Appendix

The appendix is organized as follows. In Appendix[A, we provide an introduction to some fundamental
probability tools that are utilized in our proofs. Specifically, we discuss sub-Gaussian and sub-
exponential distributions in Appendix and present Bernstein-type inequalities in Appendix [A.2]
In Appendix |B] we summarize the properties of the multi-class logistic regression model that are
needed in our proofs. Specifically, in Appendix we present the generalized linear model
formulation of the multi-class logistic model and in Appendix we discuss the gradient and
Hessian of the loss function. In Appendix [B.3] we introduce pseudo self-concordant functions. In
Appendix |C| we present a thorough proof of one of our fundamental results, specifically Theorem
In Appendix D, we delve into the properties of some essential constants utilized in constructing the
results of Theorem In Appendix E, we provide the excess risk bounds for the case of p(x) having
bounded support. The proofs of the main results of Section d4{are provided in Appendix [Fl Finally, in
Appendix [G, we provide more details of our numerical experiments.

A Probability tools

A.1 Sub-Gaussian and sub-exponential distributions

Definition 11 (Sub-Gaussian random variable). A random variable x is sub-Gaussian if there exists
c1 > 0 such that P(|z| > t) < exp(1 —t2/c?) forall t > 0.

Lemma 12 ( Proposition [22]] in [23]]). Let x be a sub-Gaussian random variable. Then the following
properties are equivalent, with parameters c; > 0:

(1) P(|lz| > t) < exp(l —t*/ci), forall t > 0.
(2) (E|z|P)Y/P < co/p, forallp > 1.
(3) Eexp(z?/c3) < 2.

Definition 13 (Sub-Gaussian norm). Let x a sub-Gaussian random variable. The sub-Gaussian norm
of x, denoted ||| ,, is defined as follows:

|||y, = inf{t > 0: Eexp(2?/t?) < 2}.

Lemma 14 (Sub-exponential random variable). Let © be a random variable. We say that x is
sub-exponential if there exists c; > 0 for which one of following properties is true. Furthermore,
these properties are equivalent.

(1) P(Jz| > t) < exp(l —t/cy)forallt > 0.
(2) (E|z|P)/? < copforall p > 1.

(3) Eexp(|z|/cs) < 2.

Definition 15 (Sub-exponential norm). The sub-exponential norm of x, denoted ||x||,, is defined as
follows:

||y, = inf{t >0:Eexp(|z|/t) < 2}.

Lemma 16 (Sub-exponential is sub-Gaussian squared, Lemma 2.7.6 in [23])). A random variable x
is sub-Gaussian if and only if 2% is sub-exponential. Moreover;

22y, = 1[I, -

Definition 17 (Sub-Gaussian random vectors). A random vector Z € R? is sub-Gaussian if (Z,u) is
sub-Gaussian for all u € RY, with ||u||a = 1. The sub-Gaussian norm of Z is defined as

1Z]ly, = sup [(Z,u)ly,-
ueSd-1

Lemma 18. Let Zy,---,Z, be independent centered sub-Gaussian random vectors, then
n n
12201 Zill3, < i 1 Zall%,-
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Lemma 19 (Affine transformation of sub-Gaussian vectors, Lemma A.5 in [24]). Let X € R such
that E[X] = 0, & := E[XX "] and |£~'/2X ||y, < K. Then for any A € R¥™? and b € R?,

X=AX+b satisfies
1=7V2X |y, S K, where $=FE[XXT].
The following lemma gives a high probability bound for the quadratic form ||:1:H§:,1 of a non-centered

sub-Gaussian vector z, where 3 is the covariance of x. The result can be viewed as a corollary of
Theorem 2.1 in [25].

Lemma 20 (Tail inequalities for quadratic form of sub-Gaussian vectors). Let J € R?*? pe a
symmetric, positive semi-definite matrix. For any § € (0, 1) the following is true:

(1) If * € RY is a zero-centered sub-Gaussian random vector, i.e. E[x] = 0 and there exits K > 0
such that ||z||y, < K. Then we have with probability at least 1 — §,
lz)5 S K*(Trace(J) + V| J|| log(e/3)). (25)
(2) If x € R? is a sub-Gaussian random vector with | £7/2z|,, < K, where & = E[zaT]. Then
with probability at least 1 — 0,
2|30 S K2(d + Vdlog(e/d)). (26)

Proof.

