
Appendix

The appendix is organized as follows. In Appendix A, we provide an introduction to some fundamental
probability tools that are utilized in our proofs. Specifically, we discuss sub-Gaussian and sub-
exponential distributions in Appendix A.1, and present Bernstein-type inequalities in Appendix A.2.
In Appendix B, we summarize the properties of the multi-class logistic regression model that are
needed in our proofs. Specifically, in Appendix B.2, we present the generalized linear model
formulation of the multi-class logistic model and in Appendix B.1, we discuss the gradient and
Hessian of the loss function. In Appendix B.3, we introduce pseudo self-concordant functions. In
Appendix C, we present a thorough proof of one of our fundamental results, specifically Theorem 3.
In Appendix D, we delve into the properties of some essential constants utilized in constructing the
results of Theorem 3. In Appendix E, we provide the excess risk bounds for the case of p(x) having
bounded support. The proofs of the main results of Section 4 are provided in Appendix F. Finally, in
Appendix G, we provide more details of our numerical experiments.

A Probability tools

A.1 Sub-Gaussian and sub-exponential distributions

Definition 11 (Sub-Gaussian random variable). A random variable x is sub-Gaussian if there exists
c1 > 0 such that P(|x| > t)  exp(1� t

2
/c

2
1) for all t � 0.

Lemma 12 ( Proposition [22] in [23]). Let x be a sub-Gaussian random variable. Then the following
properties are equivalent, with parameters ci > 0:

(1) P(|x| > t)  exp(1� t
2
/c

2
1), for all t � 0.

(2) (E |x|
p)1/p  c2

p
p, for all p � 1.

(3) E exp(x2
/c

2
3)  2.

Definition 13 (Sub-Gaussian norm). Let x a sub-Gaussian random variable. The sub-Gaussian norm
of x, denoted kxk 2 , is defined as follows:

kxk 2 , inf{t > 0 : E exp(x2
/t

2)  2}.

Lemma 14 (Sub-exponential random variable). Let x be a random variable. We say that x is
sub-exponential if there exists ci > 0 for which one of following properties is true. Furthermore,
these properties are equivalent.

(1) P(|x| > t)  exp(1� t/c1) for all t � 0.

(2) (E |x|
p)1/p  c2p for all p � 1.

(3) E exp(|x|/c3)  2.
Definition 15 (Sub-exponential norm). The sub-exponential norm of x, denoted kxk 1 , is defined as
follows:

kxk 1 , inf{t > 0 : E exp(|x|/t)  2}.

Lemma 16 (Sub-exponential is sub-Gaussian squared, Lemma 2.7.6 in [23]). A random variable x

is sub-Gaussian if and only if x
2 is sub-exponential. Moreover,

kx
2
k 1 = kxk2 2

.

Definition 17 (Sub-Gaussian random vectors). A random vector Z 2 Rd is sub-Gaussian if hZ, ui is
sub-Gaussian for all u 2 Rd, with kuk2 = 1. The sub-Gaussian norm of Z is defined as

kZk 2 , sup
u2Sd�1

khZ, uik 2 .

Lemma 18. Let Z1, · · · , Zn be independent centered sub-Gaussian random vectors, then
k
Pn

i=1 Zik
2
 2

. Pn
i=1 kZik

2
 2

.
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Lemma 19 (Affine transformation of sub-Gaussian vectors, Lemma A.5 in [24]). Let X 2 Rd such
that E[X] = 0, ⌃ := E[XX

>] and k⌃�1/2
Xk 2  K. Then for any A 2 Rd⇥d and b 2 Rd,

bX = AX + b satisfies
kb⌃�1/2 bXk 2 . K, where b⌃ = E[ bX bX>].

The following lemma gives a high probability bound for the quadratic form kxk2
⌃�1 of a non-centered

sub-Gaussian vector x, where ⌃ is the covariance of x. The result can be viewed as a corollary of
Theorem 2.1 in [25].
Lemma 20 (Tail inequalities for quadratic form of sub-Gaussian vectors). Let J 2 Rd⇥d be a
symmetric, positive semi-definite matrix. For any � 2 (0, 1) the following is true:

(1) If x 2 Rd is a zero-centered sub-Gaussian random vector, i.e. E[x] = 0 and there exits K > 0
such that kxk 2  K. Then we have with probability at least 1� �,

kxk
2
J
. K

2
�
Trace(J) +

p

dkJk log(e/�)
�
. (25)

(2) If x 2 Rd is a sub-Gaussian random vector with k⌃�1/2
xk 2  K, where ⌃ = E[xx

T ]. Then
with probability at least 1� �,

kxk
2
⌃�1 . K

2
�
d +
p

d log(e/�)
�
. (26)

Proof.

(1) By Theorem 2.1 in [25], we have for all t > 0,

P
h
kxk

2
J

> K
2
�
Trace(J) + 2

p
Trace(J2)t + 2kJkt

�i
 exp(�t). (27)

Let t = log(1/�) in Eq. (27), since
p
Trace(J2) = kJkF 

p
dkJk, we can get Eq. (25).

(2) Note that we can not directly derive Eq. (26) from Eq. (25) since x is not zero-mean. But
we can shift x to an isotropic sub-Gaussian random vector. Indeed, let µ = E[x] and ⌃0 =

E[(x� µ)(x� µ)>]. Then ⌃�1/2
0 (x� µ) is centered isotropic random vector. By Lemma 19,

affine transformation of sub-Gaussian random vectors are also sub-Gaussian, i.e. ⌃�1/2
0 (x� µ)

is also sub-Gaussian and
k⌃

�1/2
0 (x� µ)k 2 . K. (28)

Denote J = ⌃1/2
0 ⌃

�1
⌃

1/2
0 . By Sherman–Morrison formula, we have

⌃
�1 = (⌃0 + µµ

>)�1 = ⌃�1
0 �

⌃
�1
0 µµ

>
⌃

�1
0

1 + µ>⌃�1
0 µ

, (29)

and thus
kJk1  1, (30)

kJk2 =

����Id �
(⌃�1/2

0 µ)(⌃�1/2
0 µ)>

1 + k⌃�1/2
0 µk22

����
2

 kIdk2 +
k⌃

�1/2
0 µk

2
2

1 + k⌃�1/2
0 µk22

 2, (31)

Trace(J) = h⌃�1
,⌃0i = Trace(Id)�

µ
>
⌃

�1
0 µ

1 + µ>⌃�1
0 µ

 d. (32)

By Eq. (25), we have with probability at least 1� �,
kx� µk

2
⌃�1 = k⌃�1/2

0 (x� µ)k2
J
. Trace(J) + K

2(kJk2
p
log(1/�) + kJk1 log(1/�))

. K
2
⇣
d +
p

d log(e/�)
⌘
. (33)

In addition, by Eq. (29),

kµk
2
⌃�1 = µ

>
⌃

�1
µ = µ

>
⌃

�1
0 µ�

(µ>
⌃

�1
0 µ)2

1 + µ>⌃�1
0 µ

=
µ
>
⌃

�1
0 µ

1 + µ>⌃�1
0 µ

 1. (34)

Combining Eqs. (33) and (34), we obtain

kxk
2
⌃�1  (kx� µk⌃�1 + kµk⌃�1)2 . K

2
⇣
d +
p

d log(e/�)
⌘
. (35)
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A.2 Bernstein-type inequalities

We give Bernstein-type inequalities for vectors and matrices in the following lemmas. These properties
are used in the proof of excess risk bounds in the bounded domain case (Appendix E).
Lemma 21 (Vector Bernstein inequality; see Theorem 18 in [26]). Let x1, x2, · · · , xn be independent
random vectors such that

E[xi] = 0, kxik2  µ and E[kxik
2
2]  ⌫, 8i 2 [n].

Let S = 1
n

Pn
i=1 xi. Then if 0 < ✏ < ⌫/µ,

P[kSk2 � ✏]  exp
�
�

n✏
2

8⌫
+

1

4

�
. (36)

Lemma 22 (Matrix Bernstein inequality; see Theorem 19 in [26]). Let X1,X2, · · · ,Xn be indepen-
dent random Hermitian matrices with common dimension d⇥ d such that

E[Xi] = 0, kXik2  µ and E[kXik
2
2]  ⌫, 8i 2 [n].

Let S = 1
n

Pn
i=1 Xi. Then if 0 < ✏ < 2⌫/µ,

P[kSk2 � ✏]  2d · exp
�
�

n✏
2

4⌫

�
. (37)

B Multi-class logistic regression and pseudo self-concordance

In Appendix B.1, we present some properties of the gradient and Hessian of `(x,y)(✓) with respect to
✓. In Appendix B.2, we show that the multi-class logistic regression model is a Generalized Linear
Model. Then we present some properties related with the pseudo-concordance in Appendix B.3.

Notation. Given y 2 [c] and ⌘ 2 Rc�1, we define the loss function `(y, ⌘) by

`(y, ⌘) ,

8
<

:
� log

� exp(⌘y)
1+

P
l2[c�1] exp(⌘l)

�
, y 2 [c� 1]

� log
�

1
1+

P
l2[c�1] exp(⌘l)

�
, y = c.

(38)

where ⌘y is the y-th component of ⌘. Note that given x 2 Rd, y 2 [c] and ✓ 2 R(c�1)⇥d, if we let
⌘ = ✓x, then

`(y, ⌘) = `(x,y)(✓),

where `(x,y) , � log p(y|x, ✓) (Eq. (1)).

To differentiate the derivatives with respect to ⌘ and ✓, we use `
0(y, ⌘) to represent the gradient of the

loss with respect to ⌘, andr`(x,y)(✓) to represent the gradient of the loss with respect to ✓. Similar
notations hold for higher order derivatives.

B.1 Properties of multi-class logistic regression

We present the expressions of gradient and Hessian of the loss function `(x,y)(✓) with respect to ✓ in
the following proposition.

Proposition 23. Given a sample point x 2 Rd, its label y 2 [c], and parameter ✓ 2 R(c�1)⇥d in
the multiclass logistic regression model. We consider the negative log-likelihood loss `(x,y)(✓) =

� log p(y|x, ✓), where p(y|x, ✓) is defined in Eq. (1). Let ec , c� 1, ed , d(c� 1), ✓i be the i-th row
of ✓. Define vector h(x, ✓) 2 Rec by

hi(x, ✓) = p(y = i|x, ✓) =
exp(x>

✓i)

1 +
P

s2[ec] exp(x
>✓s)

, 8i 2 [ec].

Then the gradient and Hessian of `(x,y)(✓) w.r.t ✓ can be expressed in the following ways:
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(1) Gradient r`x,y(✓) 2 Rec⇥d is given by

r`(x,y)(✓) =

2

4
�1(y, x, ✓)x>

· · ·

�ec(y, x, ✓)x>

3

5 , (39)

where �i(x, y, ✓) = �1{y=i} + hi(x, ✓).

(2) Hessian r2
`(x,y)(✓) 2 Red⇥ed is given by

r
2
`(x,y)(✓) =

⇣
diag(h(x, ✓))� h(x, ✓)h(x, ✓)>

⌘
⌦ (xx

>)

=

2

64
↵11(x, ✓)xx

>
· · · ↵1ec(x, ✓)xx

>

...
. . .

...
↵ec1(x, ✓)xx

>
· · · ↵ecec(x, ✓)xx

>

3

75 , (40)

where ↵i,j(✓) = 1{i=j}hi(x, ✓)� hi(x, ✓)hj(x, ✓).

Lemma 24. Given a point x 2 Rd, Ey⇠p(y|x,✓⇤)[r`(x,y)(✓⇤)] = 0. In addition, let p(x) be a point
distribution and Lp(✓) be the expected loss at ✓, then

rLp(✓⇤) = 0. (41)

Proof. Since r`(x,y)(✓) = �r✓ log p(y|x, ✓), we have

Ey⇠p(y|x,✓⇤)[r`(x,y)(✓⇤)] = �
X

k2[c]

p(y = k|x, ✓⇤)r✓ log p(y = k|x, ✓⇤)

= �
X

k2[c]

p(y = k|x, ✓⇤)
r✓p(y = k|x, ✓⇤)

p(y = k|x, ✓⇤)

= �r✓
⇣ X

k2[c]

p(y = k|x, ✓⇤)
⌘
= �r✓1 = 0. (42)

Thus,

r✓

�
Ey⇠p(y|x,✓⇤)[`(x,y)(✓)]

���
✓=✓⇤

= Ey⇠p(y|x,✓⇤)[r`(x,y)(✓⇤)] = 0. (43)

Since rLp(✓) = r✓
R

p(x)Ey⇠p(y|x,✓⇤)[`(x, y)(✓)]dx =
R

p(x)r✓ Ey⇠p(y|x,✓⇤)[`(x, y)(✓)]dx, by
Eq. (43), we have

rLp(✓⇤) =

Z
p(x)r✓

�
Ey⇠p(y|x,✓⇤)[`(x,y)(✓)]

���
✓=✓⇤

dx = 0. (44)

The following lemma is a basic property for Fisher information matrix.
Lemma 25. The Fisher information matrix for a point x at parameter ✓ is defined by
Ey⇠p(y|x,✓⇤)[r`(x,y)(✓)(r`(x,y)(✓))

>], then

Ey⇠p(y|x,✓⇤)[r`(x,y)(✓⇤)(r`(x,y)(✓⇤))
>] = Ey⇠p(y|x,✓⇤)[r

2
`(x,y)(✓⇤)]. (45)

Proof.

r
2
`(x,y)(✓⇤) = �

r
2
p(y|x, ✓⇤))

p(y|x, ✓⇤)
+
rp(y|x, ✓⇤)rp(y|x, ✓⇤)>

p(y|x, ✓⇤)2

= �
r

2
p(y|x, ✓⇤))

p(y|x, ✓⇤)
+r`(x,y)(✓⇤)(r`(x,y)(✓⇤))

>

Thus,

Ey⇠p(y|x,✓⇤)[r`(x,y)(✓⇤)(r`(x,y)(✓⇤))
>]
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=Ey⇠p(y|x,✓⇤)[r
2
`(x,y)(✓⇤)] + Ey⇠p(y|x,✓⇤)


r

2
p(y|x, ✓⇤))

p(y|x, ✓⇤)

�

=Ey⇠p(y|x,✓⇤)[r
2
`(x,y)(✓⇤)] +

Z
p(y|x, ✓⇤)

r
2
p(y|x, ✓⇤))

p(y|x, ✓⇤)
d�

=Ey⇠p(y|x,✓⇤)[r
2
`(x,y)(✓⇤)] +r

2

Z
p(y|x, ✓⇤)d� = Ey⇠p(y|x,✓⇤)[r

2
`(x,y)(✓⇤)].

B.2 Multi-class logistic regression as a Generalized Linear Model (GLM)

Definition 26 (Exponential family model). Suppose µ is a base measure on space Y and there exists
a sufficient statistic T : Y ! Rc. Then the exponential family associated with the function T (y) and
measure µ is defined as the set of distributions with densities p(y|⌘) w.r.t µ, where

p(y|⌘) = exp(h⌘, T (y)i �A(⌘)) (46)

and a(⌘) is the cumulant function defined by

A(⌘) , log

Z

Y
exp(h⌘, T (y)i)dµ(y) (47)

whenever a is finite.
Definition 27 (Generalized linear model with canonical response function). Generalized linear model
with canonical response function is a model assuming that:

1. the input x 2 Rd enter into the model via a linear combination ⌘ = ✓x,

2. the output y is characterized by an exponential family distribution (Definition 26).

