
Inverse Dynamics Pretraining Learns Good
Representations for Multitask Imitation

Anonymous Author(s)
Affiliation
Address
email

Abstract

In recent years, domains such as natural language processing and image recognition1

have popularized the paradigm of using large datasets to pretrain representations2

that can be effectively transferred to downstream tasks. In this work we evaluate3

how such a paradigm should be done in imitation learning, where both pretraining4

and finetuning data are trajectories collected by experts interacting with an unknown5

environment. Namely, we consider a setting where the pretraining corpus consists6

of multitask demonstrations and the task for each demonstration is set by an7

unobserved latent context variable. The goal is to use the pretraining corpus8

to learn a low dimensional representation of the high dimensional (e.g., visual)9

observation space which can be transferred to a novel context for finetuning on10

a limited dataset of demonstrations. Among a variety of possible pretraining11

objectives, we argue that inverse dynamics modeling – i.e., predicting an action12

given the observations appearing before and after it in the demonstration – is13

well-suited to this setting. We provide empirical evidence of this claim through14

evaluations on a variety of simulated visuomotor manipulation problems. While15

previous work has attempted various theoretical explanations regarding the benefit16

of inverse dynamics modeling, we find that these arguments are insufficient to17

explain the empirical advantages often observed in our settings, and so we derive a18

novel analysis using a simple but general environment model.19

1 Introduction20

Pipelines in image recognition and natural language processing commonly use large datasets to21

pretrain representations that are then transferred to downstream tasks where data is limited [Devlin22

et al., 2018, Chen et al., 2020, Radford et al., 2021]. In this paper, we consider how this paradigm23

can be applied to imitation learning [Pomerleau, 1991, Ho and Ermon, 2016, Kostrikov et al., 2019].24

In contrast to supervised learning domains where datasets consist of input-output pairs, imitation25

learning datasets consist of trajectories with both the input-output mapping to be learned (namely,26

observation-action pairs) as well as information about the dynamics of the environment. Given27

this additional structure, it is worthwhile to study pretraining approaches that can incorporate this28

structure to improve beyond methods from traditional supervised learning domains.29

To formalize the precise notion of transfer between pretraining and finetuning phases, we consider30

a multitask imitation setting where the environment (i.e., the transition dynamics) is fixed and data31

is comprised of trajectories of task experts acting in this environment. A task is defined by a latent32

context variable that is observed by an expert demonstrator, but is not contained in the dataset, as33

shown in Figure 1. During pretraining, we have access to a large number of trajectories from various34

tasks, while during finetuning we have access to a small number of trajectories from a single task.35

The goal is thus to use the pretraining dataset to learn representations that contain information about36

the environment that facilitates efficient learning of the finetuning task.37

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



A number of existing works have proposed objectives for representation learning that are applicable38

in this setting [Schwarzer et al., 2021, Stooke et al., 2021, Yang and Nachum, 2021, Yang et al.,39

2023], and we consider a variety of algorithms and modes of analysis to determine which approach is40

the most promising. Algorithmically, we consider four generic classes of objectives for pretraining:41

inverse dynamics, behavior cloning, forward dynamics, and static observation modeling (Figure42

1). We conduct two types of analysis. First, we conduct an extensive empirical evaluation and43

introspection of the candidate algorithms along with several strong baselines. Second, we present a44

simple but general theoretical model of the multitask representation learning problem and analyze the45

relative merits of the candidate algorithms under this model.46

Our main results from these analyses are summarized as follows:47

1. Across a broad array of experiments from visual observations in six environments, out of all48

approaches considered, inverse dynamics is the only one that consistently outperforms the49

baseline of training a model from scratch. The performance of inverse dynamics even matches50

that of finetuning from ground truth low-dimensional states on in-distribution contexts. Moreover,51

we find that inverse dynamics scales the best with pretraining dataset size and most effectively52

maintains relevant information about the observation in its learned representation.53

2. In our simplified model of representation learning, we show that inverse dynamics pretraining54

efficiently recovers the ideal representation while behavior cloning can suffer from confounding55

and forward dynamics can suffer from poor sample efficiency. These results provide intuition for56

the empirical results and motivate why inverse dynamics pretraining is so performant and robust.57

o1 o2 o3

a1 a2

c

(a) Multitask imitation.

o o′

a

(b) ID

o o′

a

(c) BC

o o′

a

(d) FD

o o′

a

(e) Cont (f) Experimental results

Figure 1: (a) A graphical models of the setting. Shaded nodes indicate observed variables. The
expert behavior (i.e., oi → ai) is determined by an unobserved context variable c while the transition
dynamics (i.e., (oi, ai) → oi+1) are determined by the environment dynamics. (b)-(e) illustrate the
candidate algorithms. We use blue to indicate inputs to the algorithm and green to indicate prediction
targets. ID = inverse dynamics, BC = behavior cloning, FD = forward dynamics, Cont = contrastive
learning. (f) Shows success of policies finetuned on top of various representations averaged across all
datasets in our suite for default dataset sizes. Inverse dynamics (shown in green) is the only method
to substantially outperform the baseline of training from scratch (shown in black). Further details
about the experimental protocol and results are in Sections 4 and 5.

2 Related work58

As explained above, pretraining a representation has become a dominant paradigm in computer59

vision and natural language processing [Devlin et al., 2018, Chen et al., 2020, Radford et al., 2021].60

Determining how to best leverage similar pretraining techniques in decision making problems is an61

important step towards extending the success of supervised learning into more temporally extended62

problems like those in robotics [Yang et al., 2023].63

Prior work proposes several possible pretraining objectives for learning features for decision-making64

(and illustrated in Figure 1). First, inverse dynamics modeling has been proposed in several settings,65

although never as a representation learning algorithm for multitask imitation. Most directly related to66

our work is Efroni et al. [2021], Lamb et al. [2022] which use multi-step inverse dynamics for feature67

extraction for exploration in reinforcement learning (RL) in the presence of exogenous noise. Later68

work from Islam et al. [2022] extended this approach to offline RL. Less closely related are Pathak69

et al. [2017] which uses inverse dynamics in the context of exploration and Baker et al. [2022], Venuto70

et al. [2022] which use an inverse dynamics model to label video data with actions for imitation.71

Another, perhaps simpler approach is to use behavior cloning as a pretraining algorithm. Arora et al.72

[2020] shows that this can be a well-motivated approach to pretraining a representation when the73

2



task variable is observed. Other work uses behavior cloning objectives to pretrain representations of74

temproally extended actions [Ajay et al., 2020] or priors for offline RL [Zang et al., 2022].75

A third approach is to model the forward dynamics of the system as a pretraining objective. Most76

directly related to our work, Nachum and Yang [2021] show that this is a well-motivated technique77

for imitation learning and provide empirical evidence on single task atari games, but do not compare78

to inverse dynamics. This technique has also been explored in empirical work for online and offline79

RL [Schwarzer et al., 2021, Laskin et al., 2020, Aytar et al., 2018, Lee et al., 2022, Wu et al., 2023].80

Finally, a method which we will refer to as static observation modeling does not leverage information81

about dynamics and rather directly uses self-supervised methods from computer vision [Pari et al.,82

2021, Chen et al., 2020, Grill et al., 2020]. This approach does not take advantage of any additional83

structure in an imitation learning setting, but has nevertheless worked well in some settings.84

Several empirical studies of representation learning for decision-making already exist. Most closely85

related to this work, [Chen et al., 2022] conducts an empirical evaluation of representations for86

imitation and finds that none of them consistently outperform training directly from pixels. However,87

this prior work (a) considers much larger finetuning datasets which can dramatically reduce the88

benefits of pretraining, and (b) considers different environments than we do, where the gap between89

pretraining and finetuning tasks is less controlled. Another line of work like Nair et al. [2022] attempts90

to pretrain general representations using large human-collected video datasets like Ego4d [Grauman91

et al., 2022]. In contrast, we focus on a more carefully controlled (albeit smaller scale) experimental92

settings where we can derive a more clear understanding of the relative merits of different pretraining93

objectives. Another empirical study from Stooke et al. [2021] considers representations in online94

reinforcement learning. Meanwhile, Yang and Nachum [2021] considers representations for imitation95

but does not consider image-based or multitask problems. Moreover, none of these works includes a96

theoretical understanding for the findings presented therein.97

A further discussion of pretraining in the context of imitation can be found in Appendix A.98