(1) By Theorem 2.1 in [25]], we have for all ¢ > 0,
P [||$||_2] > K?(Trace(J) + 24/ Trace(J2)t + 2||J||t)} < exp(—t). (27)
Let t = log(1/4) in Eq. , since \/Trace(J2) = || J||r < V/d||J||, we can get Eq. .

(2) Note that we can not directly derive Eq. (26) from Eq. (25) since x is not zero-mean. But
we can shift z to an isotropic sub-Gaussian random vector. Indeed, let 1 = E[z] and X =
E[(z — p)(z — u) T]. Then 261/2@ — 1) is centered isotropic random vector. By Lemma|19,

. . L —1/2
affine transformation of sub-Gaussian random vectors are also sub-Gaussian, i.e. 3 / (x—p)
is also sub-Gaussian and

1262 (@ = w)llu, S K. (28)
Denote J = 21/ 2 12(1)/ 2, By Sherman—Morrison formula, we have
By X!
Sl=Cg+pup )=yt - 20 0 29
(o + pp ) 0 1+MT251N (29)
and thus
[T <1, (30
2—1/2 2—1/2 T 2—1/2 2
e = - SR B < Pl <2y
L+ 25 " ull3 + 1130 7 pell3
Tzfl
Trace(J) = (X7, Bg) = Trace(Iy) — Niof‘l <d. (32)
1+ p"3,

By Eq. (25), we have with probability at least 1 — &,
2 —Mllz =110 P (@ = w15 S Trace(I) + K(|3 )21/ 10g(1/6) + ||| log(1/5))
< K2 (d + ﬂlog(e/a)). (33)
In addition, by Eq. (29),

Ty—1,12 Ty—1
2 Ty-1 Ty-1 (n Xy p) IRy
a=p X p=p 8 p— = <1 34
plls— = N s~ i W (34)
Combining Egs. (33) and (34), we obtain
s < (o = gl + lse)? S K2(d 4 Vallog(e/s). 35)
O
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A.2 Bernstein-type inequalities

We give Bernstein-type inequalities for vectors and matrices in the following lemmas. These properties
are used in the proof of excess risk bounds in the bounded domain case (Appendix [E).

Lemma 21 (Vector Bernstein inequality; see Theorem 18 in [26]). Let x1, 22, - - , x, be independent
random vectors such that

Elzi] =0, |lillz <p and Efllzi|3] <v, Vi€ [n].
Let S =157 'z, Thenif0 <e<v/p,

ne? 1
P[||S]l2 > €] SeXp<*87+1)~ (36)

Lemma 22 (Matrix Bernstein inequality; see Theorem 19 in [26]). Let X1, Xy, - -+ , X,, be indepen-
dent random Hermitian matrices with common dimension d X d such that

EX;]=0, [Xillz<p and E[|Xil3] <v,  Vie[n].
LetS = %Z:’Zl X;. Then if 0 < e < 2v/p,

TL€2

P[[[S]]2 > €] < 2d-exp (— 4—1/) (37)

B Multi-class logistic regression and pseudo self-concordance

In Appendix B.1} we present some properties of the gradient and Hessian of £, . (¢) with respect to
6. In Appendix|[B.2, we show that the multi-class logistic regression model is a Generalized Linear
Model. Then we present some properties related with the pseudo-concordance in Appendix [B.3.

Notation. Given y € [¢] and 7 € R°~!, we define the loss function £(y,7) by

exp(ny)
E(y 77) LS B lOg (1+Zze[c71]yexp(m))’ ye [C N 1] (38)
’ 1
—log (s yemm ) Y= C

where 7, is the y-th component of 7. Note that given x € R?, y € [c] and § € R(¢=D*? _if we let
n = Oz, then

E(y7 77) = g(m,y)(e)v
where ((, ) = —log p(y|z, 0) (Eq. ).

To differentiate the derivatives with respect to 1 and 6, we use ¢'(y,n) to represent the gradient of the
loss with respect to 7, and V£, ,,)(f) to represent the gradient of the loss with respect to 6. Similar
notations hold for higher order derivatives.

B.1 Properties of multi-class logistic regression

We present the expressions of gradient and Hessian of the loss function £(, ,(6) with respect to 6 in
the following proposition.