In the following lemma, we remark that the multi-class logistic regression model is a generalized
linear model. The proof is trivial.
Lemma 28. Multi-class logistic regression is a generalized linear model with canonical response
function with ⌘, A(⌘) and T (y) defined as the followings:

⌘ = [log(h1/hc), log(h2/hc), · · · , log(hc�1/hc)]
> (48)

A(⌘) = � loghc (49)

T (1) = [1, 0, · · · , 0]>, · · · , T (c� 1) = [0, · · · , 1]>, T (c) = [0, · · · , 0]>, (50)

where hi = p(y = i|x, ✓) (p(y|x, ✓) is defined in Eq. (1)).

B.3 Pseudo self-concordance

Lemma 29 (pseudo self-concordance of multi-class logistic regression model). `(y, ⌘) is pseudo
self-concordant, i.e.

8h 2 Rc�1
, |`

000(y, ⌘)[h, h, h]|  2khk1`
00(y, ⌘)[h, h]. (51)

Proof. By Lemma 28 and Equation (46),

`(y, ⌘) = � log p(y, ⌘) = �h⌘, T (y)i+ A(⌘).

From theory of the exponential family distributions, we have

A
0(⌘) = E⌘[T (y)], A

00(⌘) = E⌘[(T (y)� E⌘[T (y)])⌦2], A
000(⌘) = E⌘[(T (y)� E⌘[T (y)])⌦3].

(52)

where we denote the pth order tensor for a vector x as

x
⌦p = x⌦ x⌦ · · ·⌦ x| {z }

p times

.
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Note that `
(p)(y, ⌘) = A

(p)(⌘) whenever p � 2, then we have
��`000(y, ⌘)[h, h, h]

�� =
��E

⇥
(T (y)� E⌘[T (y)])⌦3[h, h, h]

⇤��

=
��E

⇥
(T (y)� E⌘[T (y)])⌦2[h, h]

⌦
T (y)� E⌘[T (y)], h

↵⇤��

 sup
y2Y

��⌦T (y)� E⌘[T (y)], h
↵��`00(y, ⌘)[h, h]

(a)
 2 sup

y2Y
kT (y)k1khk1`

00(y, ⌘)[h, h]

(b)
 2khk1`

00(y, ⌘)[h, h], (53)

where (a) follows by Cauchy-Schwarz inequality, triangle inequality, and kE⌘[T (y)]k2 
E⌘kT (y)k2  supy2Y kT (y)k2, (b) follows by the fact that kT (y)k2 = 1 for y 6= c and
kT (y)k2 = 0 for y = c (Lemma 28).

The previous lemma states the pseudo self-concordance of `(y, ⌘) w.r.t ⌘. The following proposition
states that the empirical loss function is pseudo self-concordant w.r.t ✓, which is a corollary of the
previous lemma via chain rule.

Proposition 30. For multi-class regression model, we fix ✓0, ✓1 2 R(c�1)⇥d. Let ✓t = ✓0+t(✓1�✓0),
we define �n(t) by

�n(t) ==
1

n

nX

i=1

`(xi,yi)(✓t). (54)

Then we have

|�
000
n (t)|  2�00

n(t)max
i2[n]
k(✓1 � ✓0)xik1 (55)

Proof. Denote � = ✓1 � ✓0, then ✓t = ✓0 = t�. Following chain rule and the smoothness of `, we
obtain that the derivatives of �(t) and �n(t) are given by

�
(p)
n (t) =

1

n

nX

i=1

`
(p)(y, ✓tx)[�x, · · · ,�x| {z }

p times

].

Applying Lemma 29, we can get

|�
000(t)| 

1

n

nX

i=1

��`000(yi, ✓txi)[�xi,�xi,�xi]
��


1

n

nX

i=1

2k�xk1`
00(yi, ✓txi)[�xi,�xi]

 2�00
n(t)max

i2[n]
k(✓1 � ✓0)xik1.

The following proposition forms the foundation of our proof of Theorem 3. It gives lower and upper
bounds to perturbations of pseudo self-concordant function.
Proposition 31 (Proposition 1 in [27]). Let F : ⇥! R be a convex C

3-mapping. Fix ✓0, ✓1 2 ⇥,
let � = ✓1 � ✓0 and ✓t = ✓0 + t� for t 2 R. Define function �F (t) = F (✓t). Assume that
H0 , r2

F (✓0) � 0 , |�
000
F (t)|  Rk�k2 · �

00
F (t) for some R � 0. Denote S = Rk�k2, we have

e
�S + S � 1

S2
k�k2

H0
 F (✓1)� F (✓0)�

�
rF (✓0)

�>
� 

e
S
� S � 1

S2
k�k2

H0
, (56)

e
�S

H0 � r
2
F (✓1) � e

S
H0. (57)
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C Proof of Theorem 3

We first give the detailed version of Theorem 3 in Appendix C.1. In Appendix C.2, we present a
sketch of the proof for the excess risk bounds in Eq. (7). In Appendix C.3, we provide and prove a
tail bound for a certain type of random matrices, which is useful in our full proof. Finally, we give
the full proof of Theorem 3 (Theorem 32) in Appendix C.4.

Notation. For the ease of notation, we define the empirical risk over finite samples Qn(✓) and its
Hessian Hn(✓) by

✓n 2 argmin
✓

Qn(✓) ,
1

n

X

i2[n]

`(xi,yi)(✓), (xi, yi)
i.i.d.
⇠ ⇡q(x, y), (58)

Hn(✓) , r2
Qn(✓). (59)

In addition, let ~A 2 Rmn be the vectorization of a matrix A 2 Rm⇥n by stacking all rows together,
i.e. ~A = (A>

1 , · · · ,A
>
m)> where Ai is i-th row of A.

C.1 Detailed version of Theorem 3

Theorem 32. Suppose Assumption 1 holds for both p(x) and q(x).Let �, ⇢ and ⌫ > 0 be constants
such that Hp(✓⇤) � �Hq , Ic�1 ⌦Vp � ⇢Hp(✓⇤) and Vq � ⌫Vp hold. Whenever

n & max
n

K
2
2,q(r)ed log(ed/�), �⇢⌫K

2
0,qK

2
1,qK

2
2,q(r)

⇣
ed +

p
ed log(e/�)

⌘o
, (60)

where ed , d(c� 1), we have with probability at least 1� �,

Lq(✓n)� Lq(✓⇤) . K
2
1,q

ed +
p
ed log(e/�)

n
, (61)

e
�↵ + ↵� 1

↵2

Hq
�1

· Hp

n
. E[Lp(✓n)]� Lp . e

↵
� ↵� 1

↵2

Hq
�1

· Hp

n
. (62)

Here Hp = Hp(✓⇤) and Hq = Hq(✓⇤); and E is the expectation over {yi ⇠ p(yi|xi, ✓⇤)}ni=1.
Furthermore,

↵ = O

⇣
p

�⇢K0,pK1,qK2,p(r)

q�ed +
p
ed log(e/�)

�
/n

⌘
. (63)

C.2 Proof sketch of Eq.(7)

Here we present the basics of step 6 in the full proof of Theorem 3 (see Appendix C.4). Some details
of this step are established in the steps 1-5 of the full proof.

Let ✓0 = ✓⇤, ✓1 = ✓n and � , ✓n � ✓⇤. Define �p(t) = Lp(✓⇤ + t�), we first prove that there exits
↵ > 0 s.t. |�

000
p (t)|  ↵�

00
p(t). Thus the premise of Proposition 31 is satisfied. By Eq. (56) and the

fact that rLp(✓⇤) = 0 (Lemma 24), we have

e
�↵ + ↵� 1

↵2
k~�k2

Hp
 Lp(✓n)� Lp(✓0) 

e
↵
� ↵� 1

↵2
k~�k2

Hp
(64)

By Taylor theorem, there exists ✓̃ between ✓n and ✓⇤ such that

~rQn(✓⇤) = ~rQn(✓n) +Hn(✓̃)~� = Hn(✓̃)~�, (65)

where the last equality follows by ~rQn(✓n) = 0 because the empirical loss Qn is convex and ✓n is
its solution. We can prove that if the sample bound Eq. (6) holds,

Hn(✓̃) ⇡ Hq, (66)

where “⇡” means that there exits a1, a2 > 0 such that a1Hq � Hn(✓̃) � a2Hq . Thus we have

k~�k2
Hp

= ~�>
Hp

~� ⇡ ~rQn(✓⇤)
>
⇣
Hq

�1
HpHq

�1
⌘

~rQn(✓⇤)
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=
⌦
Hq

�1
HpHq

�1
, ~rQn(✓⇤)~rQn(✓⇤)

>↵
. (67)

Then we prove that

E{yi⇠p(yi|xi,✓⇤)}n
i=1

⇥
~rQn(✓⇤)~rQn(✓⇤)

>⇤ = 1

n
Hn(✓⇤) ⇡

1

n
Hq. (68)

Substitute this into Eq. (67), we have

E{yi⇠p(yi|xi,✓⇤)}n
i=1

[k~�k2
Hp

] ⇡
1

n
hHq

�1
,Hpi. (69)

By taking expectation over Eq. (64) and using Eq. (69), we can get Eq. (7).

C.3 Supporting tools

In the following proposition, we present and prove a tail bound for the average sum of independent
random matrices {Ai}i2[n] satisfying E[Ai] = I and Eq. (70).

Proposition 33. Let A1, · · · ,An be ed⇥ ed be independent symmetric matrices such that E[Ai] = Ied.
There is constant K > 0 such that for any i 2 [n],

sup
u2S ed�1

ku
>
Aiuk 1  K, (70)

where S
ed�1 is the unit sphere in Red, k · k 1 is the norm for sub-exponential random variable

(Definition 15). Define matrix Sn = 1
n

Pn
i=1 Ai. Then for every t � 0, with probability at least

1� 2 exp(�cKt
2) we have

kSn � Iedk  max{a, a
2
}, where a =

CK

p
ed + t

p
n

. (71)

Here cK , Ck are constants that depend on K.

Proof. The proof follows a covering argument. We consider 1/4�net N of the unit sphere S
ed�1.

By Lemma 5.2 in [22], |N |  9
ed. Since Sn is symmetric, we can use Lemma 5.4 in [22] to bound

matrix operator norm using points in 1/4�net N :

kSn � Iedk  2max
x2N

���
D�

Sn � Ied
�
x, x

E��� = 2max
x2N

���x>
Snx� 1

���, (72)

where the last equality follows by kxk2 = 1 on N . Thus it is sufficient to prove with the given
probability,

2max
x2N

���x>
Snx� 1

���  max{a, a
2
} , ✏. (73)

Pick an arbitrary x 2 N , then

nx
>
Snx =

nX

i=1

x
>
Aix ,

nX

i=1

Z
2
i , (74)

where we define random variable Zi , x
>
Aix. We have the following properties for Zi:

E[Zi] = E[x>
Aix] = hx

>
,E[Ai]xi = 1,

kZik 1 = kx>
Aixk 1

(a)
 K,

kZi � 1k 1 = kZi � E[Zi]k 1

(b)
 2kZik 1  2K,

where inequality (a) follows by Eq. (70), inequality (b) follows by Jensen’s inequality.

Thus Z1� 1, Z2� 1, · · · , Zn� 1 are independent centered sub-exponential random variables. Using
Corollary 5.17 in [22], we can get

P
���x>

Snx� 1
�� � ✏

2

�
= P

��� 1
n

nX

i=1

(Zi � 1)
�� � ✏

2

�
 2 exp[�

c1

K2
min(✏, ✏2)n]
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 2 exp[�
c1

K2
a
2
n]  2 exp[�

c1

K2
(C2

K
ed + t

2)]. (75)

Take the union bound of all x 2 N , let

cK =
c1

K2
, CK = K

p
log 9/c1, (76)

we have

P
✓
max
x2N

��x>
Snx� 1

�� � ✏

2

◆
 9n · 2 exp[�

c1

K2
(C2

K
ed + t

2)]

 2 exp
⇥
p log 9� d1 log 9�

c1t
2

K2

⇤

= 2 exp(�
c1t

2

K2
) = 2 exp(�cKt

2). (77)

As we noted in Eq. (73), this completes the proof.

Corollary 34. Under the premise of Proposition 33, whenever

n & K
2(ed + log(1/�)), (78)

with probability at least 1� �,

1/2Ied � Sn � 3/2Ied. (79)

Proof. Let t = 2K
p

log(1/�)/c1, by Eq. (76) we have

2 exp(�cKt
2)  2 exp

�
�

c1

K4

K
2 log(1/2�)

c1

�
= �. (80)

Let n = 32
c1

K
2(ed + log(1/�), then

a =
CK

p
ed + t

p
n

=

2p
c1

K
2(
p
ed +

p
log(1/�))

4
p
2p

c1
K2

q
ed + log(1/�)


1

2
, (81)

and thus max{a, a
2
}  1/2. Therefore, with probability at least 1� �, we have

kSn � Iedk 
1

2
, (82)

and thus 1/2Ied � Sn � 3/2Ied.

C.4 Proof of Theorem 3 (Theorem 32)

We present the full proof of Theorem 3 as the following. Some of the techniques used in the proof
are inspired by [24].

Proof. By the definitions of �, ⇢ and ⌫ in Theorem 3, we have the following basic inequalities. Given
vectors v 2 Rd and u 2 Red, we have the following norm relations:

kvkVq 
p

⌫kvkVp , kvk
V

�1
p

p

⌫kvk
V

�1
q

, (83)

kukHp 
p

�kukHq , (84)
kukeVp


p

⇢kukHp , (85)

where eVp , Ic�1 ⌦Vp.

step 1. Let Vn =
p

nHp
�1/2~rQn(✓⇤), then Vn is a centered, isotropic sub-Gaussian random vector.

Indeed, since rQn(✓⇤) =
1
n

P
i2[n]

~r`zi(✓⇤), we have

E
{zi⇠⇡q}n

i=1

[Vn] =
1
p

n
Hq

�1/2
X

i2[n]

Ezi⇠⇡q [~r`zi(✓⇤)] = 0

21



E
{zi⇠⇡q}n

i=1

[VnV
>
n ] = Hq

�1/2

✓
1

n

X

i2[n]

Ezi⇠P [~r`zi(✓⇤)~r`zi(✓⇤)
>]

◆
Hq

�1/2

= Hq
�1/2

HqHq
�1/2 = Ied. (86)

By Lemma 18,

kVnk
2
 2

.
X

i2[n]

k
1
p

n
Hq

�1/2~r`zi(✓⇤)k
2
 2

= K
2
1,q. (87)

Now we apply the upper bound for quadratic form of sub-Gaussian random vector derived in Eq. (25)
from Lemma 20, we can get

k~rQn(✓⇤)k
2
Hq

�1 =
1

n
kVnk

2
2 .

K
2
1,q

⇣
ed +

p
ed log(e/�)

⌘

n
. (88)

step 2. W.l.o.g we assume that Assumption 1-(3) holds with r = O(1) and denote K2,q , K2,q(r)
K2,p , K2,p(r) for ease of discussion. Now we show that the Hessian Hq(✓) is a good approximation
to Hq for any ✓ 2 Bq,br(✓⇤) = {✓ : k✓�✓⇤kVq,1  br}, where br = 1/c for some constant c depending
on K0,q and K2,q .

Fix ✓0 = ✓⇤ and pick arbitrary ✓1 2 ⇥, let ✓t = ✓0 + t�, where � , ✓1 � ✓0. Define function

�q(t) , Lq(✓t) = Ez⇠⇡q [`z(✓t)] (89)

Our goal is to show that �q(t) is pseudo self-concordant, i.e. we intend to get some constant C > 0
s.t. |�

000
q (t)|  C�

00
q (t). First we observe that

�
00
q (t) = E(x,y)⇠⇡q

[`00(y, ✓tx)[�x,�x]] = E(x,y)⇠⇡q
[~�>�

r
2
`(x,y)(✓tx)

�
~�]

= ~�> E(x,y)⇠⇡q
[r2

`(x,y)(✓tx)]~� = k~�k2
Hq(✓t)

. (90)

Note that `(y, ⌘) is the loss function defined in Eq. (38) and `
00(y, ⌘) is the Hessian w.r.t ⌘.

