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Abstract

Federated learning (FL) is a distributed learning approach that enables machine
learning models to be trained on decentralized data without compromising end
devices’ personal, potentially sensitive data. However, the distributed nature and
uninvestigated data intuitively introduce new security vulnerabilities, including
backdoor attacks. In this scenario, an adversary implants backdoor functionality
into the global model during training, which can be activated to cause the desired
misbehaviors for any input with a specific adversarial pattern. Despite having
remarkable success in triggering and distorting model behavior, prior backdoor
attacks in FL often hold impractical assumptions, limited imperceptibility, and
durability. Specifically, the adversary needs to control a sufficiently large fraction
of clients or know the data distribution of other honest clients. In many cases, the
trigger inserted is often visually apparent, and the backdoor effect is quickly diluted
if the adversary is removed from the training process. To address these limitations,
we propose a novel backdoor attack framework in FL, the Irreversible Backdoor
Attack (IBA), that jointly learns the optimal and visually stealthy trigger and then
gradually implants the backdoor into a global model. This approach allows the
adversary to execute a backdoor attack that can evade both human and machine
inspections. Additionally, we enhance the efficiency and durability of the proposed
attack by selectively poisoning the model’s parameters that are least likely updated
by the main task’s learning process and constraining the poisoned model update to
the vicinity of the global model. Finally, we evaluate the proposed attack framework
on several benchmark datasets, including MNIST, CIFAR-10, and Tiny ImageNet,
and achieved high success rates while simultaneously bypassing existing backdoor
defenses and achieving a more durable backdoor effect compared to other backdoor
attacks. Overall, IBA2 offers a more effective, stealthy, and durable approach to
backdoor attacks in FL.

1 Introduction

Federated Learning (FL) [13] is a novel distributed learning paradigm that enables multiple parties to
train machine learning models collaboratively without centralized data sharing. Specifically, each
participant trains a local model on their private data, and only the model updates are exchanged with
a central server for aggregation. However, FL also introduces new security and privacy challenges
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that need to be addressed to ensure the confidentiality and integrity of the learning process [33, 24],
such as model poisoning, membership inference, data leakage, and Sybil attacks [9, 20].

Backdoor attacks are a specific form of model poisoning in which an attacker inserts a backdoor trigger
during the training process that can later be exploited to manipulate the model’s behavior [4, 12, 17, 6].
FL is particularly vulnerable to backdoor attacks since each participant trains a local model on their
private data, and the central server aggregates the model updates without validating their integrity. An
attacker can inject poisoned data or backdoor triggers into the local models of a subset of participants.
When the models are aggregated, the backdoor trigger can be activated to compromise the model’s
behavior [2, 28, 32].

Artificial backdoor attacks are a standard method for backdoors in FL. In an artificial backdoor attack,
an apparent trigger, such as a specific pixel value, is injected into the local training data [25, 32].
Although meaningless in the data context, the apparent trigger causes the trained model to associate a
signal for the model to optimize during training. When trained on such data, the model will induce
misclassifications toward a target class when making predictions on inputs with the presence of the
trigger. Existing artificial backdoor attacks require the involvement of a portion of compromised
clients and need assistance from scaling-based methods to achieve high attack success rates [32, 24].
This makes these attacks vulnerable to mainstream backdoor defenses [30, 31, 15]. Furthermore,
most existing attacks are not durable (i.e., when the adversary is removed from the FL process, the
backdoor effect is gradually diluted [34]), especially when the size of compromised clients is small,
and they do not regularly participate in the FL training.

In this paper, we exploit the principle of adversarial attacks to craft a novel instance-specific
backdoor attack, called Irreversible Backdoor Attack (IBA), that only requires a small number of
compromised clients but achieves more robust attack performance and durability. IBA is a two-phase
attack scheme, including Trigger Generating and Backdoor Injection. During training rounds, the
former manipulates the attack model, which is a generative model, so the triggers generated by this
attack model can deceive the local model into misbehaving. After that, we formulate the Backdoor
Injection phase as a constrained optimization problem. Then, we propose a simple but effective recall
to keep the attack model updated regularly. This algorithm allows the adversary to achieve high
attack success rates even when a small number (i.e., 1) of clients are compromised. In addition, we
enhance the durability and effectiveness of the proposed attack by selectively poisoning the model’s
parameters that are least likely updated by the main task’s learning process and constraining the
poisoned model update to the vicinity of the global model, respectively. This strategy helps IBA
bypass mainstream defenses in FL and achieve extended backdoor durability.