3 Problem setup99

Here we present the formal setup for our problem setting of reward free pretraining from multitask100

expert data . We formalize this as a contextual MDP with rich (i.e., visual) observations where the101

latent context determines the initial state and reward functions.102

Environment. We model the environment as a contextual MDP with context-independent dynamics:103

c ∼ Pc, o0 ∼ ρc, ri = rc(si, ai), oi+1 ∼ T (oi, ai). (1)
Importantly, we consider the context variable c and rewards rc to be latent, i.e., they are not available104

during training, and only used to evaluate a learned policy. At a high level, this captures the setting105

where the task (defined by the context variable) may change, but the dynamics of the world do not.106

For example, the context variable could be a continuous variable like a goal position that the expert is107

navigating towards or a discrete variable representing a behavior like locking a door.108

Data generation. Data is generated by executing policies π that map observations to actions in109

the environment. We consider two different datasets for any given problem. First there is a large110

multi-context pretraining dataset that will be used for representation learning, specifically to learn an111

observation encoder. Second, there is a small single-context finetuning dataset for policy learning on112

top of the pretrained representation. The multi-context pretraining data is generated as follows:113

Dpre = {τi}
Npre

i=1 : c ∼ Pc, τ = (o0, a0, o1 . . . ) ∼ Pπc , πc ≈ π∗
c = argmax

π
Jrc(π), (2)

where Jrc(π) denotes the expected return of π when the reward is rc. Note that the demonstration114

policy has access to the latent context c, but this latent context is not observed in the data.115

Then the single-context finetuning data is generated for context cfine as follows:116

Dfine = {τi}
Nfine

i=1 : τ = (o0, a0, o1 . . . ) ∼ Pπcfine . (3)

Pretraining. The goal of the paper is to analyze different methods for pretraining feature extractors.117

Training of the encoders ϕ to minimize a loss ℓ proceeds as follows:118

ϕ̂ : O → Rd = argmin
ϕ

E
Dpre

[ℓ(ϕ, τi)]. (4)

3



A full description of the losses ℓ used by different algorithms will come in Section 4.2. For simplicity119

(and in keeping with prior work [Nachum and Yang, 2021, Chen et al., 2022]) we will consider ℓ to120

only be a function of transitions (oji , a
j
i , o

j′

i ) rather than full trajectories to leverage the Markovian121

structure. We also run some ablations of including multistep information in Appendix B and find122

little difference.123

Finetuning. Features are evaluated by finetuning a small policy head on top of the frozen features:124

π̂ϕ̂ : Rd → A = argmin
π

E
Dfine

[ℓ(π, aji , ϕ̂(o
j
i ))]. (5)

We elect to use frozen features to allow for simple and clear evaluation of the representations. This is125

in keeping with prior work on representations for imitation [Nachum and Yang, 2021, Chen et al.,126

2020, Nair et al., 2022] as well as computer vision [Chen et al., 2020].127

Evaluation. Finally, we evaluate the finetuned policy by performing rollouts in the finetuning128

environment with context cfine to estimate Jrcfine
(π̂ϕ̂). In our tasks we usually consider rcfine

to be129

a binary indicator of successful completion of the finetuning task.130

4 Experimental setup131

4.1 Environments and Datasets132

We design a suite of tasks and datasets to probe the capabilities of various representation learners133

for downstream imitation. We focus on robotic manipulation from vision as this is an important134

sequential decision making task that depends on learning task-relevant visual representations where135

pretraining deep visual feature extractors is a popular approach. Our suite consists of six different136

pretraining datasets on varied tasks and of varied size. Each pretraining dataset has several associated137

finetuning datasets and simulation environments that allow for online evaluation of learned policies.138

(a) Pointmass (b) Pick + place (c) Door (d) Kitchen (e) Metaworld (ML45/R3M)

Figure 2: Our six datasets: (a) Pointmass navigation with latent goals. (b) Pick and place with latent
goals. (c) Multitask manipulation of a door. (d) Sequential kitchen manipulation. (e) Multitask
manipulation of diverse objects, where we consider two different train-eval splits ML45 and R3M.

All tasks are performed from visual inputs, as shown in Figure 2. Each pair of pretraining-finetuning139

datasets requires a slightly different type of generalization as dictated by the different types of context140

variable and is described in detail in Appendix C.141

4.2 Algorithms142

We consider nine different representations across our suite of experiments. These representations143

include baseline and skyline/oracle performance as well as five representations that are pretrained on144

our own pretraining datasets described above. Each of the representations will be referred to by its145

bolded name after it is described.146

All algorithms (except for the Imagenet and R3M baselines) share the exact same encoder architecture147

to control as best we can for variation in architecture between methods. Each method is pretrained148

for the same number of gradient steps. Additional training details can be found in Appendix C.149

Skyline/oracle. As a skyline or oracle representation we directly use the low dimensional states150

(States) from the simulator. Depending on the task, this representation includes the position of the151

robot, position of the object to be manipulated, and/or position of the goal. A full description of the152

per environment state variables can be found in Appendix C.153

4



Table 1: Description of the different datasets used in the experiments. Dataset sizes are measured
in number of trajectories (Npre

traj for pretraining and Nfine
traj for finetuning) and given as ranges with

default values in bold. Trajectory lengths vary from 50 to 400 steps. These default sizes may vary in
each experiment when indicated. Each datasets contains a certain number of latent contexts (Npre

context

and Nfine
context). For each finetuning context, we sample datasets with Nfine

seed different seeds.

Environment Npre
traj Nfine

traj Npre
context Nfine

context Nfine
seed

Pointmass (1e1, 1e2, 1e3) (1, 2, 5, 10) Npre
traj 5 1

Pick + place (1e1, 1e2, 1e3) (2, 5, 10, 20) Npre
traj 5 1

Door (1e1, 1e2, 1e3) (2, 5, 10, 20) 3 1 5
Kitchen (50, 150, 450) (2, 5, 10, 15) 21 3 5
MW-ML45 (1e2, 1e3, 1e4) (2, 5, 10, 20) 45 5 5
MW-R3M (1e2, 1e3, 1e4) (2, 5, 10, 20) 45 5 5

Baselines. We consider three baseline representations that are not trained on our pretraining datasets.154

The first is to directly use the pixels with image augmentations (Pixels + Aug) to train an encoder155

and a policy from scratch on the finetuning data. It is essential to use the augmentations to ensure156

that this a strong baseline. The second is features of a ResNet18 pretrained on Imagenet (Imagenet).157

The last consists of the features of a ResNet18 that is specifically pretrained for robotic manipulation158

by Nair et al. [2022] on the Ego4d dataset (R3M).159

Inverse dynamics. The primary representation learning objective that we consider is inverse160

dynamics (ID) which models the distribution P (a|o, o′) using an architecture that first encodes o, o′161

with an encoder ϕ and then predicts a with a small MLP f :162

ϕ∗
ID = argmin

ϕ
min
f

E
o,a,o′

[(a− f(ϕ(o), ϕ(o′)))2]. (6)

Behavior cloning. A simpler alternative objective is to directly apply behavior cloning (BC) to163

the multitask actions in the pretraining dataset conditioned on the observations using MSE loss. The164

learner is parameterized as an encoder ϕ followed by a small MLP π:165

ϕ∗
BC = argmin

ϕ
min
π

E
o,a

[(a− π(ϕ(o)))2]. (7)

Forward dynamics. We consider two representation learners that predict the forward dynamics166

of the system. The first is explicit forward dynamics (FD-e) which explicitly constructs a model167

of the forward dynamics in the space of observations by encoding the current observation and then168

attempting to reconstruct the next observation o′ using a decoder d:169

ϕ∗
EFD = argmin

ϕ
min
d

E
o,a,o′

[(o′ − d(ϕ(o), a))2]. (8)

The second objective is implicit forward dynamics (FD-i) which implicity constructs a model of the170

forward dynamics using contrastive learning. Explicitly, we consider a form of contrastive learning171

where an energy function is defined as the inner product of L2-normalized projected embeddings172

(given by projection MLPs f1, f2) which is then passed into an InfoNCE loss:173

E(o, a, o′) = exp(f1(ϕ(o), a)
⊤f2(ϕ(o

′))), (9)