On the other hand, by Lemma 29 we have

|�
000
q (t)|  E(x,y)⇠⇡q

⇥��`000(y, ✓tx)[�x,�x,�x]
��⇤

 2E(x,y)⇠⇡q

⇥
`
00(y, ✓tx)[�x,�x]k�xk1

⇤

 2
q
E(x,y)⇠⇡q

⇥�
`00(y, ✓tx)[�x,�x]

�2⇤qE(x,y)⇠⇡q

⇥
k�xk21

⇤
, (91)

where the last inequality follows by Cauchy-Schwartz inequality.

Now we bound both of the square root terms in Eq. (91). For the first square root term, let b� ,
Hq(✓t)1/2~�/k~�kHq(✓t), then ~� = k~�kHq(✓t)Hq(✓t)�1/2 b� and kb�k2 = 1. We have

`
00(y, ✓tx)[�x,�x] = ~�>

r
2
`(x,y)(✓tx)~�

= k~�k2
Hq(✓t)

b�>
Hq(✓t)

�1/2
r

2
`(x,y)(✓tx)Hq(✓t)

�1/2 b�. (92)

We claim that `
00(y, ✓tx)[�x,�x] is a sub-exponential random variable. Indeed,

����`
00(y, ✓tx)[�x,�x]

����
 1

(a)
 k~�k2

Hq(✓t)
kb�>

Hq(✓t)
�1/2
r

2
`(x,y)(✓tx)Hq(✓t)

�1/2 b�k 1

(b)
 k~�k2

Hq(✓t)
sup

u2S ed�1

ku
>
Hq(✓t)

�1/2
r

2
`(x,y)(✓tx)Hq(✓t)

�1/2
uk 1

(c)
 k~�k2

Hq(✓t)
K2,q, (93)

where (a) follows by Eq. (92), (b) follows by the fact that kb�k2 = 1, (c) follows by Assumption 1-(3).
By the property of sub-exponential random variable in Lemma 14-(1), we can obtain that

E(x,y)⇠⇡q

⇥�
`
00(y, ✓tx)[�x,�x]

�2⇤ . K
2
2,qk

~�k4
Hq(✓t)

Eq. (90)
= K

2
2,q�

00
q (t)

2
. (94)
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On the other hand, let �>
i be the ith row of � 2 R(c�1)⇥d. For x ⇠ q(x), define random variable

⇠(x) , k�xk1, we claim that ⇠(x) is sub-Gaussian. Indeed,

⇠(x) = k�xk1 = max
i2[c�1]

|hx,�ii| = max
i2[c�1]

|hV
�1/2
q x,V

1/2
q �ii|

= max
i2[c�1]

kV
1/2
q �ik2

����

⌧
V

�1/2
q x,

V
1/2
q �i

kV
1/2
q �ik2

�����


���

��
Vq,1

max
i2[c�1]

����

⌧
V

�1/2
q x,

V
1/2
q �i

k�ikVq

����� ,
���

��
Vq,1

����

⌧
V

�1/2
q x,

V
1/2
q �i(x)

k�i(x)kVq

����� (95)

where we define i(x) for each x as the index such that the maximum is attained. Now we have

k⇠(x)k 2 
���

��
Vq,1

����

⌧
V

�1/2
q x,

V
1/2
q �i(x)

k�i(x)kVq

�����
 2


���

��
Vq,1

sup
u2Sd�1

khV
�1/2
p x, uik 2 =

���
��
Vq,1

kV
�1/2
q xk 2


���

��
Vq,1

K0,q, (96)

where the last inequality follows by Assumption 1-(1). Applying Lemma 12-(2), we have

E(x,y)⇠⇡q
[k�xk

2
1] = Ex⇠q[|⇠(x)|

2] .
���

��2
Vq,1

K
2
0,q. (97)

Now substitute Eqs. (94) and (97) into Eq. (91), we can prove that �p(t) is pseudo self-concordant:

|�
000
q (t)|  Ck�kVq,1K0,qK2,qk

~�k2
Hq(✓t)

= Ck�kVq,1K0,qK2,q�
00
q (t), (98)

where the last equality follows by Eq. (90). We consider the ball Bq,br(✓⇤) = {✓ 2 ⇥ : k✓ �
✓⇤kVq,1  br}, where br is defined by

br , 1

C log
p
2 · K0,qK2,q

. (99)

Thus for any ✓ 2 Bq,br(✓⇤), by Eq. (98)

|�
000
q (t)|  log

p
2 · �

00
q (t). (100)

Now we satisfy the premise of Proposition 31 by setting S = log
p
2. With Eq. (57) we can conclude

that for any ✓ 2 Bq,br(✓⇤),

1/
p
2Hq � Hq(✓) �

p
2Hq. (101)

step 3. In this step, we consider an ✏-net N✏ on ball Bq,br(✓⇤) under metric k · kVq,1(br is defined in
Eq. (99)). We intend to approximate empirical Hessian Hn(✓) using Hn(✓0), where ✓

0
2 N✏.

Since {xi}
n
i=1 are drawn independently from q(x), by (26) in Lemma 20 it holds with probability at

least 1� � that

kxik
2
V

�1
q

. K
2
0,q

⇣
d +
p

d log(e/�))
⌘
. (102)

By union bound and Eq. (83), with probability at least 1� � we have

max
i2[n]
kxik

2
V

�1
q

. K
2
0,q

⇣
d +
p

d log(en/�))
⌘
, R

2
. (103)

Let N✏ be an ✏-net on ball Bq,br(✓⇤) with ✏ defined as

✏ , log
p
2

2 · R
. (104)
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Denote P : Bq,br(✓⇤)! N✏ as the projection of ✓ 2 Bq,br(✓⇤) onto the ✏�net, i.e. P(✓) is the closest
point in N✏ to ✓ under norm k · kVq,1:

P(✓) 2 arg min
✓02N✏

k✓ � ✓
0
kVq,1. (105)

We remark that the choice of P(✓) does not effect our results. Now pick arbitrary ✓1 2 ⇥r(✓⇤),
✓0 = P(✓), ✓t = ✓0 + t(✓1 � ✓0), and �n(t) = Qn(✓t). Using Proposition 30, we have

�
000
n (t)|  2�00

n(t)max
i2[n]
k(✓1 � ✓0)xik1

 2�00
n(t)k✓1 � ✓0kVq,1 max

i2[n]
kxikV�1

q

 2R✏�
00
n(t) = log

p
2 · �

00
n(t), (106)

where the last inequality follows by Eqs. (103) and (105). Thus �n(t) is pseudo self-concordant, and
we can apply Proposition 31 with S = log

p
2. By Eq. (57) we have

1/
p
2Hn(P(✓)) � Hn(✓) �

p
2Hn(P(✓)), 8✓ 2 Bq,br(✓⇤). (107)

step 4. In this step we approximate empirical Hessian Hn(✓) using Hq(✓), for all ✓ 2 N✏.
Note that Hn(✓) = r

2
Qn(✓) = 1

n

Pn
i=1r

2
`zi(✓xi). For an arbitrary ✓ 2 N✏, let Ai =

Hq(✓)�1/2
r

2
`zi(✓)Hq(✓)�1/2, then E[Ai] = Ied and

1

n

X

i2[n]

Ai = Hq(✓)
�1/2

Hn(✓)Hq(✓)
�1/2

. (108)

By Assumption 1-(3), {Ai}
n
i=1 satisfy the premise of Proposition 33. Applying Corollary 34 and

then using union bound over all ✓ 2 N✏, we obtain that whenever

n & K
2
2,q(ed + log(|N✏|/�), (109)

where |N✏| is the number of points contained in N✏ , then with probability at least 1� �,

1/2Ied �
1

n

X

i2[n]

Ai � 3/2Ied, 8✓ 2 N✏. (110)

By Eq. (108), Eq. (110) is equivalent to

1/2Hq(✓) � Hn(✓) � 3/2Hq(✓), 8✓ 2 N✏. (111)

Now we intend to derive a bound for n to satisfy Eq. (109). First we need to estimate an upper bound
for |N✏|. By Proposition 4.2.12 in [23], we have |N✏|  ( 3br✏ )

ed. Thus a sufficient condition for (109)
is

n & K
2
2,p

✓
ed + ed log

�ebr
✏�

�◆
. (112)

Recall that br = O

✓
1/(K0,qK2,q)

◆
, ✏ = O

✓
1/
⇣
K0,q

q
d +
p

d log(en/�)
⌘◆

, then

log
�er

✏�

�
= log

✓
eK0,q

q
d +
p

d log(en/�)

K0,qK2,q

◆
. (113)

Thus it is sufficient to let

n & K
2
2,q

ed log(ed/�), (114)

which is the first bound at Eq. (6).

step 5. Next we prove that if n is larger than the second bound of Eq. (6), then ✓n 2 Bq,br(✓⇤) and
Eq. (61) holds. First, combining Eqs. (101), (107) and (111), we have with probability at least 1� �,

1

4
Hq � Hn(✓) � 3Hq, 8✓ 2 Bq,br(✓⇤). (115)
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Let ✓0 = ✓⇤, pick arbitrary ✓1 2 Bq,br(✓⇤), ✓t = ✓0 + t�, where � , ✓1 � ✓0. By Eq. (90), we
already have �

00
q (0) = k~�kHq . On the other hand, we can show that

�
00
n(t) =

1

n

nX

i=1

`
00(yi, ✓xi)[�x,�x] = k~�kHn(✓t), (116)

Thus Eq. (115) reduces to

1

4
�
00
q (0)  �

00
n(t)  3�00

q (0), t 2 [0, 1]. (117)

Integrating this twice, we have 1
4�

00
q (0)t

2
 �n(t) � �n(0) � �

0
n(0)t  3�00

q (0)t
2 . Let t = 1, we

can get with probability at least 1� �,

1

4
k~�k2

Hq
 Qn(✓)�Qn(✓⇤)� h~rQn(✓⇤), ~�i  3k~�k2

Hq
. (118)

Using Cauchy-Schwartz inequality, we can obtain

Qn(✓)�Qn(✓⇤) �
1

4
k~�k2

Hq
+ h~rQn(✓⇤), ~�i

�
1

4
k~�kHq

⇣
k~�kHq � 4k~rQn(✓⇤)kHq

�1

⌘
. (119)

Our goal is to prove that given n lower bounded by the second bound in Eq. (6), ✓n 2 Bq,br. Since
Qn(✓) is a convex function and ⇥r(✓⇤) is a convex set, it suffices to show that the right hand side of
Eq. (119) is non-negative for all ✓ 2 @Bq,br, i.e. k�kVq,1 = br. First note that

k~�kHq

Eq. (84)
�

1
p

�
k~�kHp

Eq. (85)
�

r
1

�⇢⌫
k~�keVp

�

r
1

�⇢
k�kVp

Eq. (83)
�

r
1

�⇢⌫
k�kVq =

r
1

�⇢⌫
· br � 1

C
p

�⇢⌫K0,qK2,q
. (120)

Since we have proved that k~rQn(✓⇤)kHp
�1 .

s
K2

1,q

⇣
ed+
p

ed log(e/�)

⌘

n in step 1, connecting this
with Eqs. (120) and (119), we have ✓n 2 Bq,br(✓⇤) if

n & �⇢⌫K
2
0,qK

2
1,qK

2
2,q

⇣
ed +

p
ed log(e/�)

⌘
. (121)

Now let ✓1 = ✓n, then ~� = vec(✓n � ✓⇤). Since Qn(✓n)  Qn(✓⇤), from Eq. (119) we can get

kvec(✓n � ✓⇤)k
2
Hq
 k~rQn(✓⇤)kHq

�1 . (122)

We have proved that 1/
p
2Hq � Hq(✓) �

p
2Hq in Eq. (101), it can be reduced to

1
p
2
�
00
q (0)  �

00
q (t) 

p
2�00

q (0), 0  t  1. (123)

Integrating twice on [0, 1], we have 1
2
p
2
�
00
q (0)t

2
 �q(t) � �q(0) 

p
2
2 �

00
q (0)t

2. Since ✓n 2

Bq,br(✓⇤), we can assume ✓1 = ✓n. Let t = 1, we can get

Lq(✓n)� Lq(✓⇤)
Eq. (89)
= �q(✓n)� �q(✓⇤)

Eq. (90)


p
2

2
kvec(✓n � ✓⇤)k

2
Hq

Eq. (122)


p
2

2
k~rQn(✓⇤)kHq

�1

Eq. (88)
.

vuutK2
1,q

⇣
ed +

p
ed log(e/�)

⌘

n
. (124)

step 6. Now we bound the excess risk with respect to p(x), i.e. Lp(✓n)� Lp(✓⇤).
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Our goal is to use the Taylor expansion property in Proposition 31. First we have to show that Lp(✓)
is pseudo self-concordant. Let ✓0 = ✓⇤, ✓1 = ✓n, and ✓t = ✓0 + t�, where � = ✓1 � ✓0. Define

�p(t) , Lp(✓t) = Ez⇠⇡p [`z(✓t)]. (125)

We can follow the argument from step 2 and obtain that

|�
000
p (t)|  Ck�kVp,1K0,pK2,p�

00
p(t). (126)

Note that

k�kVp,1  k
~�keVp

Eq. (85)


p
⇢k~�kHp

Eq. (84)


p
�⇢k~�kHq

Eq. (124)
. p

�⇢K1,q

s
ed +

p
ed log(e/�)

n
. (127)

Substitute this into Eq. (126), we have |�
000
p (t)|  ↵�

00
p(t), where

↵ = O

✓
p

�⇢K0,pK1,qK2,p

s
ed +

p
ed log(e/�)

n

◆
. (128)

Now we can use Proposition 31 and let S = ↵. Note that rLp(✓⇤) = 0, by Eq. (56) we have

e
�↵ + ↵� 1

↵2
k~�k2

Hp
 Lp(✓n)� Lp(✓⇤) 

e
↵
� ↵� 1

↵2
k~�k2

Hp
. (129)

By Taylor theorem, there exits e✓ 2 Bq,br(✓⇤) between ✓⇤ and ✓n such that

~rQn(✓⇤) = ~rQn(✓n) +Hn(e✓)~�. (130)

Since ~rQn(✓n) = 0, we have

~rQn(✓⇤) = Hn(e✓)~�. (131)

By Eq. (115), we have 1
4Hq � Hn(e✓) � 3Hq . Define Mq,n , Hq

1/2(Hn(e✓))�1
Hq

1/2, then

1

3
Ied �Mq,n � 4Ied. (132)

For the lower bound in Eq. (129), we have with probability at least 1� �,

Lp(✓n)� Lp(✓⇤)�
e
�↵ + ↵� 1

↵2
~�>

Hp
~�

=
e
�↵ + ↵� 1

↵2

�
~�>

Hn(e✓)
��
Hn(e✓)�1

HpHn(e✓)�1
��
Hn(e✓)~�

�

Eq. (131)
=

e
�↵ + ↵� 1

↵2
~rQn(✓⇤)

>
Hq

�1/2
Mq,n

�
Hq

�1/2
HpHq

�1/2�
Mq,nHq

�1/2~rQn(✓⇤)

Eq. (136)
�

e
�↵ + ↵� 1

9↵2

⌦
Hq

�1
HpHq

�1
, ~rQn(✓⇤)~rQn(✓⇤)

>↵
. (133)

Similarly, we can derive the upper bound:

Lp(✓n)� Lp(✓⇤) 
e
↵
� ↵� 1

↵2
~�>

Hp
~�

=
e
↵
� ↵� 1

↵2
~rQn(✓⇤)

>
Hq

�1/2
Mq,n

�
Hq

�1/2
HpHq

�1/2�
Mq,nHq

�1/2~rQn(✓⇤)

 16
e
↵
� ↵� 1

↵2

⌦
Hq

�1
HpHq

�1
, ~rQn(✓⇤)~rQn(✓⇤)

>↵
. (134)

Given {xi}
n
i=1

i.i.d
⇠ q(x), we have

E{yi⇠p(yi|xi,✓⇤)}n
i=1

[~rQn(✓⇤)~rQn(✓⇤)
>]
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=
1

n2
E{yi⇠p(yi|xi,✓⇤)}n

i=1

h nX

i=1

~r`zi(✓⇤)
nX

j=1

(~r`zi(✓⇤))
>
i

=
1

n2

nX

i=1

Eyi⇠p(yi|xi,✓⇤)[
~r`zi(✓⇤)~r`zi(✓⇤)

>] +
2

n2

X

i 6=j

Eyi⇠p(yi|xi,✓⇤)
yj⇠p(yj |xj ,✓⇤)

[~r`zi(✓⇤)~r`zj (✓⇤)
>]

(a)
=

1

n2

nX

i=1

Eyi⇠p(yi|xi,✓⇤)[
~r`zi(✓⇤)~r`zi(✓⇤)

>]
(b)
=

1

n2

nX

i=1

Eyi⇠p(yi|xi,✓⇤)[r
2
`zi(✓⇤)]

=
1

n
Hn(✓⇤) (135)

where (a) follows by the independence between yi and yj and the fact that
Eyi⇠p(yi|xi,✓⇤)[r`(xi,yi)(✓⇤)] = 0 from Lemma 24, (b) follows by Lemma 25.

