86 79.78±0.87

both methods improved on a few datasets e.g., MNIST, MSCOCO. Noticeably, EBML-TSA still
outperforms TSA, on 5/7 ID domains (2/5 equal performance) with an average increase of 0.4% in
accuracy, and 5/5 OOD domains with an average improvement of 1.0%. The results validate the
effectiveness of our proposed method and verify that our methods indeed is not favoured by the latest
evaluation protocol in Meta-dataset.

C.2.2 5-way-1-shot OOD classification results in Meta-dataset [49] for more EBML variants

We instantiate EBML with two additional baseline Meta-learning algorithms including SimpleC-
NAPs [1] and URL [29] and report their 5-way-1-shot classification accuracy of OOD tasks in
Meta-datasets [49] in Table 11 above. OOD-adaptation for EBML is performed by optimizing
Eqn. (11) w.r.t. to the task encoder that produces the task-specific FiLM in SimpleCNPAS, and w.r.t.
the feature projection matrix in URL.

C.2.3 Classification Accuracy Trajectories During OOD Task Adaptation

In Figure 9 and 10, we visualize the average query set classification accuracy throughout the OOD
task adaptation for TSA and EBML-TSA. Results for TSA are produced using the official optimal
hyperparameters reported in [28]; while for EBML-TSA, we use the hyperparameters reported in
Table 6.

The y-axis in plot represents the average classification accuracy on the query set, while the x-axis
represents the steps during OOD adaptation. We observe that our objective (Blue) in Eqn. (11)
generally alleviates the over-fitting behaviour in the adaptation process caused by minimizing the
cross-entropy loss alone in TSA (Orange). This meta-regularization effect is more apparent on tasks
from the OOD domains.

Figure 9: TSA vs EBML-TSA query set classification accuracy during adaptation on ID datasets

C.2.4 More OOD Adaptation Baselines on Meta-dataset

In the experiment on Meta-dataset 5-way 1-shot classification tasks, we assigned pseudo-labels to
the query inputs and used them together with the labelled support set samples in calculation of the
class prototypes, hence the prior energy score for each task, in Eqn. (11). Therefore, In this study, we
compare our results with several baselines that also utilize the unlabelled query set in for adaptation,
including:
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Figure 10: TSA vs EBML-TSA query set classification accuracy during adaptation on OOD datasets

Query Entropy (TSA+QE), which minimizes the average entropy of the prediction distri-
bution on the query samples in addition to the support set classification loss.
Confidently-predicted Pseudo-labels (TSA+PL), which tunes a confidence threshold,
assigns query predictions over the threshold as the pseudo-labels, and then minimizes the
classification loss on the support set and these confidently-predicted query samples before
testing.

The optimal results are reported in Table 12. The results show that while the two baseline methods
exploiting the query set information can achieve better performance than TSA on some datasets, they
do not outperform EBML-TSA with using Eqn. (11) for task adaptation.

Table 12: Additional 5-way 1-shot classification results when using TSA with 1) entropy minimization
on the query set, and 2) cross-entropy on confidently-predicted pseudo-labelled query samples, for
OOD task adaptation.

Datasets EBML-TSA TSA+EM TSA+PL
Omniglot 98.67±0.26 98.81±0.26 98.25±0.25

Textures 52.35±0.88 52.12±0.87 51.91±0.87

Aircraft 78.47±0.86 79.40±0.86 79.09±0.86

Birds 75.52±0.90 74.76±0.89 75.07±0.90

VGG Flower 80.30±0.83 80.00±0.81 80.71±0.80

Fungi 72.29±0.94 70.95±0.93 70.44±0.94

Quickdraw 80.27±0.85 79.18±0.85 78.96±0.85

MSCOCO 53.03±0.97 52.24±0.94 52.55±0.94

Traffic Sign 58.85±1.01 57.13±0.95 57.06±0.94

CIFAR10 50.04±0.89 50.22±0.81 49.43±0.83

CIFAR100 62.77±1.05 62.47±1.00 62.70±0.99

MNIST 76.08±0.88 75.23±0.88 75.14±0.85

Avg ID 76.84 76.86 76.35
Avg OOD 60.15 59.46 59.38
Avg All 69.89 68.16 69.28

C.2.5 Baseline OOD Adaptation is Less Reliable without Sufficient Support Samples

We intend to use this experiment as an empirical evidence to support our argument on that SOTA
cross-domain meta-learning algorithms produce unreliable task-specific adaptation without sufficient
support set samples. We train Simple-CNAPs [1] and TSA [28] following the official experimental
setup of Meta-dataset [49], except that we have excluded ImageNet in the ID training datasets due to
limited computation resources.