ϕ∗
IFD = argmin

ϕ
min
f1,f2

E
o,a,o′

[− log(E(o, a, o′)) + log Ē
o′
[E(o, a, ō′)]]. (10)

Static observation modeling Finally, we consider a baseline that simply models P (o). Rather than174

modeling this explicitly with reconstruction, we use a contrastive loss (Cont) where we use image175

augmentations to construct pairs of o and ō that do not rely on the dynamics of the environment at all.176

Again we use the InfoNCE loss, in what can be seen as a variant of SimCLR:177

E(o, oaug) = exp(f(ϕ(o))⊤π(ϕ(oaug))), (11)
ϕ∗
Cont = argmin

ϕ
min
f

E
o,oaug

[− log(E(o, oaug)) + log E
ōaug

[E(o, ōaug)]]. (12)

5



5 Experiments178

We want to determine which representation learning objective is best, but the precise answer will179

depend on the situation. To get a clearer understanding of this sometimes ambiguous performance180

we conduct a variety of controlled experiments on our diverse suite of datasets. We focus on the181

following questions to guide our empirical analysis:182

1. How do factors of the datasets impact performance of algorithms?183

2. How are the learned representations similar to and different from each other?184

Note: we will focus on presenting aggregate statistics across all datasets in the main text, but details185

per-dataset results and other extended experimental results can be found in Appendix B and full186

details about the methodology can be found in Appendix C.187

5.1 Impact of dataset on representation learning performance188

Scaling with data size. The performance of each algorithm can be highly sensitive to both pretrain-189

ing and finetuning sizes. Thus, instead of producing one simple summary statistic, we sweep over190

both the size of the finetuning data (for default pretraining size) and size of the pretraining data (for191

default finetuning size). The results of these sweeps are presented in Figure 3.192

Figure 3: Average success rate after finetuning averaged across datasets, contexts, and seeds. Error
bars show the standard error across contexts and seeds, averaged across datasets. The plots show
sweeps across finetuning size with default pretraining size (left) or pretraining size with default
finetuning size (right) measured in units according to Table 1. Methods that do not depend on
pretraining size are shown as horizontal lines.

The sweeps both suggest that inverse dynamics outperforms the alternatives. First, on the finetuning193

size sweep, we see that the ID line is the only one that consistently outperforms training from194

scratch on Pixels + Aug. This gap is largest at small finetuning sizes, which are perhaps the most195

interesting case since that is when we expect pretraining to be useful. Second, the pretraining size196

sweep indicated that ID is scaling the most efficiently with pretraining size. Further results, including197

breakdowns across each dataset can be found in Appendix B.198

In distribution vs. out of distribution eval tasks. The way that our datasets are constructed, the199

door, kitchen, metaworld-ml45, and metaworld-r3m datasets only have a finite number of possible200

contexts that is much smaller than the number of pretraining trajectories. For our default datasets, we201

elected to construct a train-test split of contexts to ensure that the contexts used for finetuning are202

not seen during pretraining. As a result, the default finetuning tasks can be in some sense “out of203

distribution”, measuring extrapolation as opposed to in-distribution generalization. For example, in204

the door dataset, we pretrain on door opening, closing, and unlocking (with varied door position) and205

then finetune on door locking (again with varied position).206

To test the impact of this gap between pretraining and finetuning, we created alternative pretraining207

datasets, where we include the test contexts (but not the test trajectories) into the pretraining data.208

For example, in the door domain we include door opening, closing, locking, and unlocking in the209

pretraining data and still finetune on only unlocking (but with heldout initial conditions). These210

datasets now require a much more limited notion of generalization from pretraining to finetuning.211

6



Figure 4: Average performance on the four discrete
context environments when the finetuning contexts
are included in the pretraining data. The finetuning
data contains heldout initial conditions and trajec-
tories not seen during pretraining.

Results are shown in Figure 4. We again see that212

ID is the strongest performer, but now the gap is213

even larger. ID matches the skyline performance214

of training from ground truth low-dimensional215

simulator states. BC also shows substantially216

stronger performance and outperfroms training217

from scratch Pixels + Aug. None of the other218

pretraining algorithms benefit much from the219

substantially easier type of generalization re-220

quired on these datasets. This suggests that ID221

and BC are uniquely able to benefit in easier222

settings, suggesting that they are better represen-223

tation learners. If an algorithm is not able to out-224

perform training from scratch in this simplified225

setting, it is unlikely to be a good representation226

learner.227

Fully latent vs. inferrable context variables.228

Looking at our dataset suite, the datasets can229

be divided into two groups: those where the230

context variable is not inferrable at all from the initial state (pointmass, pick+place, and kitchen),231

and those where the effect of the context variable on the initial state makes it possible to infer the232

context given the initial state (door, metaworld-ml45, and metaworld-r3m). This split presents an233

interesting comparison in particular between ID and BC (the best performing algorithms from the234

prior experiment). Figure 5 shows results for these algorithms and the Pixels + Aug baseline on the235

datasets where the context is latent.236

Figure 5: A comparison between ID and
BC on the datasets where the context is
not inferrable from the observation.

There is a large gap between ID and BC when the con-237

text is fully latent. In these cases, it is impossible to tell238

from the current state alone what the context is and thus239

what the optimal action should be. As we will show in240

our simplified model (Section 6), in these settings BC is241

confounded by the latent context (in the terminology of242

causal inference). As a result, BC can fail to learn useful243

features. In contrast, ID uses the information about the244

future state to deconfound the learning problem and still245

learns a good representation. Note that this gap largely246

disappears when the context is observable, see Appendix247

B for further details.248

5.2 Predictive power of the representations249

Figure 6: Average train and validation action-
prediction loss during finetuning. All losses are
normalized by the Pixels + Aug validation loss to
maintain consistency across environments.

So far, we have focused on the success rate of the250

downstream finetuned policy as the main met-251

ric of comparison between algorithms. Now we252

will instead consider a series of experiments that253

assess the quality of the representations based on254

the ability to predict various quantities of inter-255

est from the representations. These experiments256

help to illustrate what information is retained257

in the representations and how efficiently that258

information can be accessed.259

Action prediction. First, we consider the abil-260

ity to predict the expert actions in the finetuning261

dataset. This is directly related to the success of262

the finetuned policy, but avoids the variance of performing rollouts and allows us to compare train263

and validation errors to evaluate the representations. Low train loss means the representations are264

not aliasing observations that require different actions. Meanwhile the validation loss measures the265

simplicity of the function that maps representations to targets, i.e. how well it generalizes.266

7



The results in Figure 6 show the train and validation loss during finetuning using the default pretraining267

and finetuning sizes from Table 1. Since losses vary across datasets, we normalize by the Pixels268

+ Aug validation loss so as to be able to present averages across all datasets. We see that out of269

the learned representations, ID has both the lowest train and validation losses, almost matching the270

performance of Pixels + Aug on train and almost matching the performance of States on validation. In271

contrast, representations that attempt to predict forward dynamics have substantially higher train loss,272

indicating aliasing of states in terms of their optimal actions. Interestingly, the Imagenet pretrained273

features have very low train loss, indicating a lack of aliasing, but very high validation loss, indicating274

that the function that maps representations to actions does not generalize well.275

Figure 7: Average state prediction error on the
pretraining distribution. Values are normalized by
the ID train loss.