Similar to the argument in step 4, using Corollary 34 we have with probability at least 1� �,

1

2
Hq � Hn(✓⇤) �

3

2
Hq, (136)

where the requirement for n is already satisfied due to the second bound for n in Eq. (6). Since
Hq

�1/2
HpHq

�1/2 is symmetric positive definite, we can assume it has eigen-decomposition
Hq

�1/2
HpHq

�1/2 =
Ped

i=1 �iviv
>
i . Then

⌦
Hq

�1
HpHq

�1
,Hn(✓⇤)

↵
=
⌦
Hq

�1/2
HpHq

�1/2
,Hq

�1/2
Hn(✓⇤)Hq

�1/2↵

=
d0X

i=1

�iv
>
i

�
Hp

�1/2
Hn(✓⇤)Hp

�1/2�
vi. (137)

Using Eq. (136), we can get upper bound and lower bound of Eq. (137):

1

2
hHq

�1
,Hpi 

⌦
Hq

�1
HpHq

�1
,Hn(✓⇤)

↵


3

2
hHq

�1
,Hpi. (138)

Combining Eqs. (138) and (135), we have

hHq
�1

,Hpi

2n
 E{yi⇠p(yi|xi,✓⇤)}n

i=1

D
Hq

�1
HpHq

�1
, ~rQn(✓⇤)~rQn(✓⇤)

>
E

=
1

n

D
Hq

�1
HpHq

�1
,Hn(✓⇤)

E


3hHq
�1

,Hpi

2n
. (139)

Combining this with the upper bound Eq. (134) and lower bound Eq. (133), we can obtain with
probability at least 1� �,

e
�↵ + ↵� 1

18↵2

hHq
�1

,Hpi

n
 E[Lp(✓n)]� Lp(✓⇤) 

24(e↵ � ↵� 1)

↵2

hHq
�1

,Hpi

n
. (140)

where the expectation E is w.r.t {yi ⇠ p(yi|xi, ✓⇤)}ni=1.

D Parameter discussion

In this section, we discuss the constants introduced in Lemma 2. In Proposition 35, we derive
upper bounds for K1,p and K2,p(r) when Assumption 1 holds. If we additionally assume that
p(x) ⇠ N (0,Vp), then we can derive bounds for ⇢, K0,p, K1,p and K2,p(r) in Proposition 37. Note
that we discuss constants for p(x) here as example, but the results can be similarly extended to q(x)
if the same assumption holds for q(x).
Proposition 35. Suppose Assumption 1 holds for p(x). ⇢ is the minimum constant defined in
Theorem 3 such that Ic�1 ⌦Vp � ⇢Hp. Then
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(1) For K1,p defined in Lemma 2-(2), we have

K1,p < 2
p

⇢K0,p. (141)

(2) For K2,p(r) defined in Lemma 2-(3), let ⇢(✓) > 0 be constant s.t. Ic�1 ⌦Vp � ⇢(✓)Hp(✓) for
✓ 2 Br(✓⇤), we have

K2,p(r) < 2 sup
✓2Br(✓⇤)

⇢(✓)K2
0,p. (142)

Proof. For the ease of notation, we use ec = c� 1 and ed = d(c� 1). We define h(x, ✓)Rec for a given
x 2 Rd and ✓ 2 Rec⇥d by

hi(x, ✓) =
exp(x>

✓i)

1 +
P

s2[ec] exp(x
>✓s)

, 8i 2 [ec] (143)

where ✓i is the i-th row of ✓.

(1) Denote eVp , Iec ⌦Vp, then eVp � ⇢Hp and Hp
�1/2

�
p

⇢eV�1/2
p . Thus

kHp
�1/2~r`(x,y)(✓⇤)k 2 

p
⇢keV�1/2

p
~r`(x,y)(✓⇤)k 2 . (144)

By Proposition 23, the i-th row (i 2 [ec]) of matrix r`(x,y)(✓⇤) is

[r`(x,y)(✓⇤)]i =
@`(x,y)(✓⇤)

@✓⇤,i
= �i(x, y)x,

where �i(x, y) , �1{y=i} + hi(x, ✓⇤).

Therefore
⇣

~r`(x,y)(✓⇤)
⌘>

= [�1(x, y)x>
, �2(x, y)x>

, · · · , �ec(x, y)x>] and thus

� eV�1/2
p

~r`(x,y)(✓⇤)
�>

=
⇥
�1(x, y)(V�1/2

p x)>, �2(x, y)(V�1/2
p x)>, · · · , �ec(x, y)(V�1/2

p x)>
⇤
. (145)

We also observe that for any (x, y),

X

i2[ec]

|�i(x, y)|  1 +

P
j2[ec] exp(x

>
✓
⇤
j )

1 +
P

j2[ec] exp(x
>✓⇤j )

< 2. (146)

By definition of the sub-Gaussian vector norm we have

keV�1/2
p

~r`(x,y)(✓⇤)k 2 , sup
u2Sdec�1

kheV�1/2
p

~r`(x,y)(✓⇤), uik 2 (147)

where S
ed�1 is the unit sphere in Red. For any u 2 S

dec�1, we represent u
> = [u>

1 , u
>
2 , · · · , u

>
ec ],

where ui 2 Rd for each i 2 [ec]. Then for any y 2 [c], by Eq. (145) we have

kheV�1/2
p

~r`(x,y)(✓⇤), uik 2 =
���
X

i2[ec]

�i(x, y)u>
i V

�1/2
p x

���
 2

. (148)

For a given x and u 2 S
ed�1, define

u(x) 2 argmax
ui,i2[ec]

|u
>
i V

�1/2
p x|, (149)

where the choice of u(x) does not effect our result. By Eq. (146),

kheV�1/2
p

~r`(x,y)(✓⇤), uik 2 < 2k(u(x))>V�1/2
p xk 2 . (150)

Since ku(x)k  1, by combining Eqs. (150) and (147) we can get

keV�1/2
p

~r`(x,y)(✓⇤)k 2 < 2 sup
v2Sd�1

kv
>
V

�1/2
p xk 2 = 2kV�1/2

p xk 2  2K0,p. (151)
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(2) Let Wp(✓) , eV1/2
p Hp(✓)�1/2, then Wp(✓) �

p
⇢(✓)Ied. First, we observe that

sup
u2S ed�1

ku
>
Hp(✓)

�1/2
r

2
`(x,y)(✓)Hp(✓)

�1/2
uk 1

= sup
v,Wp(✓)u
kuk21
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> eV�1/2

p r
2
`(x,y)(✓)eV�1/2

p vk 1

(a)
 sup

kuk21
k(
p

⇢(✓)u)> eV�1/2
p r

2
`(x,y)(✓)eV�1/2

p (
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⇢(✓)u)k 1

⇢(✓) sup
u2S ed�1

ku
> eV�1/2

p r
2
`(x,y)(✓)eV�1/2

p uk 1 , (152)

where (a) follows by the fact that �max(Wp(✓)) 
p

⇢(✓)) and thus {v = Wp(✓))u : kuk2 

1} ⇢ {
p

⇢(✓)u : kuk2  1}.

By Proposition 23, we have the Hessian r2
`(x,y)(✓) 2 Red⇥ed with the following form:

r
2
`(x,y)(✓) =

2

64
↵11(x, ✓)xx

>
· · · ↵1ec(x, ✓)xx

>

...
. . .

...
↵ec1(x, ✓)xx

>
· · · ↵ecec(x, ✓)xx

>

3

75 (153)

where

↵i,j(✓) = 1{i=j}hi(x, ✓)� hi(x, ✓)hj(x, ✓). (154)

For any u 2 S
ed�1, we decompose it into ec chunks with dimension d, i.e. u

> = [u>
1 , · · · , u

>
ec ]

and ui 2 Rd. Since eVp = Iec ⌦Vp, we have eV�1/2
p = Iec ⌦V

�1/2
p . Define eui , V

�1/2
p ui,

eu , eV�1/2
p u, then eu> = [eu>

1 , · · · , eu>
ec ]. For the “sup” term in Eq. (152), we have
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p x)(V�1/2

p x)>uj

���
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, (155)

where (a) follows by Eq. (154), (b) follows by eui = V
�1/2
p ui.

Now we intend to upper bound Eq. (155) by using kV�1/2
p xk 2  K0,p. First for any x 2 R

and u 2 S
ed�1, we define

u(x) 2 argmax
ui,i2[ec]

��u>
i (V

�1/2
p x)(V�1/2

p x)>ui

��,

where the choice of u(x) does not effect our result. Since for any a, b 2 R, we have inequality
|ab| 

a2+b2

2  max{a
2
, b

2
}, then

��u>
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p x)(V�1/2

p x)>uj

�� 
��u(x)>(V�1/2

p x)(V�1/2
p x)>u(x)

��, 8i, j 2 [ec]. (156)

On the other hand, by Eq. (154) we have

|↵ij(x, ✓)| =

⇢
hi(x, ✓)� h

2
i (x, ✓) if i = j,

hi(x, ✓)hj(x, ✓) otherwise.
(157)

Thus
X
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X
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|↵ij(x, ✓)| =
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h
hi(x, ✓)� h

2
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i
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=
X

i2[ec]

h
(1 + kh(x, ✓)k1)hi(x, ✓)� 2h2

i (x, ✓)
i

= (1 + kh(x, ✓)k1)kh(x, ✓)k1 � 2
X

i2[ec]

h
2
i (x, ✓)

< 2, (158)

where the last inequality follows by the fact that kh(x, ✓)k1 = 1� 1
1+

P
s2[ec] exp(x

>✓s)
< 1.

Now substitute Eq. (155) into Eq. (152), we can obtain that
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⇢(✓) sup
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i2[ec]
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|↵ij(x, ✓)|
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u(x)>(V�1/2
p x)(V�1/2

p x)>u(x)
⌘���

 1

(b)
<2⇢(✓) sup

v2Sd�1

k(v>V�1/2
p x)2k 1

(c)
=2⇢(✓) sup

v2Sd�1

k(v>V�1/2
p x)k2 2

=2⇢(✓)kV�1/2
p xk

2
 2

(d)
 2⇢(✓)K2

0,p, (159)

where (a) follows by Eq. (156), (b) follows by Eq. (158) and the fact that u(x) 2 Rd and
ku(x)k2  1, (c) follows by Lemma 16, (d) follows by Lemma 2-(1). Comparing Eq. (159) to
Eq. (5) (in Lemma 2-(3)), we can get

K2,p(r) < 2 sup
✓2Br(✓⇤)

p
⇢(✓)K0,p. (160)

Before establishing the result for Gaussian design, we provide a form of Hessian expression of the
loss function with respect to ✓ in the following lemma.
Lemma 36. For any (x, y) and parameter ✓, r2

`(x,y)(✓) = ex(✓)ex(✓)>, where ex(✓) =

(`00(y, ✓x))1/2 ⌦ x.

Proof. The proof is trivial. By chain rule, r2
`(x,y)(✓) = `

00(y, ✓x)⌦ xx
>.

In the following proposition, we consider the case for a Gaussian design, i.e. p(x) ⇠ N (0,Vp).
In particular, we present the bounds for constants ⇢, K0,p, K1,p and K2,p(r) used in Theorem 3 by
using ✓⇤, Vp and r. Our bound for ⇢ is inspired Proposition D.1 in [24], where the binary logistic
regression on Gaussian design is considered.
Proposition 37 (Gaussian design). Suppose p(x) ⇠ N (0,Vp), Assumption 1 holds for p(x). Sup-
pose that ⇢ > 0 is the minimum constant such that eVp , Iec ⌦Vp � ⇢Hp, then for ⇢ and constant
defined in Lemma 2, we have

⇢ .
�
2 + max

i2[ec]
k✓⇤,ik

2
Vp

�3/2
, (161)

K0,p . 1, (162)

K1,p .
�
2 + max

i2[ec]
k✓⇤,ik

2
Vp

�3/4
, (163)

K2,p(r) .
�
2 + r

2 +max
i2[ec]
k✓⇤,ik

2
Vp

�3/4
, (164)

where ✓⇤,i is the i-th row of ✓⇤ 2 R(c�1)⇥d.
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Proof.

(1) Proof of Eq. (161).

First, we consider the decorrelated design z , eV�1/2
p x, thus z ⇠ N (0, Iec). Define parameter

⇠ , ✓ eV1/2
p , and denote ⇠⇤ = ✓⇤ eV1/2

p . Then we have ✓x = ⇠z. By Lemma 36, we have

Hp = Hp(✓⇤) = Ex[ex(✓⇤)ex(✓⇤)>], (165)

where ex(✓) = [`00(y, ✓x)]1/2 ⌦ x, note that Hessian `
00(y, ✓x) 2 Rec⇥ec has no dependence on

label y.

Now we define ez(⇠) , eV�1/2
p ex(✓), then

ez(⇠) = (Iec ⌦ eV�1/2
p )([`00(y, ✓x)]1/2 ⌦ x) = ([`00(y, ✓x)]1/2)⌦ (eV�1/2

p x)

= [`00(y, ⇠z)]1/2 ⌦ z. (166)

Then the covariance matrix of ez(⇠⇤) has the following form:

 (⇠⇤) , Ez[ez(⇠⇤)ez(⇠⇤)>]
= Ez[`

00(y, ⇠⇤z)⌦ (zz
>)] (167)

= eV�1/2
p Hp

eV�1/2
p ,

where the last equality follows by definition of ez(⇠⇤) and Eq. (165). Thus, we can upper bound ⇢

by finding lower bound of �min( (⇠⇤)) since by the definition of ⇢, we have

⇢ 
1

�min( (⇠⇤))
. (168)

For any z ⇠ N (0, Iec), we have

`
00(y, ⇠⇤z) = �(z)� h(z)h(z)>, (169)

where h(z) 2 Rec and

hi(z) =
exp(z>⇠⇤,i)

1 +
P

j2[ec] exp(z
>⇠⇤,j)

, (170)

and �(z) = diag(h1(z),h2(z), · · · ,hec(z)). Thus for any z ⇠ N (0, Iec),

`
00(y, ⇠⇤z) = �(z)

1/2
h
Iec �

�
�(z)�1/2

h(z)
��
�(z)�1/2

h(z)
�>i
�(z)1/2

⌫ (1� k�(z)�1/2
h(z)k22)�(z)

= (1� kh(z)k1)�(z), (171)

where the last equality follows by the fact that the i-th component of �(z)�1/2
h(z) is

p
hi(z).