Our contributions are summarized below:

• Proposal of a two-phase backdoor injection mechanism, IBA, in FL: The paper introduces
IBA, which combines the manipulation of the trigger generator and the poisoning of the
local model into a unified two-phase approach. IBA constrains the poisoned model update
to be within the vicinity of the global model to improve the practicality and effectiveness of
the attack.

• Proposal of selective parameter poisoning in the constrained optimization algorithm: The
paper enhances the durability of IBA by selectively poisoning the model’s parameters less
likely to be updated during the main task’s learning process.

• State-of-the-art attack performance and stealthiness: The paper demonstrates that IBA
achieves state-of-the-art attack performance and durability and exhibits high stealthiness
against existing defense mechanisms. This highlights the robustness and effectiveness of
IBA as a practical backdoor attack method.

2 Related Work

Backdoor Attacks in FL. Backdoor attacks in FL have been extensively studied, revealing vulnera-
bilities and proposing various attack strategies [16]. Backdoor attackers generally aim to incorporate
concealed backdoors into Deep Neural Networks (DNNs) during the training phase. This allows
the compromised DNNs to exhibit normal behavior when presented with benign samples. However,
their predictions will be deliberately and consistently altered when triggered by specific patterns
defined by the attacker. One of the most commonly employed methods for incorporating backdoor
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functionality during training is poisoning the training samples [2, 32]. Bagdasaryan et al. [2] also
proposed model replacement to implant backdoors into the joint model and demonstrated that even a
single-round attack with a small fraction of clients could achieve a 100% Attack Success Rate (ASR).
Xie et al.[32] investigated Distributed Backdoor Attacks (DBA), which decompose the global trigger
into non-overlapping local triggers. DBA exhibits higher ASR and increased robustness against FL
aggregation methods. Additionally, backdoor triggers in machine learning can be designed to be
imperceptible in the input space [10, 12, 17, 6] and in the latent space [5], or to possess sophisticated,
multi-target payloads [7]; the ground-truth labels of the poisoned samples can also align with the
intended target label [26, 22, 35]. These characteristics contribute to the stealthiness of backdoor
attacks. Recently, Neurotoxin [34] proposed to enhance backdoor durability by targeting specific
coordinates less likely to be updated by benign agents, partially poisoning the model by projecting
gradients onto a coordinate-wise constraint. This extends the backdoor’s impact and prevents catas-
trophic forgetting, strengthening the effectiveness of the attack. The recent work that is most aligned
with ours is PerDoor [1], which uses the Basic Iterative Method (BIM) to generate the trigger, which
relies on gradients of the model’s loss function concerning the input data to alter the original inputs
into backdoored inputs. However, this method fails to learn underlying patterns and distributions
from the training dataset and lacks a sharing and collaborating mechanism among multiple malicious
clients, which is very beneficial for the adversary in collaborative attacks.

Defense Mechanisms against Backdoor Attacks in FL. The mainstream backdoor-attack defenses
in FL aim to reduce the effect on the global model, as it has been shown that detecting backdoors
is challenging without breaking the privacy of participants [14]. For instance, Krum [3] aggregates
local models by choosing a single local model as the aggregated model with the smallest Euclidean
distance to a certain fraction of other models. Norm difference clipping (NDC)[25] examines the
norm-difference between the global model sent to and model updates shipped back from selected
clients, using a pre-specified threshold to clip model updates that exceed the norm difference. RFA[19]
aggregates local models by computing a weighted geometric median using the smoothed Weiszfeld’s
algorithm. Ozdayi et al. [18] proposed a defense mechanism RLR, that adjusts the learning rate of the
aggregation server in FL based on the sign information of agents’ updates by carefully considering
it per dimension and round. These defense mechanisms offer valuable insights and strategies for
countering backdoor attacks in FL settings. Another approach is identifying suspicious clients and
removing them from the aggregation process. FoolsGold [8] assumes that benign datasets from
different clients differ from each other and assigns low weights to models that are similar to many
other models, but it can be vulnerable to sophisticated adversaries submitting poisoned updates
without raising suspicion. FLAME [15] uses the HDBSCAN algorithm to detect malicious updates,
combines model filtering with poison elimination to detect and remove malicious updates, and is
robust against inference attacks.