State prediction. Since we perform all of our276

experiments in simulated environments, we have277

access the the ground truth low dimensional278

states. So, we can measure the ability of each279

representation to predict the ground truth low280

dimensional state and thus measure how well281

the representation retains information about this282

ground truth state. Results are in Figure 7; here283

we measure the train and validation loss on the284

pretraining distribution so as to isolate the effect285

of the representation learning apart from the gap286

between pretraining and finetuning. Again we287

normalize the losses for each dataset.288

Again we see that ID and BC yield the best289

performance. This suggests that in these datasets, pretraining objectives that attempt to predict the290

optimal action do indeed facilitate recovery of the low-dimensional simulator state. In contrast, while291

the FD methods achieve approximately the same training error, they generalize much more poorly.292

This suggests that the FD objectives are not throwing away relevant information, but are keeping293

around too much extraneous information about the observations, thus making the representations294

susceptible to overfitting. Standard contrastive learning is substantially worse, even on train error,295

suggesting that it is throwing away important information. Extended results are in Appendix B.296

6 Analysis297

To add a more theoretical understanding of the empirical results, we will consider a simplified model298

of the data generating process based on linear dynamics in a latent space. We begin by presenting299

the model and then show that under this model we can explain three key experimental findings: (1)300

inverse dynamics is able to recover the low dimensional state, (2) forward dynamics can be less301

efficient in some cases, and (3) BC can be confounded by the latent context. We present a high level302

sketch here and more details along with discussion of related theoretical work are in Appendix D.303

Model. Some of the key interesting properties of problems like visual manipulation that we consider304

empirically are that (a) the observation is very high dimensional relative to the action, (b) the actual305

state of the world (or simulator) can be summarized in a much lower dimensional state variable,306

and (c) the dynamics are relatively simple if given the right representation. All of these motivating307

properties can be captured in a simplified model that assumes linear dynamics occurring in a hidden308

low-dimensional state space, as presented below.309

For simplicity, we will only consider one step of the dynamics represented by a tuple (o, a, o′, s, s′, c)310

that is sampled iid from the joint distribution over those variables. Recall that we only observe311

(o, a, o′) and that (s, s′, c) are latent. Formally, let O = Rd, S = Rℓ, and A = Rk with d ≫ ℓ > k.312

Let ϕ : O → S be the ground truth encoder, which we assume is invertible by ϕ−1. Let ϵ ∼ N (0,Σ)313

in Rℓ and A,B to be any matrices in Rℓ×ℓ and Rℓ×k. Then, assume that the dynamics are:314

o′ = ϕ−1(Aϕ(o) +Ba+ ϵ). (13)
Note that we make no assumption on the policy π∗

c other than that it only depends on o via ϕ(o).315

This model is similar to ones studied in the online control setting by Mhammedi et al. [2020], Dean316

and Recht [2021], but is different from models where inverse dynamics have been studied for online317

control with exogenous noise since the dynamics are entirely contained in the low dimensional state318

space [Efroni et al., 2021, Lamb et al., 2022].319

8



Inverse dynamics recovers the state. To get an intuition as to why inverse dynamics learning is320

feasible in this model, note that if B+ is the pseudoinverse of B that:321

a = B+ϕ(o′)−B+Aϕ(o)−B+ϵ. (14)

Thus the inverse dynamics are a simple linear function of the embeddings ϕ(o), ϕ(o′). As a result,322

when we solve for a with least squares regression, if the encoder ϕ is representable by our function323

class, we will be able to recover it up to linear transformation, provided the matrix B is well-324

conditioned, so that the noise term B+ϵ does not blow up.325

Forward dynamics can be less statistically efficient. Intuitively, the potential problem with326

learning forward dynamics is that it requires learning both an encoder and a decoder while inverse327

dynamics only requires learning the encoder. This is not necessarily a problem a priori, but we328

hypothesize that in practical problems of interest (like the ones in our experiments) the decoder329

(mapping from low dimensional state to high dimensional observation) may be more complicated330

than the encoder (mapping from observations to states).331

Figure 8: An example where
the decoder is more compli-
cated than the encoder.

To grasp why we might expect this, note that the set of possible332

observations is the manifold represented by the image of the decoder,333

i.e. Im(ϕ−1). As a simple example, consider a toy 2d example334

where the high dimensional observation is (x, f(x)) ∈ R2 and the335

low dimensional state is simply x ∈ R1, as depicted in Figure 8.336

Here the encoder ϕ is very simple since it just needs to recover x,337

while the decoder must learn f(x). Of course this is a very toy338

example, but we find it illustrative of the idea that it is possible that339

the encoder is much simpler than the decoder in practice.340

BC can be confounded by the latent context. As we alluded to in the experimental section, the341

latent context variable can confound BC. Now we will show an example in our model where this342

problem arises. In this case, even with a linear encoder, infinite data, and a fully expressive policy343

class, the Bayes optimal BC representation cannot be used to recover anything better than a random344

policy. This example is extreme, but shows the shortcomings of a confounded pretraining objective.345

For simplicity, let ℓ = k and ϵ = 0. Let R(Rk×k) be the set of rotation matrices in Rk. Let Sk−1 be346

the unit sphere in Rk, U be the uniform distribution, and δ denote a Dirac delta. Now, assume:347

c ∼ U(R(Rk×k)), o ∼ U(ϕ−1(Sk−1)), π∗
c (a|o) = δ[a = cϕ(o)] (15)

Note that ϕ(o) returns a unit vector in Rk and that a uniformly sampled rotation of a unit vector is a348

uniformly sampled unit vector. Thus, we can marginalize over c to get:349

P (a|o) =
∫
c

P (c)π∗
c (a|o) =

∫
c

P (c)δ[a = cϕ(o)] = PU(Sk−1)(a) = ηk, (16)

for a constant ηk equal to the reciprocal of the surface area of the unit sphere in Rk.350

Thus, the Bayes optimal BC policy does not depend on o at all. As a result, the optimal representation351

learned by BC can just map every observation to zero. This representation is not capable of represent-352

ing the optimal policy for any choice of c. However, switching to inverse dynamics pretraining where353

we condition on the outcome observation o′ breaks the confounding and allows us to learn the true354

representation even without observing c.355

7 Discussion356

We have seen that inverse dynamics pretraining provides an effective method for learning features from357

multitask demonstration data. We demonstrated this across a suite of datasets with visual observations358

and provided analysis in a simplified model to understand the strong empirical performance. Going359

forward, there are many interesting directions for future work such as: scaling up inverse dynamics360

pretraining to larger real world tasks, going beyond the imitation setting to consider learning from361

suboptimal data or in online settings, and comparing against pretraining techniques that go beyond362

feature learning (such as goal conditioned and reward-based policies).363

9



References364

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal: Offline primitive365

discovery for accelerating offline reinforcement learning. arXiv preprint arXiv:2010.13611, 2020.366

Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj Saun-367

shi. A theoretical analysis of contrastive unsupervised representation learning. arXiv preprint368

arXiv:1902.09229, 2019.369

Sanjeev Arora, Simon Du, Sham Kakade, Yuping Luo, and Nikunj Saunshi. Provable representation370

learning for imitation learning via bi-level optimization. In International Conference on Machine371

Learning, pages 367–376. PMLR, 2020.372

Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine, Ziyu Wang, and Nando De Freitas. Playing373

hard exploration games by watching youtube. Advances in neural information processing systems,374

31, 2018.375

Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter Buchlovsky,376

David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Claudio Fantacci,377

Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel, Shaobo Hou, Steven378

Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch, Lena Martens, Hamza379

Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John Quan, Roman Ring,380

Francisco Ruiz, Alvaro Sanchez, Rosalia Schneider, Eren Sezener, Stephen Spencer, Srivatsan381

Srinivasan, Wojciech Stokowiec, Luyu Wang, Guangyao Zhou, and Fabio Viola. The DeepMind382

JAX Ecosystem, 2020. URL http://github.com/deepmind.383

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon384

Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching385

unlabeled online videos. Advances in Neural Information Processing Systems, 35:24639–24654,386

2022.387

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal388

Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and389

Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL390

http://github.com/google/jax.391

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,392

Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics393

transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.394

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for395

contrastive learning of visual representations. In International conference on machine learning,396

pages 1597–1607. PMLR, 2020.397

Xin Chen, Sam Toyer, Cody Wild, Scott Emmons, Ian Fischer, Kuang-Huei Lee, Neel Alex, Steven H398

Wang, Ping Luo, Stuart Russell, et al. An empirical investigation of representation learning for399

imitation. arXiv preprint arXiv:2205.07886, 2022.400

Zichen Jeff Cui, Yibin Wang, Nur Muhammad Mahi Shafiullah, and Lerrel Pinto. From play to policy:401

Conditional behavior generation from uncurated robot data. arXiv e-prints, pages arXiv–2210,402

2022.403

Sarah Dean and Benjamin Recht. Certainty equivalent perception-based control. In Learning for404

Dynamics and Control, pages 399–411. PMLR, 2021.405

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep406

bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.407

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation408

learning. Advances in neural information processing systems, 32, 2019.409

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya410

Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. Advances in neural411

information processing systems, 30, 2017.412

10

http://github.com/deepmind
http://github.com/google/jax


Yonathan Efroni, Dipendra Misra, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Prov-413

able rl with exogenous distractors via multistep inverse dynamics. arXiv preprint arXiv:2110.08847,414