Substitute this into Eq. (167), we can get

 (⇠⇤) ⌫ Ez

h
(1� kh(z)k1)�(z)⌦ (zz

>)
i
. (172)

Note that �(z) is a diagonal matrix, we additionally have

�min[ (⇠⇤)] = �min

⇣
Ez

h
(1� kh(z)k1)�(z)⌦ (zz

>)
i⌘

= min
i2[ec]

�min

⇣
Ez

h
hi(z)(1� kh(z)k1)zz

>
i⌘

. (173)

For any arbitrary i 2 [ec], we have

hi(z)(1� kh(z)k1) =
exp(z>⇠⇤,i)⇣

1 +
P

j2[ec] exp(z
>⇠⇤,j)

⌘2 . (174)
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By the symmetry of N (0, Iec), w.l.o.g. we can assume that ⇠⇤,i is parallel to e1, where e1 is the
unit vector of the first coordinate. Thus we have z

>
⇠⇤,i = k⇠⇤,ik2z1 and

hi(z)(1� kh(z)k1) =
exp(tiz1)⇣

1 + � + exp(tiz1)
⌘2 ⇡ exp(�|tiz1|), (175)

where we use ⇡ to represent the intersection of . and &, � =
P

j 6=i exp(z
>

⇠⇤,j) and we define
ti by

ti , k⇠⇤,ik2 = k✓⇤V
1/2
p k2 = k✓⇤kVp . (176)

Now by Eq. (175) we have

Ez

h
hi(z)(1� kh(z)k1)zz

>
i
⇡ E{zi⇠N (0,1)}d

i=1
[exp(�|tiz1|)zz

>]

=


 0

>
d�1

0d�1 ?Id�1,

�
(177)

where  and ? have the following forms if we denote the standard one dimensional Gaussian
density function as �(·):

 =

Z 1

�1
exp(�|tiu|)u2

�(u)du, (178)

? =

Z 1

�1
exp(�|tiu|)�(u)du. (179)

By Eqs. (168), (173) and (177), we can upper bound ⇢ by finding the lower bounds for  and ?.
First we denote the Gaussian integral as G(t) ,

R1
t e

�u2/2
du, which has sharp bounds as

2e�t2/2

t +
p

t2 + 4
 G(t) 

2e�t2/2

t +
p

t2 + 8⇡
, t � 0. (180)

For , we have

 =

r
2

⇡
·

Z 1

0
e
�tiu�u2

u
2
du =

r
2

⇡
e
t2i /2

Z 1

0
e
�(u+ti)

2/2
u
2
du

=

r
2

⇡
· e

t2i /2

Z 1

ti

e
�v2/2(v � t)2dv

=

r
2

⇡
· e

t2i /2
⇥
(1 + t

2
i )G(ti)� tie

�t2i /2
⇤
.

(a)
& 2(t2i + 1)

ti +
p

t2i + 4
� ti =

ti(ti �
p

t2i + 4) + 2

ti +
p

t2i + 4

=
2(
p

t2i + 4� ti)

(
p

t2i + 4 + ti)2
=

8

(
p

t2i + 4 + ti)3
�

1

(t2i + 2)3/2
, (181)

where (a) follows by the lower bound of G(ti) from (180). Similarly for ?,

? =

r
2

⇡
·

Z 1

0
e
�tiu�u2/2

du

=

r
2

⇡
e
t2i /2 ·

Z 1

ti

e
�v2/2

dv =

r
2

⇡
e
t2i /2G(ti)

& 1

(t2i + 2)1/2
. (182)

Combining (177), (181) and (182), we can get for each i 2 [ec],

�min

⇣
Ez

h
hi(z)(1� kh(z)k1)zz

>
i⌘

& min{, ?} & 1

(t2i + 2)3/2
. (183)
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Substitute this into (173), we have

�min[ (⇠⇤)] & min
i2[ec]

1

(t2i + 2)3/2
. (184)

Combining this with the bound of ⇢ in (168) and the definition of ti in (176), we can obtain that

⇢ 
1

�min[ (⇠⇤)]
. max

i2[ec]
(2 + k✓⇤,ik

2
Vp

)3/2 =
�
2 + max

i2[ec]
k✓⇤,ik

2
Vp

�3/2
. (185)

(2) Since x ⇠ N (0,Vp), V
�1/2
p x ⇠ N (0, Id). For any u 2 S

d�1, u
>
V

�1/2
p x ⇠ N (0, 1). Thus

kV
�1/2
p xk 2 = sup

u2Sd�1

ku
>
V

�1/2
p xk 2 . 1 (186)

and K0,p . 1.

(3) Substitute Eqs. (161) and (162) into Eq. (141), we have

K1,p < 2
p

⇢K0,p .
⇣
2 + max

i2[ec]
k✓⇤,i|

2
Vp

⌘3/4
. (187)

(4) Substitute Eqs. (161) and (162) into Eq. (142), we have

K2,p(r) < 2 sup
✓2Br(✓⇤)

⇢(✓)K2
0,p

. sup
maxi2[ec] k✓i�✓⇤,ikVpr

(2 + max
i2[ec]
k✓ik

2
Vp

)3/4

.
�
2 + r

2 +max
i2[ec]
k✓⇤,ik

2
Vp

�3/4
, (188)

where the last inequality follows by the triangle inequality k✓ikVp  k✓i � ✓⇤,ikVp + k✓⇤,ikVp .

E Bounded domain

For the case of bounded domain, we present the assumptions in Assumption 38, which are similar to
the regularity assumptions used in [11]. Then we present the excess risk Lp(✓n)� Lp(✓⇤) bounds in
Theorem 40. Our proof is inspired by the proof of Theorem 5.1 in [28].
Assumption 38. There exist constants L1, L2 and L3 > 0, for any sample (x, y) randomly drawn
from distribution ⇡p(x, y) or ⇡q(x, y), the following conditions are satisfied:

(1) Hp and Hq are positive definite.

(2) gradient and Hessian of loss function with respect to ✓ at ✓⇤ are bounded:

kvec(r`(x,y)(✓⇤))kHp
�1  L1, kHp

�1/2
r

2
`(x,y)(✓⇤)Hp

�1/2
k  L2, (189)

(3) Lipschitz continuity of Hessian: there exits a neighborhood around ✓⇤ denoted by B(✓⇤) such
that 8✓0 2 B(✓⇤),

���Hp
�1/2

⇣
r

2
`(x,y)(✓⇤)�r

2
`(x,y)(✓

0)
⌘
Hp

�1/2
���  L3kvec(✓⇤ � ✓

0)kHp . (190)

Remark 39. We did not explicitly assume that x 2 Rd is bounded. However, by Proposition 23, each
row of gradient r(x, y)(✓⇤) is the scaling of x. Thus Assumption 38-(2) assumes that x is bounded
implicitly.
Theorem 40. Suppose Assumption 38 holds. Let � > 0 be the constant such that Hp � �Hq. For
any � 2 (0, 1), whenever

n � 256max
n

L
2
2�

2 log(2d(c� 1)/�), log(1/�)�4
L
2
1L

2
3

o
, (191)
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with probability at least 1� �, we have

3

8

(1� ✏p)

(1 + ✏q)2
Trace(Hq

�1
Hp)

n
 E[Lp(✓n)]� Lp(✓⇤) 

5

8

(1 + ✏p)

(1� ✏q)2
Trace(Hq

�1
Hp)

n
, (192)

where E is the expectation over {yi ⇠ p(yi|xi, ✓⇤)}ni=1, ✏p and ✏q are given by

✏p = 2�2
L1L3

r
2 + 8 log(1/�)

n
✏q = 4�L2

r
log(2d(c� 1)/�)

n
+ 2�2

L1L3

r
2 + 8 log(1/�)

n
.

(193)

Remark 41. For Theorem 40, if Eq. (191) holds, we can upper bound ✏p and ✏q. This results in a
simpler upper bound for the excess risk with respect to p(x):

E[Lp(✓n)]� Lp(✓⇤) 
9

5

Trace(Hq
�1

Hp)

n
. (194)

We show this at the end of the proof of Theorem 40.

proof of Theorem 40. We deploy the notation of Qn(✓) and Hn(✓) defined in Eqs. (58) and (59) for
the ease of notation. Throughout the whole proof, we treat parameter as vector, i.e. ✓ 2 Red. Denote
the samples drawn from ⇡q(x, y) by {zi = (xi, yi)

i.i.d
⇠ ⇡q(x, y)}ni=1. Since Hp � �Hq , for a vector

v 2 Red we have

kvkHq
�1 

p
�kvkHp

�1 , kvkHp 
p

�kvkHq . (195)

For the ease of notation, we define norms for a matrix A 2 Red⇥ed by

kAkP , kHp
�1/2

AHp
�1/2
k, kAkQ , kHq

�1/2
AHq

�1/2
k. (196)

Note that for a matrix symmetric semi-positive definite matrix A 2 Sed
+,

Hq
�1/2

AHq
�1/2 = (Hq

�1/2
Hp

1/2)(Hp
�1/2

AHp
�1/2)(Hp

1/2
Hq

�1/2)

� �Hp
�1/2

AHp
�1/2 (197)

where the last inequality follows by the fact �max(Hq
�1/2

Hp
1/2) =

p
�. Thus we have the following

relation between these two norms:

kAkQ  �kAkP . (198)

step 1. We aim to choose a ball B1(✓⇤) centered at ✓⇤ and n sufficiently large such that for any
✓ 2 B1(✓⇤), Hn(✓) approximates Hq in the spectral sense with high probability.

First, we have by triangle inequality that

kHn(✓)�HqkQ  kHn(✓)�Hn(✓⇤)kQ + kHn(✓⇤)�HqkQ. (199)

To bound the first term in Eq. (199), we can use Assumption 38-(3), i.e. if ✓ 2 B(✓⇤), then

kHn(✓)�Hn(✓⇤)kQ
Eq. (198)
 �kHn(✓)�Hn(✓⇤)kP  �L3k✓ � ✓⇤kHp . (200)

Now we consider the second term on the right hand side of Eq. (199). Let Xi = Hp
�1/2�

r
2
`zi(✓⇤)�

Hq

�
Hp

�1/2 for each i 2 [n] and S = 1
n

Pn
i=1 Xi. Since E[r2

`zi(✓⇤)] = r
2
Lq(✓⇤) = Hq, then

E[Xi] = 0. By Eq. (189), we have kr2
`zi(✓⇤)kP  L2. Thus for any i 2 [n]:

kXik = kr
2
`zi(✓⇤)�HqkP  2L2,

kE(X2
i )k  E kX2

i k  E kXik
2
 4L2

2. (201)

Let µ = 2L2 and ⌫ = 4L2
2 in the matrix Bernstein inequality (i.e. ??), we have with probability at

least 1� �,

kSk  4L2

s
log(2ed/�)

n
, ✏1. (202)
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Note that kHn(✓⇤)�HqkP = kSk. Then with probability at least 1� �,

kHn(✓⇤)�HqkQ  �kHn(✓⇤)�HpkP  �✏1. (203)

Substitute Eqs. (200) and (203) into Eq. (199), we can get

kHn(✓)�HqkQ  �L3k✓ � ✓⇤kHp + �✏1. (204)

Now consider a ball centered at ✓⇤:

B1(✓⇤) , {✓ : k✓ � ✓⇤kHp 
1

4�L3
},

then �L3k✓ � ✓⇤kHq  1/4 for any ✓ 2 B1(✓⇤). Besides, if we choose n such that

n � 256L2
2�

2 log(2ed/�), (205)

we have

✏1 
1

4�
. (206)

Substitute Eq. (206) into Eq. (204), we have kHn(✓) �HqkQ  1/2 and thus with probability at
least 1� �,

1

2
Hq � Hn(✓) �

3

2
Hq. (207)

step 2. Next we show that when n is large enough, ✓n 2 B1(✓⇤) with high probability. Given ✓, by
Taylor’s expansion there exits ✓̃ between ✓ and ✓⇤ such that

Qn(✓) = Qn(✓⇤) +rQn(✓⇤)
>(✓ � ✓⇤) +

1

2
(✓ � ✓⇤)

>
r

2
Qn(✓̃)(✓ � ✓⇤).

Then for all ✓ 2 B1(✓⇤),

Qn(✓)�Qn(✓⇤) = rQn(✓⇤)
>(✓ � ✓⇤) +

1

2
k✓ � ✓⇤k

2
Hn(✓̃)

(a)
� rQn(✓⇤)

>(✓ � ✓⇤) +
1

4
k✓ � ✓⇤k

2
Hq

(b)
� k✓ � ✓⇤kHq

✓
1

4
k✓ � ✓⇤kHq � krQn(✓⇤)kHq

�1

◆

(c)
� k✓ � ✓⇤kHq

✓
1

4
p

�
k✓ � ✓⇤kHp �

p
�krQn(✓⇤)kHp

�1

◆
(208)

where (a) follows by Eq. (207), (b) follows by Cauchy-Schwartz inequality, and (c) follows by
Eq. (195).

Now if we can show for all ✓ 2 @B1✓⇤), the right hand side of Eq. (208) is non negative, then
✓n 2 B1(✓⇤) because Qn(✓) is a convex function. Let ⇠i = Hp

�1/2
r`zi(✓⇤) and S = 1

n

Pn
i=1 ⇠i.

Then E[⇠i] = Hp
�1/2
rLp(✓⇤) = 0 by Lemma 24. By Assumption 38-(2), for any i 2 [n] we have

k⇠ik = kr`zi(✓⇤)kHp
�1  L1,

E[k⇠ik2]  L
2
1. (209)

Let µ = L1 and ⌫ = L
2
1 in the vector Bernstein inequality (i.e. ??), with probability at least 1� � we

have

krQn(✓⇤)kHp
�1 = kSk  L1

r
2 + 8 log(1/�)

n
, ✏2. (210)

Now if we choose n such that

n � 256(2 + 8 log(1/�))�4
L
2
1L

2
3,
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then

✏2 
1

16L3�
2
. (211)

Thus for all ✓ 2 @B1(✓⇤), combining Eqs. (208), (210) and (211) we have

Qn(✓)�Qn(✓⇤) � k✓ � ✓⇤kHq

✓
1

4
p

�
k✓ � ✓⇤kHp �

p
�krQn(✓⇤)kHp

�1

◆

� k✓ � ✓⇤kHq

✓
1

4
p

�

1

4�L3
�
p

�
1

16�2L3

◆
= 0. (212)

Then with probability at least 1� �, ✓n 2 B1(✓⇤).

step 3. We denote � , ✓n� ✓⇤, then by Taylor’s theorem, there exits e✓n between ✓n and ✓⇤ such that

0 = rQn(✓n) = rQn(✓⇤) +Hn(e✓n)�. (213)

In this step, we get a spectral relation between Hn(e✓n) and Hq .