Following [1, 28], in the varying-way varying-shot testing configuration, the number of classes in
each task varies between 5 to 50, while the total number of support samples per task varies between 5
to 500. The maximal number of support samples per class is capped at 100. We report the average
testing accuracy over 600 tasks for the varying-way varying shot and 5-way 1-shot settings in Table 13
below. We observe that the average classification accuracy for both ID and OOD domains generally
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decrease for 5-way 1-shot tasks, which suggests that the adaptation with without sufficient support
set samples is inherently difficult.

Table 13: Classification accuracy of SimpleCNAPs and TSA on meta-dataset for varying-way varying-
shot vs 5-way 1-shot meta-testing configurations.

Varying-Way Varying-Shot 5-Way 1-Shot
Datasets SimpleCNAPs [1] TSA [28] Simple-CNAPs [1] TSA [28]

Omniglot 91.61±0.57 94.77±0.41 97.87±0.27 98.63±0.26

Textures 65.47±0.71 77.06±0.67 44.11±0.83 51.93±0.87

Aircraft 81.28±0.69 88.56±0.51 65.08±0.89 78.91±0.86

Birds 73.80±0.81 80.86±0.77 66.21±0.98 75.02±0.90

VGG Flower 90.15±0.50 92.48±0.52 76.57±0.83 80.37±0.80

Fungi 44.82±1.13 66.49±1.02 50.95±0.95 70.89±0.93

Quickdraw 73.30±0.81 82.33±0.58 67.61±0.95 79.02±0.84

MSCOCO 35.19±0.94 55.22±1.09 38.78±0.79 52.28±0.94

Traffic Sign 42.59±1.01 82.60±0.97 50.84±0.90 57.40±0.94

CIFAR10 56.65±0.80 80.40±0.71 37.59±0.67 49.16±0.82

CIFAR100 44.13±1.10 70.38±0.97 46.11±0.89 62.25±1.01

MNIST 93.89±0.37 96.44±0.43 76.52±0.83 74.72±0.83

Avg ID 74.35 83.22 66.91 76.40
Avg OOD 54.49 77.01 49.97 59.16
Avg All 66.07 80.63 59.85 69.22

C.3 EBML with Probabilistic Posterior Distribution qψ(ϕi| T si )

Since EBML is a flexible plug-in, it is definitely compatible with those methods that use probabilistic
posterior qψ . However, we currently mainly focus on the MAP estimate in the main paper because the
majority of the state-of-the-art algorithms [8, 28] that EMBL has applied to resort to a MAP estimate
for qψ .

Nevertheless, in the Table 14 below, we show the results of EBML with Neural Processes (NPs) [9],
named EBML-NPs, on sine regression tasks. NPs parameterizes qψ as a multivariate Gaussian
distribution whose task-specific mean and standard deviation are determined by a learnable neural
network encoder conditioned on the task support set.

For training EBML-NPs, we include the the entropy termH(qψ(ϕi| T si )) in the training objective in
Eqn. (8), which has a closed-form solution when qψ is a Gaussian. We resort to the re-parameterization
trick for computing the expectations Eqψ in Eqn. (8). When using energy sum for OOD detection, we
also add the entropy termH(qψ(ϕi| T si )) for EBML-NPs for consistency.

Table 14: Regression and OOD detection performance on sinusoids few-shot regression tasks for
EBML-NPs vs EBML-CNPs.