2021.415

Benjamin Eysenbach, Tianjun Zhang, Ruslan Salakhutdinov, and Sergey Levine. Contrastive learning416

as goal-conditioned reinforcement learning. arXiv preprint arXiv:2206.07568, 2022.417

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel. Deep spatial418

autoencoders for visuomotor learning. In 2016 IEEE International Conference on Robotics and419

Automation (ICRA), pages 512–519. IEEE, 2016.420

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation421

of deep networks. In International conference on machine learning, pages 1126–1135. PMLR,422

2017a.423

Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual imitation424

learning via meta-learning. In Conference on robot learning, pages 357–368. PMLR, 2017b.425

Xiang Fu, Ge Yang, Pulkit Agrawal, and Tommi Jaakkola. Learning task informed abstractions. In426

International Conference on Machine Learning, pages 3480–3491. PMLR, 2021.427

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G Bellemare. Deepmdp:428

Learning continuous latent space models for representation learning. In International Conference429

on Machine Learning, pages 2170–2179. PMLR, 2019.430

Dibya Ghosh, Abhishek Gupta, and Sergey Levine. Learning actionable representations with goal-431

conditioned policies. arXiv preprint arXiv:1811.07819, 2018.432

Dibya Ghosh, Chethan Bhateja, and Sergey Levine. Reinforcement learning from passive data via433

latent intentions. arXiv preprint arXiv:2304.04782, 2023.434

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit435

Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in436

3,000 hours of egocentric video. In Proceedings of the IEEE/CVF Conference on Computer Vision437

and Pattern Recognition, pages 18995–19012, 2022.438

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena439

Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,440

et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural441

information processing systems, 33:21271–21284, 2020.442

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy443

learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint444

arXiv:1910.11956, 2019.445

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas446

Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2023. URL447

http://github.com/google/flax.448

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural449

information processing systems, 29, 2016.450

Riashat Islam, Manan Tomar, Alex Lamb, Yonathan Efroni, Hongyu Zang, Aniket Didolkar, Dipendra451

Misra, Xin Li, Harm van Seijen, Remi Tachet des Combes, et al. Agent-controller representations:452

Principled offline rl with rich exogenous information. arXiv preprint arXiv:2211.00164, 2022.453

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,454

and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning. In455

Conference on Robot Learning, pages 991–1002. PMLR, 2022.456

Ilya Kostrikov. JAXRL: Implementations of Reinforcement Learning algorithms in JAX, 10 2022.457

URL https://github.com/ikostrikov/jaxrl2. v2.458

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution459

matching. arXiv preprint arXiv:1912.05032, 2019.460

11

http://github.com/google/flax
https://github.com/ikostrikov/jaxrl2


Alex Lamb, Riashat Islam, Yonathan Efroni, Aniket Didolkar, Dipendra Misra, Dylan Foster, Lekan461

Molu, Rajan Chari, Akshay Krishnamurthy, and John Langford. Guaranteed discovery of control-462

lable latent states with multi-step inverse models. arXiv preprint arXiv:2207.08229, 2022.463

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations464

for reinforcement learning. In International Conference on Machine Learning, pages 5639–5650.465

PMLR, 2020.466

Kuang-Huei Lee, Ofir Nachum, Tingnan Zhang, Sergio Guadarrama, Jie Tan, and Wenhao Yu. Pi-ars:467

Accelerating evolution-learned visual-locomotion with predictive information representations.468

In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages469

1447–1454. IEEE, 2022.470

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and Pierre471

Sermanet. Learning latent plans from play. In Conference on robot learning, pages 1113–1132.472

PMLR, 2020.473

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy474

Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training.475

arXiv preprint arXiv:2210.00030, 2022.476

Zakaria Mhammedi, Dylan J Foster, Max Simchowitz, Dipendra Misra, Wen Sun, Akshay Krish-477

namurthy, Alexander Rakhlin, and John Langford. Learning the linear quadratic regulator from478

nonlinear observations. Advances in Neural Information Processing Systems, 33:14532–14543,479

2020.480

Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea Finn. Offline meta-481

reinforcement learning with advantage weighting. In International Conference on Machine482

Learning, pages 7780–7791. PMLR, 2021.483

Ofir Nachum and Mengjiao Yang. Provable representation learning for imitation with contrastive484

fourier features. Advances in Neural Information Processing Systems, 34:30100–30112, 2021.485

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal486

visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.487

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive488

coding. arXiv preprint arXiv:1807.03748, 2018.489

Jyothish Pari, Nur Muhammad Shafiullah, Sridhar Pandian Arunachalam, and Lerrel Pinto.490

The surprising effectiveness of representation learning for visual imitation. arXiv preprint491

arXiv:2112.01511, 2021.492

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by493

self-supervised prediction. In International conference on machine learning, pages 2778–2787.494

PMLR, 2017.495

Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neural496

computation, 3(1):88–97, 1991.497

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,498

Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual499

models from natural language supervision. In International Conference on Machine Learning,500

pages 8748–8763. PMLR, 2021.501

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy502

meta-reinforcement learning via probabilistic context variables. In International conference on503

machine learning, pages 5331–5340. PMLR, 2019.504

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R De-505

von Hjelm, Philip Bachman, and Aaron C Courville. Pretraining representations for data-efficient506

reinforcement learning. Advances in Neural Information Processing Systems, 34:12686–12699,507

2021.508

12



Younggyo Seo, Kimin Lee, Stephen L James, and Pieter Abbeel. Reinforcement learning with509

action-free pre-training from videos. In International Conference on Machine Learning, pages510

19561–19579. PMLR, 2022.511

Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and Pieter512

Abbeel. Masked world models for visual control. In Conference on Robot Learning, pages513

1332–1344. PMLR, 2023.514

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-515

based representations. In International Conference on Machine Learning, pages 9767–9779.516

PMLR, 2021.517

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning518

from reinforcement learning. In International Conference on Machine Learning, pages 9870–9879.519

PMLR, 2021.520

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.521

In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033.522

IEEE, 2012.523

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom524

Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for525

continuous control. Software Impacts, 6:100022, 2020.526

David Venuto, Sherry Yang, Pieter Abbeel, Doina Precup, Igor Mordatch, and Ofir Nachum.527

Multi-environment pretraining enables transfer to action limited datasets. arXiv preprint528

arXiv:2211.13337, 2022.529

William Whitney, Rajat Agarwal, Kyunghyun Cho, and Abhinav Gupta. Dynamics-aware embeddings.530

arXiv preprint arXiv:1908.09357, 2019.531

Philipp Wu, Arjun Majumdar, Kevin Stone, Yixin Lin, Igor Mordatch, Pieter Abbeel, and Aravind532

Rajeswaran. Masked trajectory models for prediction, representation, and control. arXiv preprint533

arXiv:2305.02968, 2023.534

Mengjiao Yang and Ofir Nachum. Representation matters: offline pretraining for sequential decision535

making. In International Conference on Machine Learning, pages 11784–11794. PMLR, 2021.536

Mengjiao Yang, Sergey Levine, and Ofir Nachum. Trail: Near-optimal imitation learning with537

suboptimal data. arXiv preprint arXiv:2110.14770, 2021.538

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans. Foun-539

dation models for decision making: Problems, methods, and opportunities. arXiv preprint540

arXiv:2303.04129, 2023.541

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improving542

sample efficiency in model-free reinforcement learning from images. In Proceedings of the AAAI543

Conference on Artificial Intelligence, volume 35, pages 10674–10681, 2021.544

Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter Abbeel, and Sergey545

Levine. One-shot imitation from observing humans via domain-adaptive meta-learning. arXiv546

preprint arXiv:1802.01557, 2018.547

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey548

Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.549

In Conference on robot learning, pages 1094–1100. PMLR, 2020.550

Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tompson, Jeannette Bohg, and Debidatta Dwibedi.551

Xirl: Cross-embodiment inverse reinforcement learning. In Conference on Robot Learning, pages552

537–546. PMLR, 2022.553

Hongyu Zang, Xin Li, Jie Yu, Chen Liu, Riashat Islam, Remi Tachet Des Combes, and Romain554

Laroche. Behavior prior representation learning for offline reinforcement learning. arXiv preprint555

arXiv:2211.00863, 2022.556

13



Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning557

invariant representations for reinforcement learning without reconstruction. arXiv preprint558

arXiv:2006.10742, 2020.559

Thomas T Zhang, Katie Kang, Bruce D Lee, Claire Tomlin, Sergey Levine, Stephen Tu, and560