3 Irreversible Backdoor Attack (IBA) in FL

FL Framework. The training process in the standard FL framework involves the following steps:

Step 0 (FL Initialization): The central server S initializes the weight of the global model w and sets
hyperparameters such as the number of FL rounds and local epochs.

Step 1 (Local Model Training and Update): Selected clients C1, C2, ..., CK receive the current global
weight w0 from S. Each client Ci updates its local model parameters wi using its local dataset Di.
After local training, the clients send their local weights to S for model aggregation.

Step 2 (Global Model Aggregation and Update): S aggregates the received local weights and
computes the aggregation result. The aggregated result is sent back to the clients for the next round
of training. S aggregates the received local model weights using the FedAvg [13] formula:

w =
1

|Ck|

K∑
k=1

|Ck| · wk

where |Ck| represents the number of data samples held by client Ck.

Attacker Threat. To address the weakness of existing works, i.e., the adversary A controls a number
of compromised clients, we focus on the scenario that A controls only one client k and it will
participate in the training for each f rounds, i.e., fixed-frequency attack [28].
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Figure 1: Irreversible Backdoor Attack Scheme. IBA includes two training phases: (1) Trigger Generating
Function and (2) Backdoor Injection. In the first phase, the trigger generation model Gξ is updated to generate
adversarial noise. This noise is combined with the original image x to create a backdoor sample to fool the local
model wt

i . In the second phase, the local model fwk is updated to perform indifferently on clean sample x but
distorts its prediction on the backdoor image Tξ(x) to the target class yT , then this poisoned model is sent to the
aggregator. Model poisoning technique is leveraged to enhance the stealthiness and durability of the attack.

Adversary Capability: We follow the same assumption used in the existing works on backdoor attacks
in FL [2, 15], where adversary A has total control over the malicious participant(s). However, A
has no control or access to other benign participants’ data or local updates. Also, we assume A
thoroughly understands the central server and any potentially deployed defenses but cannot alter the
server’s configuration parameters and algorithms.

Adversary Objectives: The goal of A is learning a trigger generator Gξ such that its outputted triggers
can activate the backdoor function to mislead the global model F(w) while ensuring the behaviors
on clean samples are unaffected. This trigger is expected to bypass human and machine inspections.
Moreover, A can bypass configured defenses in FL and prolong the backdoor effect even when A is
removed from the training process. The overall mechanism of our proposed backdoor attack IBA is
illustrated in Figure 1.

3.1 The Trigger Generating Function

In FL, when clients actively engage in a training round, they have the opportunity to observe and
influence the changes in the global model w. In particular, a client k receives the global model
wt−1 and updates it using their local data to produce a new local model, denoted as wk. After local
training, the learned surrogate model is aggregated to partially reflect the subsequent global model.
In light of this process, we propose an initial phase called the Trigger Generating. In this phase, the
trigger generation model Gξ is updated to generate adversarial noise. This noise is combined with the
original image x to create a backdoor sample. This sample remains imperceptibly different from the
original, but it effectively misleads the model Gξ into making incorrect classifications for the target
class. The rationale behind this approach is that manipulating Gξ based on this local model allows the
adversary A to optimally adapt the generative function, even in the face of round-by-round variations
in the global model. The transformation function is inspired by adversarial examples, in which we
model it as a perturbation on the input, as follows:

Tξ (x) = x+ Gξ(x), ||Gξ(x)||∞ ≤ ϵ, ∀x (1)
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The function Gξ takes an input x and generates adversarial noise on the same input space, guaranteeing
the backdoor attack’s stealthiness.

To achieve this goal, we utilize the local model as the surrogate model to update the attack model Gξ
using the following objective function:

ξ ← ξ − ηξ
∑
x∈D
Lξ (fwk

(Tξ(x)), yT ) , (2)

in which fw is the trained local model and yT is the targeted label. It’s worth noting that the local
model fw submitted to the server will be totally vanilla during this phase.