OOD Scores EBML-NPs EBML-CNPs
MSE AUROC AUPR FPR95 MSE AUROC AUPR FPR95

SNLL
0.009±0.002

95.94 97.16 31.20
0.009±0.002

96.46 97.41 29.40
Energy Sum w/o Entropy 97.10 97.83 20.40 97.74 98.31 14.20
Energy Sum w Entropy 97.58 97.79 14.80 n/a n/a n/a

In Table 14, we conclude that EBML-NPs with probabilistic qψ achieves comparable performance
to its deterministic version, EBML-CNPs; there is no significant improvement in performance by
switching to a probabilistic qψ . Nevertheless, we observe that both the prior energy function and the
extra entropy terms bring in positive contribution to the OOD detection performance compared to
SNLL alone.

C.4 Computational Complexity Analysis

We conduct a computational complexity analysis for EBML by comparing its wall-clock training
time and convergence to baselines, results are shown above in Table 15 and Figure 11.
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Table 15: Training time in seconds. ∗ ABML is much slower due to the gradient-based inner loop
optimizations and learning with a Bayesian Neural Network, which makes it challenging to parallelize
training over a batch of tasks.

Sinusoids CNPs [8] EBML-CNPs f-PACOH-GP [43] ABML [41]

Training time / 500 tasks 0.67 1.83 3.13 11.95*

Meta-dataset SimpleCNAPs [1] EBML-SimpleCNAPs

Training time / 1000 tasks 1.02 1.75
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Figure 11: Left : Wall-clock convergence in seconds, and Right: performance vs number of
training epochs, for EBML-CNPs vs CNPs in single-sinosoid few-shot regression tasks. The plots
show the regression (MSE ↓) and combined OOD tasks detection (1-AUROC)+(1-AUPR)+FPR95 ↓
performance on single sine few-shot regression tasks during training. Curves are moving averages
with window size 3. EBML-CNPs achieves better final performance than CNPs.

From the results above, EBML is computationally cheaper and faster than the two Bayesian methods,
namely, F-PACOH-GP [43] which requires matrix inversion for inference with Gaussian processes
prior, and ABML [41] which imposes a Gaussian prior over the entire parameter space of the model.
Meanwhile, in Table 4 and 1 in the paper, EBML achieves the best regression and OOD detection
performance out of all baselines.

27



D Empirical Study on Distribution Shift in the Input Space

In real-word applications, distribution shift in input space, i.e. the distribution shift in X, is a
very common phenomenon. Take AI-aided drug discovery as an example, when predicting the
bio-activities of a molecule for a given target protein, we may encounter molecules with very
different molecular sizes, scaffolds etc, from the training examples [21]. Such input distribution shift,
unfortunately, cannot always be correctly reflected by models trained to maximize the predictive
probability pω(y|x, ϕi).
We first conduct a controlled experiment and show that modelling the joint distribution can lead
to superior performance in OOD task detection which further substantiate our claim. We base our
experiment on drug activity prediction tasks as described in Section 5, where p(x) changes across
tasks. The experimental details are as follow.

Setup There are three major factors affecting OOD detection performance, including a) whether
we model the conditional or joint distribution, b) the model capacity, e.g., Gaussians or EBMs,
and c) OOD scores, e.g., energy sum or sum of negative log-likelihood (SNLL) of the support
samples. To investigate the effect of (a) specifically, we fix the controlled variables (b) with the same
EBM architectural capacity, and (c) with either energy sum or SNLL. Consequently, we compare
EBML-joint, which is exactly our proposed training procedure in the paper, and EBML-conditional,
which follows the same training with EBML-joint but models p(Y|X) instead of p(X,Y) of the
meta-training task distribution. Concretely, the training objective for EBML-conditional becomes

argmax
ω,λ,ψ

log pω,λ,ψ(Yi|Xi) :=

argmaxω,λ,ψ Eϕi∼qψ(ϕi| T si )
[∑

j

−Eω(ysij , xsij , ϕi) + Ey′∼pω(y′|xsij ,ϕi)[Eω(y
′
ij , x

s
ij , ϕi)]

]
− Eϕi∼qψ(ϕi| T si )[−Eλ(ϕi)] + Eϕi∼pλ(ϕ′

i)
[Eλ(ϕ

′
i)] +H(qψ(ϕi| T

s
i )), (24)

which only differs from the training objective of EBML-joint in Eqn. (8) in the sampling y′ ∼
pω(y

′|xsij , ϕi).