We have ensured that Hn(e✓n) is positive definite in step 1 (by Eq. (207)), thus

� = �
�
Hn(e✓n)

��1
rQn(✓⇤), (214)

and with probability at least 1� � we have

k�kHq = (�>
Hq�)1/2 = [rQn(✓⇤)

>�
Hn(e✓n)

��1
Hq

�
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��1
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◆✓
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1/2�
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��1
Hq

�
Hn(e✓n)

��1
Hq
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◆✓
Hq

�1/2
Hn(✓⇤)

◆�1/2

 kHq
1/2�

Hn(e✓n)
��1

Hq

�
Hn(e✓n)

��1
Hq

1/2
k
1/2
kHq

�1/2
rQn(✓⇤)k

 kHq
1/2�

Hn(e✓n)
��1

Hq
1/2
kkrQn(✓⇤)kHq

�1

(a)
 2
p

�krQn(✓⇤)kHp
�1

(b)
 2
p

�✏2, (215)

where (a) follows by Eq. (195) and 1/2Hp � Hn(e✓n) from Eq. (207) since e✓n 2 B(✓⇤), (b) follows
by Eq. (210).

Denote e� , e✓n � ✓⇤, since e✓n lies between ✓n and ✓⇤, we have

ke�kHq  k�kHq  2
p

�✏2. (216)

Following a similar argument as step 1, we can obtain that

kHn(e✓n)�HqkQ  kHn(e✓n)�Hn(✓⇤)kQ + kHn(✓⇤)�HqkQ

 �kHn(e✓n)�Hn(✓⇤)kP + �✏1

 �L3k
e�kHp + �✏1

(a)
 2�2

L3✏2 + �✏1 , ✏q, (217)

where (a) follows by Eq. (216) and the fact that ke�kHp 
p

�ke�kHq . Note that we can upper bound
✏q by using Eqs. (206) and (211):

✏q = 2�2
L3✏2 + �✏1 

3

8
. (218)

Thus, with probability at least 1� �, we have

(1� ✏q)Hq � Hn(e✓n)  (1 + ✏q)Hq. (219)
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step 4. Now we use Taylor’s expansion to get bounds for Lp(✓n)� Lp(✓⇤). By Taylor’s theorem,
there exits ezn between ✓n and ✓⇤ such that

Lp(✓n)� Lp(✓⇤) =
1

2
k�k2

Hp(ezn), (220)

where the first order term vanishes because rLp(✓⇤) = 0 by Lemma 24.

From the Lipschitz condition Assumption 38-(3), we have

kHp(ezn)�HpkP  L3kezn � ✓⇤kHp

(a)
 2�2

L3✏2 , ✏p,

where inequality (a) follows by

kezn � ✓⇤kHp  k�kHp

Eq. (195)


p
�k�kHq

Eq. (215)
 2�2

✏2.

Note that we can upper bound ✏p by using Eq. (211):

✏p = 2�2
L3✏2 

1

8
. (221)

Thus,

(1� ✏p)Hp � Hp(ezn)  (1 + ✏p)Hp. (222)

Define matrices Mq,n and Mp,n as follows:

Mq,n , Hq
1/2�

Hn(e✓n)
��1

Hq
1/2

,

Mp,n , Hp
�1/2

Hp(ezn)Hp
�1/2

.

By Eqs. (219) and (222), we have

�max(Mq,n) 
1

1� ✏q
, �min(Mq,n) �

1

1 + ✏q
, (223)

�max(Mp,n)  (1 + ✏p), �min(Mp,n) � (1� ✏p). (224)

Now we can bound the excess risk Lp(✓n)� Lp(✓⇤) by using the Taylor expansion in Eq. (220):

Lp(✓n)� Lp(✓⇤) =
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2
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✓
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Observe that,
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Hp�

=�>
Hn(e✓n)Hq
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Hn(e✓n)

��1
Hp

�
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| {z }

,M
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�1/2

Hn(e✓n)�, (226)

and

M =
�
Hq

1/2�
Hn(e✓n)

��1
Hq

1/2��
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�1/2
HpHq

�1/2��
Hq

1/2
Hn(e✓n)

��1
Hq

1/2�

= Mq,n

�
Hq

�1/2
HpHq

�1/2�
Mq,n. (227)

Substitute Eq. (227) into Eq. (226), we have

�>
Hp� =

�
�>

Hn(e✓n)Hq
�1/2�

Mq,n

�
Hq

�1/2
HpHq

�1/2�
Mq,n
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Hq

�1/2
Hn(e✓n)�

�
. (228)

Based on the previous steps, with probability at least 1��, we have a lower bound for Lp(✓n)�Lp(✓⇤)
by Eq. (225):

Lp(✓n)� Lp(✓⇤)
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, (229)

where the last inequality follows by Eqs. (223) and (224), and the fact that Hn(e✓n)� = �rQn(✓⇤)
from Eq. (214).

By similar argument, we can get an upper bound:
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. (230)

Following the same argument as we derive Eq. (135) in Appendix C.4, given {xi}
n
i=1, we have

E{yi⇠p(yi|xi,✓⇤)}n
i=1

[rQn(✓⇤)rQn(✓⇤)
>] =

1

n
Hn(✓⇤). (231)

Now if we take conditional expectation on both sides of Eqs. (229) and (230), we can obtain that

1
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n
. (232)

From the analysis in step 1, we have with probability at least 1� �,

kHn(✓⇤)�HqkQ  �✏1 
1

4
, (233)

where the last inequality follows by Eq. (206). Thus
3

4
Hq � Hn(✓⇤) �

5

4
Hq, (234)

and
3

4
Trace(Hq

�1
Hp) 

⌦
Hq

�1
HpHq

�1
,Hn(✓⇤)

↵


5

4
Trace(Hq

�1
Hp). (235)

Substitute Eq. (235) into Eq. (232), we have with probability at least 1� �,

3

8

(1� ✏p)

(1 + ✏q)2
Trace(Hq

�1
Hp)

n
 E[Lp(✓n)]� Lp(✓⇤) 

5

8

(1 + ✏p)

(1� ✏q)2
Trace(Hq

�1
Hp)

n
, (236)

where E is the expectation over {yi ⇠ p(yi|xi, ✓⇤)}ni=1.

Note that, with the upper bounds given in Eqs. (218) and (221), we can additionally bound the upper
bound of Eq. (236):

E[ Lp(✓n)]� Lp(✓⇤) 
5

8

(1 + ✏p)

(1� ✏q)2
Trace(Hq

�1
Hp)

n


5

8

1 + 1/8

(1� 3/8)2
Trace(Hq

�1
Hp)

n

=
9

5

Trace(Hq
�1

Hp)

n
. (237)
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F Proofs of Section 4

Notation. For a positive integer k, let Sk be the cone of symmetric matrices with dimension k ⇥ k,
Sk+ be the cone of symmetric semi-positive definite matrices with dimension k ⇥ k, and Sk++ be the
cone of symmetric positive definite matrices with dimension k ⇥ k.

F.1 Proof of Lemma 5

Proof. 1. We can verify convexity by considering an arbitrary line, given by Z+tV, where Z 2 Sed
++

and V 2 Sed. We define g(t) = f(Z + tV), where t is restricted to the interval such that
Z+ tV 2 Sed

++. From covex analysis, it is sufficient for us to prove the convexity of function g.
We have

g(t) = h(Z+ tV)�1
,Hp(✓0)i

= Trace
�
Z

1/2
Hp(✓0)Z

1/2
�
I+ tZ

�1/2
VZ

�1/2
��1�

. (238)

We can write Z
�1/2

VZ
�1/2 in its eigendecomposition form, i.e. Z

�1/2
V Z

�1/2 = Q⌃Q
>,

where ⌃ = diag{�1, · · · , �ed}. Then we have

g(t) = Trace
�
Z

1/2
Hp(✓0)Z

1/2
Q
�
I+ t⌃

��1
Q

>�

= Trace
��
Q

>
Z

1/2
Hp(✓0)Z

1/2
Q
��
I+ t⌃

��1�

=

edX

i=1

1

1 + t�i

⇥
Q

>
Z

1/2
Hp(✓0)Z

1/2
Q
⇤
ii
, (239)

and thus

g
00(t) =

edX

i=1

2�2
i

(1 + t�i)3
⇥
Q

>
Z

1/2
Hp(✓0)Z

1/2
Q
⇤
ii

(240)

Since Z+ tV is positive definite, so is I+ tZ
�1/2

VZ
�1/2. Thus 1 + t�i > 0 for all i 2 [ed]. In

addition, Q>
Z

1/2
Hp(✓0)Z1/2

Q is also positive definite, then its diagonals are all positive. Thus
g(t)00 � 0 by Eq. (240), we conclude that g is convex, and thus f is convex.

2. If A � B, then B
�1
�A

�1
� 0. Thus hB�1

�A
�1

,Hp(✓0)i  0 since Hp(✓0) is positive
definite, i.e.

f(A) � f(B). (241)

3. Property 3 is trivial to prove.

F.2 Solving relaxed problem by entropic mirror descent

We present the algorithm for solving relaxed problem Eq. (14) using entropic mirror descent in
Algorithm 2. Let z = b, then Eq. (14) is equivalent to:

⇧ = argmin
2Rm

+

kk1=1

f() ,
⌦� X

i2[m]

iH(xi)
��1

,Hp(✓0)
↵
. (242)

Line 5 of the algorithm computes the gradient of f():

gi ,
@f()

@i
= �

⌦
H(xi),⌃

�1
Hp(✓0)⌃

�1
i, (243)

where ⌃ =
P

i2[m] iH(xi). We present the convergence rate of the algorithm in Theorem 42,
which is adopted from Theorem 5.1 in [29].
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Algorithm 2 RELAXSOLVE(b, Hp(✓0), {H(xi)}i2[m])
Output: z⇧

1:  = (1/m, 1/m, · · · , 1/m) 2 Rm

2: for t = 1 to T do // T is iteration number
3: �t  O(

q
logm

t )

4: ⌃ 
P

i2[m] iH(xi)

5: gi  �
⌦
H(xi),⌃�1

Hp(✓0)⌃�1
↵
, 8i 2 [m]

6: i  i exp(��tgi)
7: i  

iP
j2[m] j

8: end for

9: z⇧  b

Theorem 42. Suppose f : Rn
◆ X ! R is convex Lipschitz continuous function w.r.t k · k1, i.e.

|f(x)� f(y)|  Lfkx� yk1. Consider using entropic mirror descent algorithm with T steps and

step size ⌘t =
1
Lf

q
2 logn

T , denote solution at step t as xt. Then we have

min
1tT

f(xt)�min
x2X

f(x)  Lf

r
2 log n

T
. (244)

F.3 Proof of Proposition 8

We first introduce the background of the regret minimization problem in Appendix F.3.1. Note that in
this section, we consider that the loss matrix Ft at each step t can be any symmetric, semi-positive
definite matrix (i.e. Ft 2 Sed

+). This is more general than the case of Ft 2 { eH(xi)}mi=1 in § 4.3. Then
we give the proof of Proposition 8 in Appendix F.3.2.

F.3.1 Background of regret minimization

We introduce a regret minimization problem in the adversarial linear bandits setting with full infor-
mation. Consider a game of b rounds. At each round t 2 [b]:

• the player chooses an action At 2 �ed, where �ed = {A 2 Red⇥ed : A ⌫ 0,Trace(A) = 1}

• afterwards, the environment reveals a loss matrix Ft 2 Sed
+

• the loss hAt,Fti is incurred

The goal of the player is to minimize the regret over all rounds, which is defined by

Regret({At}
b
t=1) ,

bX

t=1

hAt,Fti � inf
U2� ed

hU,

bX

t=1

Fti. (245)

The regret represents the excess loss compared to the loss incurred by a single optimal action U 2 �ed
in hindsight. In our setting, the loss incurred by a single optimal action is actually the minimum
eigenvalue of the summed matrix of the loss matrices. We remark this property in Lemma 43.

Lemma 43. For any A 2 Sed
+, �min(A) = infU2� ed

hU,Ai.

Proof. Since A 2 Sed
+, we have eigendecomposition A = V⇤V

>, where ⇤ = diag{�1, · · · , �ed}.
Assume that �1 � · · · � �ed � 0 and vi is the eigenvector asscoiated with eigenvalue �i for i 2 [ed].

We first show �min(A) � infU2� ed
hU,Ai. Let B = vedv

>
ed

, then B ⌫ 0 and Trace(B) = 1, i.e.
B 2 �ed. Thus

inf
U2� ed

hU,Ai  hB,Ai = v
>
ed V⇤V

>
ved = �ed = �min(A). (246)
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On the other hand, for any U 2 �ed, we have

hU,Ai = hU,

X

i2[ed]

�iviv
>
i i =

X

i2[ed]

�iv
>
i Uvi

� �ed

X

i2[ed]

v
>
i Uvi = �edhU,VV

>
i = �ed Trace(U) = �ed. (247)

Since Eq. (247) holds for any U 2 �ed, then

�min(A)  inf
U2� ed

hU,Ai. (248)

Combining Eq. (246) and Eq. (248), we can get �min(A) = infU2� ed
hU,Ai.

Follow-The-Regularized-Leader (FTRL). FTRL algorithm chooses action At at the beginning of
each round based on the previous loss matrices {Fl}

t�1
l=1 . In particular, for a given regularizer w(·)

and learning rate ⌘ > 0.

A1 = argmin
A2� ed

w(A), At = argmin
A2� ed

⇢
⌘

t�1X

l=1

hA,Fli+ w(A)

�
(t � 2). (249)

We deploy the `1/2-regularizer introduced by [14]:w(A) = �2Trace(A1/2). Under such a regular-
izer, we can derive the closed form for At, i.e. Eq. (17).

F.3.2 Proof of Proposition 8

Proof. By Theorem 28.4 in [17], we have an upper bound for regret as following:

Regret({At}
b
t=1) ,

bX

t=1

hAt,Fti � inf
U2� ed

hU,

bX

t=1

Fti 
diamw(�ed)

⌘
+

1

⌘

bX

t=1

Dw(At, Ãt+1),

(250)

where diamw(�ed) , maxA,B2� ed
w(A) � w(B) is the diameter of �ed with respect to w , Dw is

w-induced Bregman divergence, and Ãt+1 is defined by

Ãt+1 = argmin
A⌫0

�
⌘hA,Fti+ Dw(A,At)

 
. (251)

Since the regularizer w(A) = �2Trace(A1/2) for any A ⌫ 0, w(A) is differentiable and it has
gradient rw(A) = �A�1/2. By definition of Bregman divergence, we have for any A,B ⌫ 0:

Dw(A,B) = w(A)� w(B)� hA�B,rw(B)i

= �2Trace(A1/2 + 2Trace(B1/2) + hA�B,B
�1/2
i

= hA,B
�1/2
i+Trace(B1/2)� 2Trace(A1/2). (252)

Substitute Eq. (252) into (251), we can get

Ãt+1 = argmin
A⌫0

�
⌘hA,Fti+ hA,A

�1/2
t i+Trace(A1/2

t )� 2Trace(A1/2)
 
, g(A).