While considering various norms for bounding the generator noise in Equation 1, such as the L2

norm, it’s generally inadvisable for backdoor attacks. This infinity norm guarantees a widespread
distribution of the generated trigger across the input image (encompassing all pixels in the trigger); in
contrast, the L2 norm can result in localized artifacts within the image (with only select pixels forming
the trigger). Employing the L2 norm can make the backdoor attack more susceptible to detection by
trigger-synthesis defenses like Neural Cleanse [27]. Thus, the ∥.∥∞ norm is a preferred choice.. We
can design such generator function as an auto-encoder or the more complex U-Net architecture [21].
However, we observe no significant performance difference between a simple auto-encoder and
U-Net by training the generator function and the classifier with the proposed training algorithm.

In the proposed transformation function, parameter ϵ controls the visual stealthiness of the triggers.
For instance, even on the gray-scale MNIST dataset, if ϵ is less than 0.01, there is usually no
discernible difference between the clean and disturbed images. A greater value for ϵ, i.e., more
obvious triggers, simplifies generative model learning. On the other hand, a too-small ϵ may make
learning a generative model challenging since it is heavily dependent on the variance of the surrogate
model, which varies across FL training rounds. Therefore, during this phase, we keep the ϵ sufficiently
large, i.e., ϵ0, until we reach the expected attack success rate.

3.2 The Backdoor Injection Process

At the second phase aims to gradually insert the backdoor function into the global model by ma-
nipulating the poisoned local model. Our objective is to learn classifier (i.e., local model) fwk

that
concurrently performs indifferently on x in comparison to the classifier’s clean version but distorts its
prediction on the backdoor image Tξ(x) to the target class yT . The above task can be formulated as
the following objective function:

min
w

∑
x∈D

αLclean(fwk
(x), yx) + βLpoison(fwk

(Tξ(x)), yT ) (3)

The classification model fw in the above problem is trained based on local data and the optimal
function Gξ learned in the previous phase. When training the classifier, the parameters α and β
regulate a mixture of the strengths of the loss items from clean and poisoned data, i.e., Lclean and
Lpoison, respectively. If α is more significant than β, the classifier’s performance on clean data
rapidly converges to the optimal performance of the vanilla classifier, according to our experiments.
Otherwise, the classifier’s performance on the backdoor data quickly reaches the optimal value. To
compensate for the performance of the local model on both the main task and the backdoor task, we
assume α = 0.5 and β = 0.5 in the remaining part of the paper. As previously stated, the value of
ϵ must be assigned cautiously to overcome the unpredictability of the global model and assist the
local model in learning the generated triggers more effectively. To achieve this goal, we propose a
self-adjusting value for ϵ from the starting round of this phase, i.e., tI :

ϵt = max(ϵ̂, ϵ0 ∗ (1.0− λξ)
t−tI ), (4)

where the value of ϵ is gradually decayed until it reaches objective ϵ̂.

Attack Model Retraining. During this phase, we propose frequently updating the attack model Gξ to
keep it in sync with the state of the global model. The retraining frequency should be chosen (20, 50).

Partial Model Poisoning. To enhance the longevity and effectiveness of the attack, we propose to
partially poison the model based on selected poisoning space and poisoning dimension. In which
space-based poisoning helps the attack bypass the backdoor defenses because it constrains the
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poisoned model such that it does not go far from the vicinity of the benign model, while dimension-
based poisoning helps to reduce dilution effect from benign clients by shrinking the poisoned neurons
to infrequently updated neurons.