Proposition 23. Given a sample point x € R, its label y € |c], and parameter 6 € R(e=Dxd jp
the multiclass logistic regression model. We consider the negative log-likelihood loss {(, ,(0) =
—log p(y|x, 0), where p(y|x,0) is defined in Eq. (1). Let ¢ Lc-1,d2 d(c—1), 0; be the i-th row
of 0. Define vector h(x,0) € R€ by

exp(z"6;)
L+ cqexp(@’os)’

h;(z,0) = p(y = ilz,0) = Vi € [d].
Then the gradient and Hessian of {(,, . (0) w.r.t 0 can be expressed in the following ways:
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(1) Gradient Vi, (0) € R®*4 is given by

ﬁl (y,l‘ 9)
V(2,4 (0) = ) (39
Bc(yﬂc 9)
where Bi(x,y,0) = —1¢,— +hy(z,0).
(2) Hessian Vzé(gw) 9) RIxd jg given by
V20 (0) = (diag(h(z,0)) — bz, 0)h(z,0) ") @ (z27)
an(z, 0z’ - agg(w, 0)zx T
= : . : ) (40)
az (z, 0z’ - ag(r,0)zr’

where a; j(0) = 1;—jyhi(x,0) — hy(z,0)h;(z,0).

Lemma 24. Given a point x € R, Eyp(y12.0.) [V (2y)(0:)] = 0. In addition, let p(z) be a point
distribution and Ly,(0) be the expected loss at 0, then

VL,(0,)=0. (41)
Proof. Since V{(, ,y(0) = —Vglogp(y|z, ), we have

]Eyfvp(yh:,@*)[Vé(w,y)(e*)] = - Z p(y = k|l‘, 9*)v9 logp(y = k‘ma 0*)

ke(c]
== 3 ol = bl 0) T )
kE[c] p y - y Uk
==V ( Y ply = kle,0.)) = -Vl =0. 42)
keld]
Thus,
V(?( y~p(y|z,0. [E(:L’,y)(e)])’ =0, Ey~p(ylm¢9*)[vg(m,y) (0.)] = 0. 43)

Since VL;D(G) =Vpy fp(i) Eyrvp(y\:c,@*)[g(xa y)(@)]dlﬁ = fp(ﬂf)VQ Eyf\/p(y\w,@*)[g(xa y)(@)]dl‘, by
Eq. @3), we have

VL, (0.) = / PV (Eyptyte ) ) (O)]) |, d = 0. (44)

O

The following lemma is a basic property for Fisher information matrix.

Lemma 25. The Fisher information matrix for a point x at parameter 0 is defined by
Eyop(ylz 0., [V .y) (0)(Viizy)(0) ], then

Eyp(yle.0.) [V ) (0) (VE(24) (02)) ] = Eypiyla0.) [V 2w 4) (02)]- (45)

Proof.

Vp(ylz,0.)) | Vp(ylz,0.)Vp(ylz,0.)"

V2€ ) 0* = - : + ! :
@ (0) = == 0 1 0,) PN
V2p(ylz,0.)) T
— X BRI v, Ve
p(y|3379*) ( 7y)( )( ,y)( ))

Thus,

EyNP(y\w,G*)[VZ(w,y)( )(Vé ,y)( ))T]
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V2p(ylz, b))
=E,wpyle V2€w, 0] +Eyoniyle {’
y~p(y| ,9*)[ ( 7y)( )] y~p(y|z,0.) p(y\m,H*)

2
Vh(yl.0.)
plyle.6.)

=Eymp(ylz,0.) [V (2, (0:)] + V? /P(y\xﬂ*)d(f = Eyp(yl,0.) [V () (02)]-

:EyNP(y\x,e*)[Vzg(x,y)(a*)] +/p(y|9:,0*)

B.2 Multi-class logistic regression as a Generalized Linear Model (GLM)

Definition 26 (Exponential family model). Suppose p is a base measure on space ) and there exists
a sufficient statistic T : Y — R€. Then the exponential family associated with the function T'(y) and
measure | is defined as the set of distributions with densities p(y|n) w.r.t u, where

p(yln) = exp({n, T'(y)) — A(n)) (46)
and a(n) is the cumulant function defined by

A(n) £ log /y exp((n, T(y)))dp(y) (47)

whenever a is finite.
Definition 27 (Generalized linear model with canonical response function). Generalized linear model
with canonical response function is a model assuming that:

1. the input x € R? enter into the model via a linear combination n = 0z,
2. the output y is characterized by an exponential family distribution (Definition26)).

In the following lemma, we remark that the multi-class logistic regression model is a generalized
linear model. The proof is trivial.