Nikolai Matni. Multi-task imitation learning for linear dynamical systems. arXiv preprint561

arXiv:2212.00186, 2022.562

14



A Extended related work563

In this paper we focus specifically on pretraining methods that learn representations of high di-564

mensional observations from multitask demonstration data with latent contexts for the purpose of565

imitation. There are many closely related problems that are studied in other papers that we did not566

have space to address fully in the main text that we more fully describe here. These are all very567

interesting and complementary lines of work, but are beyond the scope of this paper.568

Perhaps the largest closely related line of work focuses on learning reward-directed representations in569

the context of reinforcement learning. This is a different setting than ours and methods from there570

are not applicable in our setting where we do not have access to rewards. Moreover, most of these571

methods do not consider multitask settings [Zhang et al., 2020, Gelada et al., 2019, Fu et al., 2021,572

Ghosh et al., 2018, Eysenbach et al., 2022, Sodhani et al., 2021].573

Another line of work seeks to learn representations of actions or sequences of actions rather than574

observations. This is a directly complementary line of work to the ideas presented in this paper [Ajay575

et al., 2020, Yang et al., 2021, Lynch et al., 2020, Whitney et al., 2019].576

Another body of literature focuses on learning representations that can be transferred across domain577

and embodiment gaps and even trained directly from videos without access to actions at all [Oord578

et al., 2018, Aytar et al., 2018, Seo et al., 2022, Ma et al., 2022, Zakka et al., 2022, Ghosh et al., 2023].579

In this paper, we focus on the simpler task of pretraining a representation within one MDP with580

consistent dynamics and access to demonstration actions, but with varied tasks. This choice allows us581

to make more clear comparisons between algorithms and rigorous claims about when representations582

will be effective, but also limits the generality of the representations that are learned.583

There are a variety of new methods that rely on transformer architectures to construct interesting new584

pretraining objectives [Yang and Nachum, 2021, Seo et al., 2023, Wu et al., 2023]. In this paper we585

focus on simple methods that can all use the same simple convolutional architecture operating on586

transition tuples to provide the most controlled comparison that we can. It is an interesting direction587

for future work to see how our insights in the Markovian case could be leveraged to inform sequence588

level models of partially observed problems.589

Another line of work avoids pretraining representations directly and instead meta-learns a policy590

that can adapt to new tasks [Duan et al., 2017, Finn et al., 2017a,b, Yu et al., 2018, Rakelly et al.,591

2019, Mitchell et al., 2021]. This approach is beyond the scope of this paper which focuses on592

representation learning. Moreover, these meta-learning algorithms require the pretraining trajectories593

to be partitioned by task so that each task has multiple trajectories. Since we focus on pretraining594

data where we don’t have access to the latent context, it is unclear how to create these meta-training595

datasets.596

Finally, recent work has shown the promise of zero-shot generalization for multitask imitation,597

especially when the task identifying information is expressed in natural language to leverage advances598

in language models [Ding et al., 2019, Jang et al., 2022, Cui et al., 2022, Brohan et al., 2022]. This599

is an exciting line of work, but beyond the scope of this project where we focus on data where the600

context information is latent. It is an interesting direction for future work to assess precisely how601

much performance can be improved via extra context information to gauge whether it is worth the602

cost of labeling trajectories with context information.603

It is an interesting direction for future work to try to better synthesize some of the findings from604

across this broad array of approaches to pretraining in slightly different settings.605

B Extended experimental results606

In this section we present the experimental results that were excluded from the main text due to607

space constraints. In particular, Section B.1 presents representation analysis by predicting one608

representation from another, Section B.2 presents the per-dataset results of various sweeps over609

dataset size and type, Section B.3 presents per-dataset results for representation analysis, and Section610

B.4 presents results of an ablation over multistep dynamics.611

B.1 Cross-representation prediction612

In the main text, we evaluated representation quality by measuring accuracy of small MLPs to613

predict either the actions on the finetuning data or the low dimensional states on the pretraining614

15



data. Here we present a similar analysis, but now where we use small MLPs to predict the other615

representations themselves. This is interesting since it lets us assess which representations contain616

enough information and shared structure to predict the other representations. Hypothetically, a617

representation that is easily able to recover another representation may be preferable since it retains618

more information.619

Figure 9: Cross-representation predic-
tion error of a small MLP on a validation
set from the pretraining distribution. Re-
sults are normalized per dataset by the
mean error on that dataset and then aver-
aged across datasets.

Results presented in Figure 9 show the average across620

datasets of the cross-representation prediction error on a621

validation set from the pretraining distribution (normalized622

by the mean prediction error on each dataset). There are623

several possible takeaways from this experiments. First,624

looking a the rows, which correspond to the error when625

each method is used as the source, we can see that in-626

verse dynamics generally has the lowest average error for627

predicting the other representations. This suggests that628

inverse dynamics is doing a good job of recovering the629

information that is shared among all the representations.630

Second, looking at the columns, which correspond to error631

when each representation is used as the target, we see that632

BC is the most difficult to predict and inverse dynamics633

is second most difficult. This is a somewhat surprising634

result, but suggests that these representations actually con-635

tain information that may have been thrown away (or at636

made least difficult to access via small MLP) within the637

other representations. Finally, note that the contrastive638

learner is both the worst source and easiest target, which639

is consistent with the idea that those representations are640

losing important task-relevant information.641

Full results on each dataset can be found in Appendix B.3 and full methodological details can be642

found in Appendix C.643

B.2 Per dataset evaluation success results644

In the main text and Section B.1 we have only presented aggregate results that average across datasets.645

These averages make it easier to summarize comparisons between methods, but they sacrifice the646

precision of how the results vary across datasets. In this section we present per dataset results for all of647

the relevant sweeps across dataset variations including pretraining size, finetuning size, and finetuning648

size when we ablate in distribution contexts or observability of the context in the observation.649

Pretraining size. First, we present the full ablation over pretraining size, corresponding to the right650

panel of Figure 3. The full per dataset results are shown in Figure 10.651

There are several findings in the dataset-specific results that are not visible in the aggregate reported652

in the main text:653

• First, the kitchen environment is a clear outlier mainly due to the stochasticity in the654

data generating process and smaller dataset size compared to the others (see Appendix655

C.1 for more detailed description of the data). As a result of the noise added to the low656

dimensional states, training from States actually underperforms training from Pixels + Aug.657

We hypothesize that this is due to some implicit regularization that arises from training from658

the rendered noisy observations instead of the low dimensional noisy states. Importantly,659

inverse dynamics is much better able to handle the stochasticity than the alternative methods660

given the relatively small pretraining dataset and is the only method that is able to perform661

comparably to training from scratch.662

• Point mass is the only environment where the externally pretrained representations (R3M663

and Imagenet) substantially outperform training from Pixels + Aug and they are substantially664

outperformed on kitchen and the metaworld datasets. We hypothesize that this shows how it665

is quite difficult to transfer features across domains and see consistent benefits on challenging666

tasks.667

16



Figure 10: The per dataset results of sweeping over pretraining size, corresponding to the right
panel of Figure 3. Error bars show standard error over seeds and contexts (as described in Table 1).
Horizontal lines indicate mean performance of algorithms that do not depend on pretraining size.