Table 16: EBML-joint vs EBML-conditional on DrugOOD few-shot regression and OOD task
detection.

OOD Scores EBML-joint EBML-Conditional

Mean R2 AUROC AUPR FPR95 Mean R2 AUROC AUPR FPR95

SNLL 0.533 99.71 99.71 2.20 0.534 54.91 54.14 66.60
Energy Sum 99.79 99.78 1.40 63.74 58.15 66.20
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Figure 12: Histogram for SNLL of
CNPs trained with p(Y|X) of ID and
OOD tasks, where OOD tasks contain
molecules with much larger molecular
sizes than the ones in ID tasks.

Results In Table 16, we observe that EBML-joint outperforms
EBML-conditional by large margins in detecting OOD tasks
(molecules with larger molecular size).

For an additional illustration, in Figure 12, we show the
histogram of the averaged support samples negative log-
likelihood (SNLL) of a CNPs model trained with p(Y|X).
We see that CNPs still outputs relatively high likelihood for
some of the OOD tasks making their prediction indistinguish-
able from the ones on ID tasks

These empirical evidence support our motivation for modelling
the joint distribution instead of the conditional distribution for
potentially achieving better OOD task detection performance.
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E Pseudocode for EBML

Algorithm 1 EBML Meta-training
Input: Meta-training tasks {T 1, T 2, ... T N}
Output: Meta-learned optimal parameters ω∗, ψ∗, λ∗

1: Initialize the parameters ω,ψ,λ for data EBM, latent posterior, and prior EBM
2: while not converged do
3: B ∼ {T 1, T 2, ... T N} ▷ sample a batch of tasks
4: for i = 1, 2, ..., |B| do ▷ for each sampled task in B
5: T si = {Xs

i ,Y
s
i }N

s
i , T qi = {X

q
i ,Y

q
i }N

q
i ∼ T i ▷ sample support and query sets

6: ϕi ∼ qψ(ϕi| T si ) ▷ infer the task latent variable by the base algorithm
7: x′, y′ ∼ pω(x′, y′|ϕi), ϕ′i ∼ pλ(ϕ′i) ▷ Sampling by SGLD in Eqn. (3)
8: Compute loss for T i as Li(ω, ψ, λ) using Eqn. (8).
9: end for

10: ω, ψ, λ← Opt(∇ω,ψ,λ 1
|B|

∑
i∈B Li) ▷ Update parameters in the outer-loop

11: end while

Algorithm 2 EBML Meta-testing
Input: Meta-testing tasks {T 1, T 2, ... T N}, parameters λ∗, ω∗, ψ∗, num adaptation steps K
Output: Query Prediction for each task {Yq

1,Y
q
2, ...Y

q
N}

1: for i = 1, 2, ..., N do ▷ for each test task
2: T i → T si = {Xs

i ,Y
s
i }N

s
i , T qi = {X

q
i , }N

q
i ▷ get support and unlabelled query sets

3: if K > 0 then ▷ Using EBML OOD task adaptation
4: ζ ← Alg. (3)(λ∗, ω∗, ψ∗, T si ,K) ▷ EBML OOD Task Adaptation
5: else
6: ζ ← ∅
7: end if
8: yqj = argminy Eϕ∼qψ∗∪ζ(ϕ| T si )

[
Eω∗(x

q
j , y,ϕ) + Eλ∗(ϕ)

]
,∀j ∈ Xq

i ▷ query prediction
9: end for

Algorithm 3 EBML OOD Task Adaptation
Input: Model parameters λ∗, ω∗, ψ∗, task support set T si , num adaptation steps K
Output: Task-specific parameter ζ

1: for k = 1, 2, ...K do ▷ for K adaptation steps
2: ϕi ∼ qψ∗∪ζ(ϕi| T si ) ▷ infer task latent variable by base algorithm
3: Compute loss on T si as L(ζ) using Eqn. (11).
4: ζ ← Opt(∇ζL(ζ)) ▷ Update task-specific parameter ζ
5: end for
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