Poisoning-space based. Under this attack, the submitted local model is partially contaminated by
being constrained by the magnitude of its parameters. Specifically, the adversary applies projected
gradient descent on the losses for D∪D′, where D,D′ are benign and poisoned datasets, respectively.
In other words, it periodically projects the model parameter on the ball centered around the global
model of the previous iteration. This enables IBA to circumvent defenses based on norm and distance
investigation by preventing the resulting poisoned model from deviating substantially from the
original. Mathematically, this method guarantees that ||wk − w|| ≤ δ. Note that, this attack strategy
can be combined with model replacement [2], where the model parameter is scaled before being
sent to the server to cancel the contributions from the other honest clients [28]. The scaled model is
calculated by the following:

ŵk ≃ wk +
∑
i∈C\k

ni

nC\k
(wk − w∗). (5)

Poisoning-dimension based. Because the attacker cannot participate in every round of training,
directly submitting the poisoned model to the server is not effective [31]. To address it, we propose
leveraging historical gradient variation to select infrequently updated neurons, which are considered
poisoning dimensions for IBA. Then the adversary computes bottom−k% coordinates of the gradient
vector g, obtained by learning the main task on the clean data D. In particular,

βt ←
p− 1

p
∗ β +

1

p
∗ βt s.t., βt = bottomk(gt), (6)

in which p refers to the number of rounds up to round t that adversary A has been selected to
participating in FL training. After that, when finishing calculating gradient ĝ of local model fw
using Equation. 3, A projects gradient onto coordinate-wise constraint on the top−k% coordinates
of ĝ. As a result, only bottom−k% coordinates are poisoned, which can prolong the backdoor
effect since other benign clients rarely update these coordinates. Utilizing historical information aids
in determining round-by-round bottom−k% coordinates, and it becomes more valuable as rounds
advance and local client models converge on the global model.

4 Experiments

Our empirical study aims to highlight the effectiveness of the IBA attack against the state-of-the-
art (SOTA) FL defenses. We conduct our experiments on real-world datasets and a simulated
FL environment. We design three experiment sets: (1) IBA under different attack scenarios, (2)
IBA under different FL defenses, and (3) IBA’s imperceptibility and durability evaluation. Our
results demonstrate that the IBA can achieve significant efficiency, stealthiness, and durability. In
particular, IBA attains persistent performance with/without SOTA defenses and maintains higher
visual imperceptibility and longer durability compared with existing artificial backdoor attacks [32, 2].
Our implementation is publicly available to reproduce experimental results.

4.1 Experimental Setup

Dataset and Backdoor Tasks. The IBA method is evaluated on three classification datasets: MNIST,
CIFAR-10, and Tiny ImageNet. We simulate heterogeneous data partitioning by sampling pk ∼
DirK(0.5)/DirK(0.01) for MNIST, CIFAR-10/Tiny ImageNet and allocating a proportion of each
class to participating clients. We follow the established protocol outlined in previous works [28, 32],
employing stochastic gradient descent (SGD) optimization with E local epochs, a local learning rate
of lr, and a batch size of 32. The number of clients selected in each round is 10/200. The details of
the datasets and other parameter configurations are presented in the supplementary material3.

Trigger Generation and Backdoored Model Training. The generation of triggers is accomplished
through the utilization of the U-Net architecture [21], incorporating specific parameter configurations.

3The supplementary material is available at https://openreview.net/attachment?id=cemEOP8YoC&
name=supplementary_material
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Table 1: Effectiveness of IBA under different strategies in fixed-frequency attacks setting (f = 10)

Dataset Baseline (w/o attack) FedAvg FedProx FedNova

MA BA MA BA MA BA MA BA

CIFAR-10 84.71% 9.52% 84.49% 87.13% 84.62% 86.59% 83.35% 94.32%
MNIST 99.74% 9.25% 98.11% 99.07% 97.98% 99.97% 98.32% 92.74%
Tiny ImageNet 65.15% 0.56% 64.36% 94.19% 65.02% 92.52% 64.17% 93.11%

The constraint values are set to ϵ = 0.3, ϵ̂ = 0.05; while α = 0.5 and β = 0.5 define additional
parameter values. During trigger training, the threshold for backdoor accuracy (BA) is established as
localBA = 0.85. To facilitate the generation of updates, the learning rate for the update generation
model is determined as γA = 0.0001, and for the update classifier model, the learning rate is set
to η = 0.01. Additionally, the performance of IBA is evaluated in conjunction with prominent FL
strategies, namely FedAvg [13], FedProx [11], and FedNova [29]. This comprehensive evaluation
aims to assess the effectiveness of IBA in the context of different FL methodologies.