• Note that performance of contrastive learning is substantially better relative to the alternatives668

on point mass. We hypothesize that this is due to the fact that random crop augmentations are669

actually a reasonable simulation of the dynamics in the pointmass environment specifically670

so that contrastive learning becomes more similar to implicit forward dynamics.671

Finetuning size. Next, we present the full ablation over finetuning size, corresponding to the left672

panel of Figure 3. The full per dataset results are shown in Figure 11.673

Again, as described above, Kitchen is a clear outlier due to stochasticity with inverse dynamics the674

best performer. Inverse dynamics is also the clear winner on point mass and a slight winner on pick675

and place. The other tasks are more ambiguous with many methods performing about the same, and676

none substantially better than training from scratch (across all pretraining sizes). Disaggregating677

the results here shows how even though inverse dynamics is clearly the best in aggregate, this is not678

necessarily true on every dataset. As we will see in Figure 12, we hypothesize that much of this weak679

performance can be attributed to the fact that the evaluation contexts in door and the two metaworld680

variants are truly out of distribution, making it difficult for any pretraining method to generalize.681

Ablating in distribution contexts. Next, we present the full per dataset results when we ensure682

that all the evaluation contexts are included in the pretraining distribution, corresponding to Figure 4683

in the main text. The full per dataset results are shown in Figure 12.684

It is important to compare these results to those that include out of distribution evaluation contexts685

in Figure 11. First, note that the evaluation contexts on point mass and pick and place were already686

in distribution, so they are kept the same. However, on door and the two metaworld splits there is a687

substantial improvement, especially for inverse dynamics and BC. This shows how these methods688

can benefit from being applied on tasks that are contained in the pretraining distribution. Interestingly,689

even though the evaluation contexts are now in distribution, the forward dynamics representations do690

not see substantial improvements and are still outperformed by training from scratch on the more691

challenging datasets.692

17



Figure 11: The per dataset results of sweeping over finetuning size, corresponding to the left panel of
Figure 3. Error bars show standard error over seeds and contexts (as described in Table 1).

Figure 12: The per dataset results of sweeping over finetuning size when we include the evaluation
tasks in the pretraining data, corresponding to Figure 4. Error bars show standard error over seeds
and contexts (as described in Table 1).

693

18



Aggregating based on context observability. Finally, we present the full results for aggregations694

across whether the context is observable, corresponding to Figure 5 in the main text. Context is latent695

in point mass, pick and place, and kitchen, but inferrable in door and both metaworld splits. The696

results are shown in Figure 13. Note that these results are just grouped averages over the results697

presented in Figure 11.698

Figure 13: The full results of aggregating based on the observability of the context variable, corre-
sponding to Figure 5. Error bars show standard error over seeds and contexts (as described in Table
1) then averaged across datasets.

Compared to Figure 5, we now include the results from all algorithms and also from the environments699

where the context is inferrable. As reported in the main text, there is a clear gap between inverse700

dynamics and BC when the context is latent, likley due to confounding. Here we see that this gap701

largely disappears in the datasets where the context is inferrable and generally the disparities between702

methods shrink.703

B.3 Per dataset representation analysis704

Now we present the per dataset results of the various methods of representation analysis based on705

predicting different target quantities of interest: the action, the low dimensional state, and the other706

representations themselves.707

Figure 14: Full per dataset results of action prediction on the finetuning distribution.

Predicting action. First we present the per dataset results for train and validation action prediction708

on the finetuning datasets using the default pretraining and finetuning size. These results correspond709

19



to Figure 6 from the main text. Unlike in the main text, here we do not do any normalization of the710

losses, so the losses occur at different scales on each dataset depending on how difficult the prediction711

task is. Results are shown in Figure 14.712

Figure 15: Full per dataset results for state prediction on the pretraining distribution.

Predicting state. Next, we present the per dataset results for predicting the low dimensional state713

on the pretraining distribution from the various learned representations. These results correspond to714

Figure 7 in the main text. Again, unlike in the main text, results are not normalized, so they occur at715

different scales across environments. Results are shown in Figure 15.716

Note that as mentioned before, there is stochasticity added to the low dimensional states in the kitchen717

environment. This makes it difficult for any of the methods to substantially outperform the floor set718

by the noise level.719

Figure 16: Per dataset results for cross-representation prediction on the pretraining distribution. Color
shows the validation error of predicting target from source.

20



Predicting across representations. Finally, we present the per dataset results for predicting across720

the different learned representations on the pretraining distribution. These results correspond to721

Figure 9. Again, unlike in the averaged figure, this figure is not normalized, so the scales vary across722

datasets. We truncate the color scale at 1e-4 on the low end for easier visualization.723

B.4 Ablation of multistep dynamics724

As mentioned in the main text, some work argues for multistep dynamics models [Efroni et al., 2021,725

Lamb et al., 2022]. Note that this work focuses on settings with exogenous noise which are different726

from the simpler settings that we consider. To confirm that using multistep dynamics models does727

not help to learn better representations, we run an ablation of the number of steps included in the728

dynamics model on three environments: point mass, pick and place, and door and two algorithms:729

inverse dynamics and implicit forward dynamics. Results are shown in Figure 17. At a high level,730

we basically find little difference when ablating the number of steps, so we default to using one step731

models everywhere for simplicity.732

Note: for inverse dynamics models, we learn a k step model by predicting at given ot and ot+k. For733

forward dynamics, we learn a k step model by predicting ot+k given ot and at:t+k.734

Figure 17: Sweep over the number of timesteps included in the dynamics models.

C Detailed experimental methodology735

In this section we present a detailed account of out methodology. We also release our code that was736

used to perform the experiments for full transparency. We split up the description into Section C.1737

which describes the environments and dataset generation, Section C.2 which describes the details of738

the pretraining pipeline, and Section C.3 which describes the details of the finetuning and evaluation739

pipeline.740

C.1 Envionment and dataset details741

Software dependencies. All of our environments are based on the MuJoCo simulator [Todorov742

et al., 2012]. The point mass environment is derived from the DM control suite [Tunyasuvunakool743

et al., 2020]. The kitchen environment and dataset was introduced in Gupta et al. [2019]. The rest of744

the environments are taken from Metaworld [Yu et al., 2020]. We describe each environment in detail745

and summarize the descriptions in Table 2746

Point mass. The point mass environment consists of an actuated point mass on a 2d plane. In our747

version, the context c ∈ R2 determines the goal location. Then, the demonstration policy π∗
c is a PD748

controller that moves the point from the current position x to the goal position c. Because the context749

variable is continuous, we sample an independent context for each trajectory in the pretraining dataset750

from the uniform distribution over possible goal states. The context is fully latent and not observable751

in the observation. The low dimensional state is the 2d position and the high dimensional images are752

84x84x3.753

Pick and place. The pick and place task is taken from the metaworld suite. In our version, the754

context c ∈ R3 determines the goal location for the block. The demonstration policy π∗
c is a scripted755

21



policy from the metaworld repo. We remove the goal indicator from the image in this environment so756

that the context is fully latent and not observable from the observation. The low dimensional state757

is the 3d position of the gripper, 1d openness of the gripper, and 7d position and orientation of the758

block. The high dimensional observations are images of size 120x120x3.759

Door. The door environment is also taken from the metaworld suite. In our version, the context760

c ∈ [4] determines the index of the environment from door-close, door-open, door-unlock, and door-761

lock. For our default experiments we use door-close, door-open, and door-unlock as the pretraining762

contexts and door-lock as the eval context. For the ablation where we ensure that the eval context763

is in the pretraining distribution, we include door-lock in the pretraining data. The demonstration764

policy π∗
c is a scripted policy from the metaworld repo. Given the context, the initial position of the765

robot, initial position of the door, and goal position (which is visible in the observation image) are all766

randomized. Note, the context is inferrable since the initial position of the door and lock allow the767

learner to infer the context. The low dimensional state is the 3d position of the gripper, 1d openness768

of the gripper, 7d position and orientation of two objects in the scene, and 3d goal position. The high769

dimensional observations are images of size 120x120x3.770

Kitchen. The kitchen environment and dataset are taken from Gupta et al. [2019]. Each trajectory771

contains a sequence of four tasks in a simulated kitchen collected by a human demonstrator. In772

our version, the context c ∈ [24] is determined by the sequence of four tasks contained within773

the demonstration trajectory (of which there are 24 possibilities). We evaluate on three contexts:774

microwave-kettle-light switch-slide cabinet, bottom burner-top burner-slide cabinet-hinge cabinet,775

and kettle-bottom burner-top burner-light switch. In our default setup, we pretrain on the other 21776

contexts, and in the ablation of in distribution evaluation we pretrain on all 24 contexts. The context is777

fully latent and not observable from the initial state. The low dimensional state is a 9d description of778

the arm position and a 21d description of the position of objects in the kitchen. The high dimensional779

observations are images of size 120x120x3.780

Note: the kitchen environment is the only one that we consider that has added noise. The raw data781

from Gupta et al. [2019] contains gaussian noise added to the low dimensional states and actions, so782

this noise cannot be removed without re-generating the data. We render the images from the noisy783

states, so there is also noise present in the image observations. We also evaluate in an environment784

with the same noise added, so there is no gap between training and eval.785

Metaworld (ML45 and R3M). Finally, we consider two variants of the full metaworld suite.786

Here the context c ∈ [50] determines which metaworld task is used. We consider two different787

train-eval splits for our default environments. The ML45 split takes the eval tasks from the original788

metaworld ML45 task which are bin-picking, box-close, hand-insert, door-lock, and door-unlock.789

The R3M split takes the eval tasks that were chosen in the R3M paper [Nair et al., 2022]: assembly,790

bin-picking, button-press, drawer-open, and hammer. Given the context, the initial and goal positions791

are randomized. The goal position is visible in the observation. The low dimensional state is the 3d792

position of the gripper, 1d openness of the gripper, 7d position and orientation of (potentially) two793

objects in the scene, and 3d goal position. The high dimensional observations are images of size794

120x120x3.795

Table 2: A summary of the description of datasets above. Inferrable refers to whether the context is
observable. OOD refers to whether the evaluation context is out of distribution.