By the first order optimality condition of convex optimization, we have

⌘Ft +A
�1/2
t � Ã

�1/2
t+1 = 0,

and thus Ãt+1 = (A�1/2
t + ⌘Ft)�2. Therefore, by Eq. (252)

Dw(At, Ãt+1) = hAt, Ã
�1/2
t+1 i+Trace(Ã1/2

t+1)� 2Trace(A1/2
t )

= hAt,A
�1/2
t + ⌘Fti+Trace[(A�1/2

t + ⌘Ft)
�1]� 2Trace(A1/2

t )
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= hAt, ⌘Fti+Trace[(A�1/2
t + ⌘Ft)

�1
�A

1/2
t ]. (253)

Substitute Eq. (253) into Eq. (250), we can get

�min(
bX

t=1

Ft)
(a)
= inf

U2� ed

hU,

bX

t=1

Fti � �
diamw(�ed)

⌘
+

1

⌘

bX

t=1

Trace[A1/2
t � (A�1/2

t + ⌘Ft)
�1]

(b)
� �

2
p
ed

⌘
+

1

⌘

bX

t=1

Trace[A1/2
t � (A�1/2

t + ⌘Ft)
�1], (254)

where equality (a) follows by Lemma 43 and inequality (b) follows by the fact that diamw(�ed) 

2
p
ed.

Since Eq. (254) holds for any Ft 2 Sed
+, then let Ft 2 { eH(xi)}i2[m] and Eq. (18) is proved.

F.4 Proof of Proposition 9

In Appendix F.4.1, we present some key inequalities that we need for the proof. In Appendix F.4.2,
we present the full proof of Proposition 9. It is worth noting that a similar property to Proposition 9 is
proven in [14]. However, in their setting, the loss matrices are rank-1 matrices, specifically of the
form exiex>

i , where exi is a vector. On the other hand, in our setting, the loss matrices are transformed
Fisher information matrices (i.e. eH(xi), as defined in Equation 15). This distinction significantly
complicates the derivation of a general result such as Eq. (24) in Proposition 9. The proof is by no
means trivial. We remark that we do not assume special structure on points from unlabeled pool
U = {xi}i2[m] and the ground truth parameter ✓⇤ in our proof to Proposition 9.

F.4.1 Supporting Lemmas

Lemma 44. For any i 2 [m], ai > 0, bi > 0, ⇡i � 0, then maxi2[m]
ai
bi
�

P
i2[m] ⇡iaiP
i2[m] ⇡ibi

.

Proof. We can use induction to prove the inequality. If n = 2, without loss of generality, we can
assume a1/b1 � a2/b2, then

a1b2 � a2b1

⇡1a1b1 + ⇡2a1b2 � ⇡1a1b1 + ⇡2a2b1

and

max{
a1

b1
,
a2

b2
} =

a1

b1
�

⇡1a1 + ⇡2a2

⇡1b1 + ⇡2b2
.

Suppose the inequality is satisfied when n = m� 1, i.e.

max
i2[m�1]

ai

bi
�

P
i2[m�1] ⇡iaiP
i2[m�1] ⇡ibi

. (255)

When n = m,

max
i2[m]

ai

bi
= max

�
max

i2[m�1]

ai

bi
,
am

bm

 
� max

⇢P
i2[m�1] ⇡iaiP
i2[m�1] ⇡ibi

,
am

bm

�

�

P
i2[m] ⇡iaiP
i2[m] ⇡ibi

.

The last inequality follows by the previous derivation when n = 2. Thus by induction, the inequality
is proved for any positive integer n.

Lemma 45. For any i 2 [m], ai � 0, bi � 0, then
P

i2[m]
ai

1+bi
�

P
i2[m] ai

1+
P

i2[m] bi
.
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Proof. We can use induction to prove this inequality. When n = 2,

[a1(1 + b2) + a2(1 + b1)](1 + b1 + b2)

= a1(1 + b2)(1 + b1) + a1b2(1 + b2) + a2(1 + b1)(1 + b2) + a2b1(1 + b1)

= (a1 + a2)(1 + b1)(1 + b2) + a1b2(1 + b2) + a2b1(1 + b1)

� (a1 + a2)(1 + b1)(1 + b2). (256)

Divide (1 + b1)(1 + b2)(1 + b1 + b2) on both sides of Eq. (256), we can get

a1

1 + b1
+

a2

1 + b2
=

[a1(1 + b2) + a2(1 + b1)](1 + b1 + b2)

(1 + b1)(1 + b2)(1 + b1 + b2)
Eq. (256)
�

(a1 + a2)(1 + b1)(1 + b2)

(1 + b1)(1 + b2)(1 + b1 + b2)
=

a1 + a2

1 + b1 + b2
. (257)

Suppose the inequality is satisfied when n = m� 1, i.e.

X

i2m�1

ai

1 + bi
�

P
i2[m�1] ai

1 +
P

i2[m�1] bi
. (258)

When n = m,

X

i2[m]

ai

1 + bi
=

X

i2[m�1]

ai

1 + bi
+

am

1 + bm

Eq. (258)
�

P
i2[m�1] ai

1 +
P

i2[m�1] bi
+

am

1 + bm

Eq. (257)
�

P
i2[m] ai

1 +
P

i2[m] bi
. (259)

Lemma 46. For any matrices A,B 2 Sp+, we have

h(I+B)�1
,Ai �

Trace(A)

1 + Trace(B)
. (260)

Proof. Denote eigenvalues of matrix A as ↵1 � ↵2 � · · · � ↵p � 0 and eigenvalues of matrix B

as �1 � �2 � · · · � �p � 0. Then eigenvalues of (I+B)�1 are 0  1 + �1)�1
 (1 + �2)�1



· · ·  (1 + �p)�1. Thus we have

h(I+B)�1
,Ai

(a)
�

pX

i=1

↵i

1 + �i

(b)
�

Pp
i=1 ↵i

1 +
Pp

i=1 �i
=

Trace(A)

1 + Trace(B)
, (261)

where inequality (a) follows by the lower bound of Von Neumann’s trace inequality [30], inequality
(b) follows by Lemma 45.

F.4.2 Proof of Proposition 9

Proof. Recall that in § 4.3, we define Bt by

B
�1/2
t = A

�1/2
t + ↵ eD, (262)

where eD = (⌃⇧)�1/2
D(⌃⇧)�1/2. In addition, we have

Ied
Eq. (15)
=

X

i2[m]

z⇧,i eH(xi)
Eq. (21)
=

X

i2[m]

z⇧,i eD+
X

i2[m]

z⇧,iePi
eP>
i = beD+

X

i2[m]

z⇧,iePi
eP>
i . (263)

43



step 1. We first decompose 1
⌘ Trace[A

1/2
t � (A�1/2

t + ⌘ eH(xi))�1] for any i 2 [m] into the sum of
two inner products between matrices. By Woodbury’s matrix identity, we have

(A�1/2
t + ⌘ eH(xi))

�1 = (B�1/2
t + ⌘ePi

eP>
i )

�1

= B
1/2
t � ⌘B

1/2
t

ePi(I+ ⌘eP>
i B

1/2
t

ePi)
�1eP>

i B
1/2
t . (264)

Thus
1

⌘
Trace[A1/2

t � (A�1/2
t + ⌘ eH(xi))

�1]

=
1

⌘
Trace(A1/2

t �B
1/2
t ) +

D
(I+ ⌘eP>

i B
1/2
t

ePi)
�1

, eP>
i Bt

ePi

E
. (265)

We apply Woodbury’s matrix identity to B
1/2
t in Eq. (262), then

B
1/2
t = (A�1/2

t + ⌘(⌃⇧)
�1/2

D(⌃⇧)
�1/2)�1

= A
1/2
t � ⌘A

1/2
t (⌃⇧)

�1/2
h
D

�1 + ⌘(⌃⇧)
�1/2

A
1/2
t (⌃⇧)

�1/2
i�1

(⌃⇧)
�1/2

| {z }
,E

A
1/2
t . (266)

Thus
1

⌘
Trace(A1/2

t �B
1/2
t )

=
D⇣

D
�1 + ⌘(⌃⇧)

�1/2
A

1/2
t (⌃⇧)

�1/2
⌘�1

, (⌃⇧)
�1/2

At(⌃⇧)
�1/2

E

=
D
D

1/2
⇣
I+ ⌘D

1/2(⌃⇧)
�1/2

A
1/2
t (⌃⇧)

�1/2
D

1/2
⌘�1

D
1/2

, (⌃⇧)
�1/2

At(⌃⇧)
�1/2

E

=
D⇣

I+ ⌘D
1/2(⌃⇧)

�1/2
A

1/2
t (⌃⇧)

�1/2
D

1/2
⌘�1

,D
1/2(⌃⇧)

�1/2
At(⌃⇧)

�1/2
D

1/2
E
. (267)

Substitute Eq. (267) into Eq. (265), we can get
1

⌘
Trace[A1/2

t � (A�1/2
t + ⌘ eH(xi))

�1]

=
D⇣

I+ ⌘D
1/2(⌃⇧)

�1/2
A

1/2
t (⌃⇧)

�1/2
D

1/2
⌘�1

,D
1/2(⌃⇧)

�1/2
At(⌃⇧)

�1/2
D

1/2
E

+
D
(I+ ⌘eP>

i B
1/2
t

ePi)
�1

, eP>
i Bt

ePi

E
. (268)

step 2. Now we intend to find a lower bound for maxi2[m]
1
⌘ Trace[A

1/2
t � (A�1/2

t + ⌘ eH(xi))�1]
using Eq. (268). For the first inner product on the right hand side of Eq. (268), we can apply
Lemma 46:

D⇣
I+ ⌘D

1/2(⌃⇧)
�1/2

A
1/2
t (⌃⇧)

�1/2
⌘�1

,D
1/2(⌃⇧)

�1/2
At(⌃⇧)

�1/2
D

1/2
E

�
Trace(D1/2(⌃⇧)�1/2

At(⌃⇧)�1/2
D

1/2)

1 + ⌘Trace(D1/2(⌃⇧)�1/2A
1/2
t (⌃⇧)�1/2D1/2)

=
hAt,

eDi
1 + ⌘hA

1/2
t , eDi

. (269)

Similarly, applying Lemma 46 to the second term on the right hand side of (268), we can get
D
(I+ ⌘eP>

i B
1/2
t

ePi)
�1

, eP>
i Bt

ePi

E
�

Trace(eP>
i Bt

ePi)

1 + ⌘Trace(eP>
i B

1/2
t

ePi)
=

hBt,
ePi
eP>
i i

1 + ⌘hB
1/2
t , ePi

eP>
i i

. (270)

Substitute Eq. (269) and Eq. (270) into Eq. (268) and apply Lemma 45, we can get

1

⌘
Trace[A1/2

t � (A�1/2
t + ⌘ eH(xi))

�1] �
hAt,

eDi
1 + ⌘hA

1/2
t , eDi

+
hBt,

ePi
eP>
i i

1 + ⌘hB
1/2
t , ePi

eP>
i i
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�
hAt,

eDi+ hBt,
ePi
eP>
i i

1 + ⌘[hA1/2
t , eDi+ hB1/2

t , ePi
eP>
i i]

. (271)

Now by Lemma 44 and Eq. (271):

max
i2[m]

1

⌘
Trace[A1/2

t � (A�1/2
t + ⌘ eH(xi))

�1] � max
i2[m]

hAt,
eDi+ hBt,

ePi
eP>
i i

1 + ⌘[hA1/2
t , eDi+ hB1/2

t , ePi
eP>
i i]

�

P
i2[m] z⇧,ihAt,

eDi+
P

i2[m] z⇧,ihBt,
ePi
eP>
i i

P
i2[m] z⇧,i + ⌘[

P
i2[m] z⇧,ihA

1/2
t , eDi+

P
i2[m] z⇧,ihB

1/2
t , ePi

eP>
i i]

=
hAt, b

eDi+ hBt, I� beDi
b + ⌘[hA1/2

t , beDi+ hB1/2
t , I� beDi]

, (272)

where the last equality follows by Eq. (263) and the fact that
P

i2[m] z⇧,i = b.

step 3. In this step, we will show that the numerator of Eq. (272) is lower bounded by 1� ⌘/2b. First
note that we have derived that B1/2

t = A
1/2
t � ⌘A

1/2
t EA

1/2
t in Eq. (266). Then

Bt = (A1/2
t � ⌘A

1/2
t EA

1/2
t )2

= At � (⌘AtEA
1/2
t + ⌘A

1/2
t EAt � ⌘

2
A

1/2
t EAtEA

1/2
t )| {z }

,G

= At �G. (273)

Substitute this into the numerator of (272), we have

hAt, b
eDi+ hBt, I� beDi = hAt, b

eDi+ hAt �G, I� beDi
= Trace(At)� hG, I� beDi
= 1� hG, I� beDi, (274)

where the last equality follows by Trace(At) = 1. Now we intend to find an upper bound for
hG, I� beDi. First note that since A1/2

t EAtEA
1/2
t ⌫ 0, by the definition of G in Eq. (273) we have

G � ⌘AtEA
1/2
t + ⌘A

1/2
t EAt. (275)

Recall the definition of E in Eq. (266), we claim that E � eD. Indeed, since (⌃⇧)�1/2
A

1/2
t (⌃⇧)�1/2

is positive definite, we have

D
�1 + ⌘(⌃⇧)

�1/2
A

1/2
t (⌃⇧)

�1/2
⌫ D

�1
,

Thus
h
D

�1 + ⌘(⌃⇧)�1/2
A

1/2
t (⌃⇧)�1/2

i�1
� D and therefore,

E , (⌃⇧)
�1/2

h
D

�1 + ⌘(⌃⇧)
�1/2

A
1/2
t (⌃⇧)

�1/2
i�1

(⌃⇧)
�1/2

� (⌃⇧)
�1/2

D(⌃⇧)
�1/2 = eD.

(276)

Now we have

hG, I� beDi
Eq. (275)
 ⌘hAtEA

1/2
t +A

1/2
t EAt, I� beDi

= ⌘hE,A
1/2
t (I� beD)Ati+ ⌘hE,At(I� beD)A1/2

t i

Eq. (276)
 ⌘heD,A

1/2
t (I� beD)At +At(I� beD)A1/2

t i

= 2⌘Trace(A3/2
t

eD)� 2⌘bTrace(A1/2
t

eDAt
eD) , h(eD), (277)

where we define function h : Sed
+ ! R. By Eq. (263), beD � I and thus the domain of function h is

domh = {eD 2 Sed
+ : eD � 1

b I}.

We intend to find an upper bound for h(eD). First we prove that h(eD) is a concave function. We can
verify its concavity by considering an arbitrary line, given by Z + tV, where Z,V 2 Sed

+. Define
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g(t) := h(Z + tV), where t is restricted to the interval such that Z + tV 2 domh. By convex
analysis theory, it is sufficient to prove the concavity of function g. Note that

g(t) = 2⌘Trace[A3/2
t (Z+ tV)]� 2⌘bTrace[A1/2

t (Z+ tV)At(Z+ tV)]

= �2⌘bt
2 Trace(A1/2

t VAtV) + 2⌘tTrace(A3/2
t V)

� 2⌘btTrace(A1/2
t VAtZ+A

1/2
t ZAtV) + 2⌘Trace(ZA3/2

t )� 2⌘bTrace(A1/2
t ZAtZ).

(278)

Thus g
00(t) = �4⌘bTrace(A1/2

t VAtV) and g
00(t)  0 because A

1/2
t VAtV ⌫ 0. Therefore g(t)

is concave and so is h(eD). Now consider the gradient of h(eD):

rh(eD) = 2⌘A3/2
t � 4⌘bA

1/2
t

eDAt. (279)

Let rh(eD) = 0, we can get eD = 1
2bI 2 domh. Thus

sup
eD2domh

h(eD) = h

⇣ 1

2b
I

⌘
=

⌘

b
Trace(A3/2

t )�
⌘

2b
Trace(A3/2

t ) =
⌘

2b
Trace(A3/2

t ) 
⌘

2b
, (280)

where the last inequality follows by the fact that all eigenvalues of At lie in [0, 1] and Trace(At) = 1.