Participating patterns of attackers. In addition to the fixed-frequency case described in the threat
model, we further evaluate the efficiency of IBA under a more favorable condition known as fixed-pool
case (or random sampling), where there is a fixed pool of clients are controlled by A. The result for
the fixed-pool case is left in the appendix.

FL Backdoor Defenses. We examine six SOTA defense techniques designed to mitigate backdoor
attacks in FL: (i) NDC [25], (ii) KRUM and (iii) Multi-KRUM [3], (iv) RFA [19], (v) RLR [18],
(vi) FoolsGold [8]. By evaluating the performance of these defense techniques, we aim to provide
insights into their effectiveness in countering backdoor attacks in the FL setting.

4.2 Experimental Results

(1) IBA under different attack scenarios. Firstly, we study the performance of IBA under fixed-
frequency attacks with three datasets: MNIST, CIFAR-10, and Tiny ImageNet. The evaluation of
main accuracy (MA) and backdoor accuracy (BA) from Table 1 reveals interesting insights. In
the absence of the attack, the MAs of the baseline are 99.74%, 84.71%, and 65.15% for MNIST,
CIFAR-10, and Tiny ImageNet, respectively, indicating accurate classification on clean samples,
while the BA remains low at 0.56% to 9%, indicating no backdoor effect on global model. Under IBA
attack with FedAvg aggregator, the corresponding MAs are negligibly affected, while the BAs are
notably high, i.e., 99.07% for MNIST dataset. This indicates that IBA can stealthily insert a backdoor
function without negatively impacting the model’s behavior with benign samples.

In FL, many existing backdoor attacks target vulnerabilities within the FedAvg aggregator
since the contribution of each client is considered equally. Therefore, we examined IBA’s re-
silience across different aggregation methods, specifically FedAvg, FedProx, and FedNova, as
presented in Table 1. FedProx, with its proximal term, enhances model accuracy and is ben-
eficial in scenarios with non-IID data distributions. Besides, FedNova, designed to address
objective inconsistency in FL, ensures consistent and accurate model updates even with vary-
ing update frequencies from clients, making it suitable for scenarios with heterogeneous data.

25
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Figure 2: IBA under fixed-
pool attacks with different
compromising ratios.

The results demonstrate the consistent efficacy of IBA with three datasets
and three FL aggregators. In particular, IBA persistently obtained sig-
nificant BAs, with the lowest BA being 87.13% and the highest being
99.77%, demonstrating its efficacy and potential challenges in diverse FL
settings.

Fixed-pool attacks. We study the performance of IBA under fixed-pool
attack setting (percentage of attackers in the overall clients varies from
5% to 20%). The results are shown in Figure 2, demonstrating that a
higher compromising ratio leads to a better backdoor accuracy or more
substantial backdoor effect.

(2) IBA under different FL defenses. We study the effectiveness of stand-
alone IBA and hybrid attacks (i.e., IBA and partial model poisoning)
against the aforementioned defense techniques. As demonstrated in
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Figure 3: Effectiveness of stand-alone IBA against mainstream defenses for FL on CIFAR-10 dataset.
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Figure 4: The improved stealthiness of IBA when combined with partial model poisoning attacks
under various defenses for the CIFAR-10 dataset. The attack is conducted from round 0 with fixed-
frequency attacks of 10.

Figure 3, the stand-alone IBA can circumvent NCA, Multi-Krum, and FoolsGold and attain a high
backdoor accuracy (i.e., 95.11%, 79.5% and 76.46% for CIFAR-10 dataset, respectively). Krum is the
most challenging defense since it replaces the global model with only the most representative local
model (i.e., the one with the shortest distance to its neighbors) in each round. As a result, the global
model experiences substantial fluctuation over rounds and does not fully capture the knowledge of all
participants, i.e., a significant decline in primary task accuracy in Figure 3. This mechanism hampers

Table 2: Robustness of IBA and the combination of IBA and partial model poisoning under main-
stream backdoor defenses in FL

Dataset Defense IBA (Standalone) IBA + PGD IBA + PGD + MR

MA BA MA BA MA BA

CIFAR-10

RFA 81.97% 98.03% 80.71% 96.7% 81.25% 98.17%
NCA 84.64% 95.11% 84.77% 98.73% 84.21% 99.12%
Krum 81.65% 27.07% 81.59% 50.33% 81.44% 65.98%