Dataset Policy Context Inferrable OOD Noise State dim

Point mass PD controller R2 No No No 2
Pick and place Script R3 No No No 11
Door Script [4] Yes Yes No 21
Kitchen Human [24] No Yes Yes 30
Metaworld-ML45 Script [50] Yes Yes No 21
Metaworld-R3M Script [50] Yes Yes No 21

22



C.2 Pretraining details796

Software dependencies. We implement all of our training in JAX [Bradbury et al., 2018]. We use797

flax for neural networks [Heek et al., 2023] and optax for optimization [Babuschkin et al., 2020]. Our798

code is loosely based on Kostrikov [2022].799

Architecture. All of our pretraining algorithms share exactly the same encoder architecture to800

ensure that we have a fair comparison. Since our tasks are relatively simple visually, and so as to801

allow for large scale experiments without too much compute, we use a relatively small convnet802

encoder. Specifically, we follow the architecture from Yarats et al. [2021] which consists of a 4803

layer convnet with 3x3 filters, number of channels of (32, 64, 128, 256), and strides of (2,2,1,1). We804

add a modification to include a spatial softmax activation [Finn et al., 2016], which we found to be805

important for the manipulation tasks we consider. This is followed by a linear layer to project into the806

embedding dimension of 64 and finally a layernorm and tanh activation to normalize the embedding.807

We use the gelu activation function throughout.808

Now we will birefly describe the architecture used for each pretraining algorithm, following their809

descriptions in Section 4.2:810

• Inverse dynamics: the inverse dynamics head is an MLP that takes in ϕ(o), ϕ(o′) and811

produces an estimated action. This MLP has two hidden layers of width 256 and dropout of812

0.1 during training.813

• BC: the BC policy head is an MLP with two hidden layers of width 256 and dropout of 0.1814

during training.815

• Implicit forward dynamics: the implicit forward dynamics model uses an action encoder816

ϕa(a) which outputs a 64 dimensional normalized action embedding which is concatenated817

to ϕ(o) to form ϕ(o, a). Then there are two projection heads f1, f2 that take in ϕ(o, a) and818

ϕ(o′) respectively and produce 64 dimensional embeddings that are normalized to have unit819

norm. All these networks (ϕa, f1, and f2) are MLPs with two hidden layers of width 256820

and the relevant input and output dimensions.821

• Explicit forward dynamics: the explicit forward dynamics model uses the same architecture822

to encode a with ϕa. Then, instead of projection heads, we require a convolutional decoder823

to produce an image. Following Yarats et al. [2021] we use an architecture that inverts the824

encoder, having a dense projection layer followed by channels of (256, 128, 64, 32) and825

strides of (1,1,2,2).826

• Contrastive: the contrastive network is the same as the implicit forward dynamics network827

except that there is no action input and o′ is replaced by an augmentation of o.828

Training hyperparameters. For pretraining, we split the datasets into two categories: easy (point829

mass, pick and place, and door) and hard (kitchen, metaworld-ml45, and meatworld-r3m). On the830

easy tasks we train for 100k gradient steps and on the hard tasks we train for 200k gradient steps.831

Batch size is 256 for all methods except explicit forward dynamics where (due to the added compute832

required for the decoder) we use batch size of 128 to even out computational requirements across833

methods. All methods are trained with the adamw optimizer with learning rate 1e-3, a cosine learning834

rate decay schedule, and default weight decay of 1e-4.835

Data augmentation. Following [Chen et al., 2022] and others, we note that cropping augmentations836

are the most important for training policies in simulated visual domains. As such, all of our pretraining837

algorithms (and the Pixels + Aug baseline) use random cropping augmentations, and we found this to838

be an important implementation detail. The one exception is explicit forward dynamics where we839

found it difficult to reconstruct images with augmentations, so we omit them for that algorithm.840

Compute resources. Pretraining was all done on an internal cluster using RTX8000 GPUs. We841

estimate that the final training run needed to produce the results in the paper took approximately 600842

GPU hours.843

C.3 Finetuning and evaluation details844

Training hyperparameters. The policy is always an MLP with two hidden layers of width 256.845

We use gelu activation and apply dropout with probability 0.1 during finetuning. We finetune on every846

23



dataset for 10k gradient steps with batch size 256. All policies are trained with the adamw optimizer847

with learning rate 1e-3, a cosine learning rate decay schedule, and default weight decay of 1e-4.848

As explained in Table 1 there are several seeds and evaluation contexts for each environment. For849

example, for the default results in Figure 1 we end up having a total of 80 different finetuning datasets850

per representation when sweeping across dataset, context, and seed so that Figure 1 is reporting851

aggregate results across 720 finetuning and evaluation runs.852

Evaluation hyperparameters. Each evaluation is run for 100 episodes in the environment to853

estimate the success of the policy (except for the kitchen environment where we run 50 episodes due854

to slow rendering of that environment).855

Compute resources. Finetuning and evaluation was all done on an internal cluster on CPU (since856

the finetuned policy network is small and environments run on CPU). We estimate that all the857

finetuning and evaluation in the final runs used to produce results for the paper took approximately858

2000 CPU hours.859

D Extended analysis discussion860

Here we provide a more detailed discussion of related theoretical work.861

One recent line of work focuses on learning representations for exploration [Efroni et al., 2021, Lamb862

et al., 2022] and offline RL [Islam et al., 2022] in the presence of exogenous noise. The exogenous863

noise setting means that the high dimensional observations contain information that is not effected by864

the actions; e.g., background dynamics that appear in image observations but do not affect the task.865

This line of work argues that inverse dynamics modeling is the best approach to ignore exogenous866

noise. Our results are complementary to this line of work in showing that even in settings without867

exogenous noise, inverse dynamics is still often preferable to alternatives for representation learning.868

Moreover, we consider a multitask imitation setting with latent contexts while they consider single869

task and reward-directed problems.870

Another line of work proves that learning a forward dynamics model is a well-motivated approach for871

multitask imitation [Nachum and Yang, 2021]. While that work does not directly compare to inverse872

dynamics pretraining, we find that inverse dynamics pretraining outperforms forward dynamics873

modeling in our settings. Moreover, while this paper shows that if our representation learns a good874

forward dynamics model that it works well for imitation, it does not discuss how efficiently such a875

representation can be learned. So, while both methods are well-motivated, we find inverse dynamics876

modeling to be more efficient than learning the forward dynamics.877

Finally, another line of work studies multitask representation learning for imitation by directly878

performing behavior cloning [Arora et al., 2019, Zhang et al., 2022]. These methods provide positive879

results for the approach, but require algorithms that have access to the latent context information880

which must be discrete so as to learn a separate policy for every pretraining context, thus avoiding881

confounding. This method requires extra information and is difficult to scale to very large numbers882

of contexts. In contrast, we find that inverse dynamics modeling is able to perform well without this883

extra information or added complexity of learning multiple models and naturally avoids confounding884

by the latent context information.885

24


	Introduction
	Related work
	Problem setup
	Experimental setup
	Environments and Datasets
	Algorithms

	Experiments
	Impact of dataset on representation learning performance
	Predictive power of the representations

	Analysis
	Discussion
	Extended related work
	Extended experimental results
	Cross-representation prediction
	Per dataset evaluation success results
	Per dataset representation analysis
	Ablation of multistep dynamics

	Detailed experimental methodology
	Envionment and dataset details
	Pretraining details
	Finetuning and evaluation details

	Extended analysis discussion