Combining Eq. (274) , Eq. (277) and Eq. (280), we can conclude that

hAt, b
eDi+ hBt, I� beDi � 1�

⌘

2b
. (281)

step 4. Now we derive an upper bound for the denominator of the right hand side of Eq. (272). By
Eq. (266), we have

hA
1/2
t , beDi+ hB1/2

t , I� beDi = hA1/2
t , beDi+ hA1/2

t � ⌘A
1/2
t EA

1/2
t , I� beDi

= Trace(A1/2
t )� ⌘hA

1/2
t EA

1/2
t , I� beDi

(a)
 Trace(A1/2

t )
(b)


p
ed, (282)

where (a) follows by the fact that both A
1/2
t EA

1/2
t and I� beD are positive semidefinite, (b) follows

by the following property:

Trace(A1/2
t ) =

X

i2[ed]

�i(A
1/2
t ) 

p
ed
sX

i2[ed]

�2
i (A

1/2
t ) =

p
ed
sX

i2[ed]

�i(At) =
p
ed. (283)

where �i(At) is the i-th eigenvalue of At, the inequality follows by the Cauchy-Schwarz inequality,
the last equality follows by Trace(At) = 1.

step 5. Now substitute Eq. (281) and Eq. (282) into Eq. (272), we have

max
i2[m]

1

⌘
Trace[A1/2

t � (A�1/2
t + ⌘ eH(xi))

�1] �
hAt, b

eDi+ hBt, I� beDi
b + ⌘[hA1/2

t , beDi+ hB1/2
t , I� beDi]

�
1� ⌘

2b

b + ⌘

p
ed
.

(284)

F.5 Proof of Theorem 10

Proof. Let b = 32ed/✏
2 + 16

p
ed/✏

2, ⌘ = 8
p
ed/✏, by Proposition 9, we have

bX

t=1

Trace[A1/2
t � (A�1/2

t + ⌘Ft)
�1]

�

bX

t=1

1� ⌘
2b

b + ⌘

p
ed
=

b�
⌘
2

b + ⌘

p
ed
�

32ed/✏
2 + 16

p
ed/✏

2
� 4

p
ed/✏

32ed/✏2 + 16
p
ed/✏2 + 8ed/✏
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�
32ed/✏

2 + 16
p
ed/✏

2 + 8ed/✏� (8ed/✏ + 4
p
ed/✏)

32ed/✏2 + 16
p
ed/✏2 + 8ed/✏

= 1�
8ed/✏ + 4

p
ed/✏

4
✏ (8

ed/✏ + 4
p
ed/✏) + 8

p
ed/✏

�1�
✏

4
. (285)

Substitute Eq. (285) into Eq. (18) in Proposition 8, we have

�min(
bX

t=1

Ft) � �
2
p
ed

⌘
+

1

⌘

bX

t=1

Trace[A1/2
t � (A�1/2

t + ⌘Ft)
�1]

� �
2
p
ed

8
p
ed/✏

+ 1�
✏

4
= 1�

✏

2
�

1

1 + ✏
. (286)

By Proposition 7, we can get

f

⇣ bX

t=1

Ft

⌘
 (1 + ✏)f⇤

. (287)

F.6 Proof of Theorem 4

In this section, we intend to prove Theorem 4. Our main approach is combining Theorem 3 and
Theorem 10. In order to account for the effect of using ERM ✓0 as surrogate for ✓⇤, we first define
optimal sampling over ✓⇤ (Definition 47) and optimal sampling over ✓0 (Definition 48). Corollary 49
is a direct result from Proposition 9. At the end of this section, we give the proof for Theorem 4.
Definition 47. [optimal sampling in hindsight] Suppose we know ✓⇤, we select points X⇤ defined by

X⇤ 2 argmin
X⇢U
|X|=b

⌦
Hq(✓⇤)

�1
,Hp(✓⇤)

↵
, where q(x) , 1

n0 + b

X

x02X0[X

�(x0
� x). (288)

Denote the empirical distribution on points X0 [X⇤ by q⇤(x).
Definition 48. [optimal sampling over ERM] The optimal sampling over ERM ✓0 is defined by

bX⇤ 2 argmin
X⇢U
|X|=b

⌦
Hq(✓0)

�1
,Hp(✓0)

↵
, where q(x) , 1

n0 + b

X

x02X0[X

�(x0
� x). (289)

Denote the empirical distribution on points X0 [
bX⇤ by bq⇤(x).

Corollary 49. Given ✏ 2 (0, 1), consider ⌘ = 8
p
ed/✏, b � 32ed/✏

2+16
p
ed/✏

2 in Algorithm 1. Then
we have

⌦�
Hq(✓0)

��1
,Hp(✓0)

↵
 (1 + ✏)

⌦�
Hbq⇤(✓0)

��1
,Hp(✓0)

↵
. (290)

Proof. Let X be the set of points selected by Algorithm 1, by Eq. (11) we have:

Hq(✓0) =
1

n

X

x2X

H(x), Hbq⇤(✓0) =
1

n

X

x2 bX⇤

H(x),

where n = n0 + b, and thus
⌦�
Hq(✓0)

��1
,Hp(✓0)

↵
= nf

⇣ X

x2X

H(x)
⌘
. (291)

By Definition 48, we know that bX⇤ is the optimal solution to optimization problem Eq. (13). Since
f⇤ is the optimal value of the objective function in (13), we have

⌦�
Hbq⇤(✓0)

��1
,Hp(✓0)

↵
= n

D� X

x2 bX⇤

H(x)
��1

,Hp(✓0)
E
= nf⇤. (292)

By Theorem 10, we have f
�P

x2X H(x)
�
 (1 + ✏)f⇤. Combining this with Eqs. (291) and (292),

we can obtain Eq. (290).
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Figure 4: Plots of first two coordinates of points draw from the joint distribution pip(x, y).

proof of Theorem 4. By Eq. (7) we have

E[Lp(✓0)]� Lp(✓⇤) .
e
↵1 � ↵1 � 1

↵2
1

·

⌦
(Hq(✓⇤))�1

,Hp(✓⇤)
↵

n0 + b
, (293)

where

↵1 = C3
p

�1⇢

q�ed +
p
ed log(e/�)

�
/(n0 + b), (294)

where �1 = �max(Hq
�1

Hp) . From the step 2 of the proof of Theorem 3, we have with probability
at least 1� �,

1
p
2
Hq(✓⇤) � Hq(✓r�1) �

p
2Hq(✓⇤). (295)

Combining results from step 6 in the proof of Theorem 3 with Eq. (57) in Proposition 31, we can
obtain that with probability at least 1� �,

e
�↵0Hp(✓⇤) � Hp(✓0) � e

↵0Hp(✓⇤), (296)

where

↵0 = C
0
3
p

�0⇢

q�ed +
p
ed log(e/�)

�
/n0, (297)

where �0 = �max(H�1
q0 Hp) , q0(x) is the empirical distribution over the inital labeled points, i.e.

q0(x) ,
P

x02X0
�(x� x

0).

Therefor we have
D�

Hq(✓⇤)
��1

,Hq(✓⇤)
E (a)

p
2e↵0

D�
Hq(✓0)

��1
,Hp(✓0)

E

(b)

p
2e↵0(1 + ✏)

D�
Hbq⇤(✓0)

��1
,Hp(✓0)

E

(c)

p
2e↵0(1 + ✏)

D�
Hq⇤(✓0)

��1
,Hp(✓0)

E

(d)
 2e2↵0(1 + ✏)

D�
Hq⇤(✓⇤)

��1
,Hp(✓⇤)

E

= 2e2↵0(1 + ✏)OPT, (298)

where (a) and (d) follow by Eqs. (295) and (296), (b) follows by Corollary 49, (c) follows by the fact
that bq⇤ is the optimal sampling distribution to minimize h(Hq(✓0))�1

,Hp(✓0)i (see the definition of
optimal sampling over ERM in Definition 48).

By Eqs. (293) and (298), we can obtain Eq. (9).

G Additional experimental details

G.1 Synthetic experiments

We use numerical tests on synthetic datasets to demonstrate the two excess risk bounds derived in
Theorem 32 (detailed version of Theorem 3): Eq. (61) and Eq. (62).
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Figure 5: Excess risk of q(x) as a function of n, d and c� 1. The dashed black line in the left plot
indicates inversely linear relation. The dashed black lines in the center and right plots indicate linear
relations.
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Gaussian Setup. For a given dimension d, we choose p(x) ⇠ N (0,Vp), where Vp = 100Id. For
a given class number c, we define ✓⇤ 2 R(c�1)⇥d such that points generated by p(x) are almost
equally distributed across the c classes. Besides, we normalize the row of ✓⇤, i.e. k✓⇤,ik2 = 1. In
Fig. 4, we plot the first two coordinates of the points draw from the joint distribution pip(x, y), where
each point is colored by its class id.

We use Monte Carlo method to approximate the risk of p(x) at a given parameter ✓, i.e. Lp(✓) =
E(x,y)⇠⇡p(x,y)[`(x,y)(✓)]. In specific, we draw N = 50, 000 i.i.d. points {xi}i2[N ] from p(x), for
each xi, we draw M = 100 i.i.d. labels {yij}j2[M ] from p(y|xi, ✓⇤), then we can estimate the risk
by

Lp(✓) , E(x,y)⇠⇡p(x,y)[`(x,y)(✓)] = Ex⇠p(x) Ey⇠p(y|x,✓⇤ [`x,y(✓)]

⇡
1

N

1

M

X

i2[N ]

X

j2[M ]

`(xi,yij)(✓). (299)

Demonstration of excess risk bound for q(x) (Eq. (61)). We use q(x) ⇠ N (0, 100Id) to demon-
strate Eq. (61). Let {(xi, yi)}i2[n] be samples i.i.d draw from ⇡q(x, y). Denote the ERM estimate as
✓n defined by Eq. (4). In Fig. 5, we plot the excess risk with respect to q(x) (i.e. Lq(✓n)� Lq(✓⇤))
against n, d and c� 1. From theses plots, we can observe that the excess risk almost linearly depends
on 1

n , d and c� 1 respectively. This observation is consistent to our upper bound derived in Eq. (61).

Demonstration of excess risk bounds for p(x) (Eq. (62)). In § 5, we have introduced the different
types of q(x) used in dilation and translation tests. In Fig. 6, we plot the relations of �max(Hq

�1
Hp)

(which is � in Theorem 32) and FIR (hHq
�1

,Hpi. For the dilation tests, we present the plots of
excess risk of p(x) vs FIR, n, and FIR/n respectively in Fig. 7. We plot the results for translation
tests in Fig. 8. As mentioned in Section 5, these results are consistent to the bounds we derived in
Eq. (62). One interesting finding is that from the lower rows of Figs. 7 and 8, the excess risk is upper
bounded by 9

5
FIR
n when n is large. This observation is consistent with the upper bound we derived in

the bounded domain case (Eq. (194) in Appendix E).

Non-sub-Gaussian distributions. We consider two non-sub-Gaussian distributions: multivariate
Laplace distribution and t-distribution. For q(x), we only consider the translation case. We fix c = 2
and vary d, n and q(x). In Fig. 9, we plot �max(Hq

�1
Hp) vs FIR in different distributions. For

multivariate Laplace distribution tests, we plot excess risk of p(x) vs FIR, n and FIR/n respectively
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Figure 7: Gaussian dilation tests: excess risk of p(x) vs FIR (upper row), n (middle row) and FIR/n

(lower row). For all plots in the lower row, the less transparent dots represent the larger sample size
n, the black dashed lines represent linear relation y = 9

5x.

in Fig. 10. We plot results for the multivariate t-distribution in Fig. 11. We can observe that the
results are consistent to the excess risk bound derived in Eq. (7), even though we have sub-Gaussian
distribution assumption in Theorem 3.
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Figure 10: Multivariate Laplace distribution test: excess risk of p(x) vs FIR (upper), n (middle), and
FIR
n (lower), the black dashed lines have slope 1 in upper and lower rows , and slope -1 in the middle

row.
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Figure 11: Multivariate t-distribution test: excess risk of p(x) vs FIR (upper), n (middle), and FIR
n

(lower), the black dashed lines have slope 1 in upper and lower rows , and slope -1 in the middle row.
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Algorithm 3 Spectral embedding via normalized graph Laplacian
Input: data points X 2 RN⇥D, nearest neighbor number k, target out put dimension d

Output: bX 2 RN⇥d

1: Obtain k-nearest neighbor graph G on X.
2: Obtain adjacency matrix A and its degree matrix D from G (using ones as weights).
3: Calculate normalized Laplacian L I�D

�1/2
AD

�1/2.
4: Calculate the first d eigenvectors of L (corresponding to the d smallest eigenvalues of L):

{vi}i2[d].
5: Form matrix bX by stacking {vi}i2[d] column-wise.

G.2 Real-world Datasets

Data pre-processing. We use unsupervised learning to find an appropriate feature space that we
can then use for multi-class logistic regression. SimCLR [21] is a framework for contrastive learning
of visual representations. It learns representations by maximizing agreement between differently
augmented views of the same data example via a contrastive loss in the latent space. We also employ
a spectral embedding using the normalized nearest-neighbor graph Laplacian to extract features. We
present the algorithm in Algorithm 3, where we use k = 256 as the number of nearest neighbor for all
three datasets. Below, we provide a more detailed description of the preprocessing steps performed
for each dataset.

• MNIST. We use the normalized Laplacian to reduce the dimension of the input data to dimension
of 20. In Algorithm 3, N = 60, 000, D = 784, and d = 20. For the active learning runs, we
randomly select m = 3, 000 points (with 300 points in each class id) to form the unlabeled data set
U .

• CIFAR-10. First, we use pre-trained SimCLR model on the whole training data and extract the
feature maps from the last layer (with dimension 512). Second, we use the normalized Laplacian
to reduce the dimension of the training data to dimension of 20. In Algorithm 3, N = 50, 000,
D = 512, and d = 20. For the active learning tests, we randomly select m = 3, 000 points (with
300 points in each class id) to form the unlabeled data set U .

• ImageNet-50. We first randomly select 50 classes from the training set of ImageNet. We use pre-
trained SimCLR model and extract the features with dimension 2048. Then we use the normalized
Laplacian to reduce the dimension of the training data to dimension of 40. In Algorithm 3,
D = 2048, and d = 40. or the active learning tests, we randomly select m = 5, 000 points (with
100 points in each class id) to form the unlabeled data set U .

Tuning hyperparameter ⌘. In Algorithm 1, we have to set the learning rate ⌘. We try different ⌘

and select the one that maximizes �min(
Pb

t=1
eH(xit)) since this is our goal of the sparsification step

(lines 3-11 in Algorithm 1). Note that for each round of active learning, we only need to solve the
relaxed problem Eq. (14) once. Furthermore, tuning ⌘ does not require labeling information.

Additional results. We have presented the classification accuracy on unlabeled set in Fig. 3. In
Fig. 12, we plot the normalized weights z⇧ (i.e. the solution of the relaxed problem Eq. (14)) at each
round of active learning tests. We present the images selected by different active learning methods
for MNIST (Fig. 13), CIFAR-10 (Fig. 14), and ImageNet-50 (Figs. 15 and 16).
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Figure 12: Normalized weights z⇧ (solution of Eq. (14)) at each round of active learning tests.
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Figure 13: Selected samples for MNIST at the first round of active learning test.
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Figure 14: Selected samples for CIFAR10 at the first three rounds of active learning test.
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Figure 15: Selected samples for ImageNet-50 at the first round of active learning test.
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Figure 16: Selected samples for ImageNet-50 at the first round of active learning test.
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