Multi-krum 82.40% 79.5% 83.78% 97.16% 83.25% 95.02%
RLR 83.91% 63.94% 82.59% 65.14% 82.85% 47.07%

FoolsGold 84.90% 76.46% 85.02% 76.78% 82.90% 84.36%
No-defense 84.28% 85.63% 84.35% 83.80% 83.81% 97.79%

MNIST

RFA 98.04% 100.0% 98.89% 99.64% 98.04% 100.0%
NCA 98.66% 100.0% 98.97% 99.69% 98.62% 100.0%
Krum 97.60% 14.13% 97.82% 87.48% 97.44% 17.29%

Multi-krum 97.98% 81.27% 98.97% 98.82% 99.01% 80.18%
RLR 90.91% 12.60% 87.48% 18.74% 90.03% 29.97%

FoolsGold 98.87% 80.08% 99.10% 96.43% 99.05% 99.83%
No-defense 99.98% 98.03% 98.81% 99.73% 98.84% 99.97%
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(a) IBA, MNIST (b) DBA, MNIST (c) IBA, CIFAR-10 (d) DBA, CIFAR-10

Figure 5: Performance under GradCam heat maps of two attack schemes: IBA and Patched-BA with
MNIST and CIFAR-10 datasets. The first two rows in each image represent the benign samples, and
the last two rows represent the backdoored ones.

the attack model’s learning process since it is closely associated with global model variance. Figure 4
illustrates the improved performance of IBA against challenging defenses when combined with partial
model poisoning, i.e., PGD-based. As observed, the IBA + PGD (w./wo.) model replacement can
help improve the backdoor accuracy from 10% to 20%. Significantly, the improved IBA can achieve
almost 100% of backdoor accuracy for Multi-Krum defense. The more detailed result can be seen
in Table 2. The proposed IBA can bypass most existing defenses and achieve significant backdoor
accuracy. In most cases, the combination of IBA + PGD/ IBA + PGD + MR helps improve the
backdoor accuracy from 10% to 20%. While Krum and RLR defend the proposed attack to some
extent, i.e., we observe the drop in the BAs of IBA, we argue that Krum and RLR tend to reject
previously unseen information from both adversary and honest clients, which results in low MAs
(a drop of 3–10%). Specifically, the proposed IBA causes RLR to compensate for the backdoor
defense’s effectiveness with the main accuracy drop in the MNIST dataset by unnecessarily reversing
the learning rate of specific dimensions, i.e., the BAs are around 90% (less than other defenses 10%).
Therefore, these two defenses raise great concern about its practicability under this scenario.

(a) MNIST (b) CIFAR-10

Figure 6: Durability comparison of IBA and DBA with MNIST and CIFAR-
10 datasets. The adversary is removed from rounds 200 and 400 training,
respectively.
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Figure 7: Anomaly Indexes
of IBA, DBA backdoor attacks
in FL.

Table 3: The decay rate of DBA and IBA after removing the backdoor attack (i.e., from the stopping
round). The column (%) indicates the current backdoor effect as a percentage of its peak value at the
stopping round.

Dataset Method Stopping round 50 rounds later 100 rounds later 150 rounds later 200 rounds later 250 rounds later

BA (%) BA % BA (%) BA (%) BA (%) BA (%)

MNIST IBA 99.94 100.00 99.84 99.90 99.52 99.57 99.46 99.52 99.18 99.24 99.08 99.14
DBA 99.70 100.00 98.44 98.74 91.44 91.71 79.88 80.12 65.04 65.24 38.64 38.76

CIFAR-10 IBA 87.51 100.00 86.22 98.53 85.32 97.50 84.89 97.00 83.19 95.06 83.16 95.03
DBA 69.63 100.00 65.55 94.14 63.59 91.32 55.39 79.55 55.07 71.91 42.55 61.11

(3) IBA’s imperceptibility and durability evaluation. Besides being imperceptible to the backdoor
defenses, IBA is expected to be visually imperceptible and deliver prolonged backdoor durability. The
visual imperceptibility of IBA is illustrated in Figure 5. We evaluate the behavior of backdoor-injected
models against GradCam [23], a widely known visualization tool and helpful in understanding the
neural network’s behavior. Figure 5 shows that the visualization heat maps created by IBA attacks
are nearly identical across the clean and backdoor images. From Figures 5, we can observe that the
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backdoored images have negligible deviations from the Grad-CAM behaviors on the clean images
for both black-and-white and colored images. On the other hand, backdoored images using patched
triggers generate a considerable difference in visualization heat maps (DBA [32]). Because IBA is
based on input perturbation, the image is formed by adding very little perturbation to the clean image;
consequently, the difference in the latent space where the heat maps are generated is likewise minimal.
Aside from that, the patch backdoor (such as the pattern in the upper-left corner) is apparent, resulting
in a significant distinction between the backdoor and clean versions. We also evaluate the backdoor
generated by IBA and another attack scheme in FL, i.e., DBA with Neural Cleanse [27], a widely-
used backdoor model mitigation method based on the pattern optimization approach. Neural Cleanse
assumes that the backdoor trigger is patch-based, which makes it suitable for evaluating the proposed
method. For each image label, Neural Cleanse identifies if there is a patch pattern that produces a
misclassification result for that target label. If any class label yields a significantly smaller pattern,
Neural Cleanse considers it a sign of a potential backdoor. Neural Cleanse quantifies such deviations
from the optimal patch of each class label by using the Anomaly Index metric. If the Anomaly Index
is less than a threshold of 2 for a class, Neural Cleanse considers that there is a backdoor with this
class as the target label. Since IBA does not generate the patch-based trigger pattern, it can efficiently
bypass this defense by having Anomaly Index much lower than DBA (Figure 7), which indicates the
superior stealthiness of backdoor attacks with adversarial triggers compared to the patch-based.

As previously stated, strong attacks should be successful even if the attacker only participates a few
times. As a result, we construct a scenario to assess the endurance of IBA compared to a chosen
baseline: DBA. We employ the same configuration as the original work DBA but limit each of the
four malicious clients’ participation frequency to 10 without utilizing any scaling strategy. Regarding
IBA, we apply the dimension-based model poisoning mentioned above and use one malicious client
with the same frequency. As observed in Figure. 6a, after A is removed from the training (i.e., at
round 200), the BA of DBA reduces gradually while the accuracy drop of IBA is almost negligible.
As demonstrated in Figure 6b and Table 3, IBA delivers superior backdoor efficiency and durability
within the same attacking duration. After round 400, the BA of DBA drops quickly compared to
IBA. We can see the most significant difference towards the end of the comparison duration, i.e.,
at round 700, the BAs of IBA and DBA are ∼ 85% and ∼ 45%, respectively. After 250 rounds of
elimination, the BA of DBA retains 38.76% of its peak value, but the comparable value of IBA is
99.14%. Furthermore, while the BA can preserve more than 60% of its peak value with the CIFAR-10
dataset, the highest accuracy it can attain is significantly lower than IBA, i.e., less than 20%, which is
consistent with the prior conclusion of the original when the scaling factor is 1. In conclusion, IBA
can achieve better durability and imperceptibility than SOTA attacks.

5 Conclusion

In conclusion, we have presented the IBA, a novel backdoor attack framework for FL that overcomes
the limitations of existing approaches. Our framework combines a learnable trigger-generating func-
tion with a gradual implantation process, resulting in an attack that can evade detection and achieve
high success rates. The selective poisoning of model parameters and the constraint on poisoned
updates enhance the attack’s efficiency and durability. Our work demonstrates promising results and
suggests several directions for future research. Robust defense mechanisms against FL backdoor
attacks must be developed, considering the unique challenges of the distributed and decentralized
learning process. Generalizing our approach to diverse FL settings, such as heterogeneous or non-
i.i.d. data distributions, would provide a comprehensive understanding of the attack’s effectiveness.
Exploring alternative triggers and their impact on stealthiness and success rates could yield valuable
insights. Evaluating the framework on larger-scale FL systems and real-world scenarios will assess
its scalability and practicality. Advancing adversarial defense strategies, including proactive detection
and mitigation techniques, will contribute to more secure and trustworthy FL systems. These future
research directions will contribute to strengthening the security of FL against backdoor attacks.
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