Lemma 28. Multi-class logistic regression is a generalized linear model with canonical response
Sunction with m, A(n) and T (y) defined as the followings:

n = [log(hy /h.),log(hy/h,), - - ,log(he_y /hc)] T (48)
A(n) = —logh, (49)
T(1) =1[,0,---,0]", -, T(c—=1)=1[0,---,1]", T(c)=1[0,---,0",  (50)

where h; = p(y = i|z,0) (p(y|x,0) is defined in Eq. (1))).

B.3 Pseudo self-concordance

Lemma 29 (pseudo self-concordance of multi-class logistic regression model). (y,n) is pseudo
self-concordant, i.e.

Vhe R, |07 (y,n)[h, b B < 20 Rl (y, m) [, B (D

Proof. By Lemma[28|and Equation (46),
£(y,n) = —logp(y,n) = —(n, T(y)) + A(n).

From theory of the exponential family distributions, we have

A) =BT, A0 =ET6) ~ETWDZ] 4”0 =ET6) BTG
where we denote the pth order tensor for a vector x as
P =2Rr® Q.
—

p times
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Note that £P) (y, 1) = A®) (1) whenever p > 2, then we have
1" (y,m)[h, by h]| = | E [(T(y) — E4[T(y)]))*°[h, b, h]]|
= |E [(T(y) = Eq[T)])*?h, AT (y) = Eq[T(y)], 1)] |

< sup [(T(y) = E,[T(y)], ) |€" (y,n)[h, ]

—_ —

~-E,
~-E,

(a)
< 2sup [|T(y) |1 [|2lloc” (y, 1), h]
yeY

®)
< 2||hlloot” (y,m)[h, h], (53)

where (a) follows by Cauchy-Schwarz inequality, triangle inequality, and ||E,[T(y)]|l2 <
EyIT(y)ll2 < supyey [T(y)[l2, (b) follows by the fact that |T(y)|]z = 1 for y # c and
T (y)]]2 = 0 for y = ¢ (Lemma 28). O

The previous lemma states the pseudo self-concordance of ¢(y, ) w.r.t ). The following proposition
states that the empirical loss function is pseudo self-concordant w.r.t 8, which is a corollary of the
previous lemma via chain rule.

Proposition 30. For multi-class regression model, we fix 0,01 € R(c=xd Lot 9, = 0+ t(61—0o),
we define ¢, (t) by

1 n
n(t) == — Liw. 41(0:). 54
(i) () n; ( 'myz)( t) ( )
Then we have
| (1)] < 267, (t) max||(6; — 60)zilleo (55)

Proof. Denote A = 6, — 6, then 6; = 6y = tA. Following chain rule and the smoothness of /, we
obtain that the derivatives of ¢(t) and ¢,,(t) are given by

n

1

i=1 p times

Applying Lemma[29] we can get

LS i ) [ A, A, A

=1

1 n
- > 20| Anflool” (yi, Or:) A, A
1=1

6" (2)]

IA

IN

< 2¢, (1) ?El‘ﬁf]( [|(61 — 00) ;|| oo-
O

The following proposition forms the foundation of our proof of Theorem [3] It gives lower and upper
bounds to perturbations of pseudo self-concordant function.

Proposition 31 (Proposition 1 in [27]). Let F : © — R be a convex C3-mapping. Fix 04,0, € O,
let A = 6y — 0 and 0, = 6y + tA fort € R. Define function ¢r(t) = F(0;). Assume that
Ho £ V2F(0y) = 0, [¢'2(t)] < R||All2 - ¢’ (t) for some R > 0. Denote S = R||A||2, we have

S

S
T e’ —5—-1
1Alf, < F(01) = F(0) = (VF(09) A< —— Al (56)

e SHy < V2F(6,) < ¢°H,. (57)

e S +85—-1
52
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C Proof of Theorem[3

We first give the detailed version of Theorem[3 in Appendix [C.Il In Appendix [C.2] we present a
sketch of the proof for the excess risk bounds in Eq. (7). In Appendix we provide and prove a
tail bound for a certain type of random matrices, which is useful in our full proof. Finally, we give
the full proof of Theorem [3|(Theorem 32) in Appendix [C.4.

Notation. For the ease of notation, we define the empirical risk over finite samples @, (¢) and its
Hessian H,, (6) by

O € argminQn (6 Z o (@i, 9i) " (), (58)
Le[n]
H,,(0) £ V2Qn(6). (59)

In addition, let A € R™" be the vectorization of a matrix A € R™*" by stacking all rows together,
ie. A= (A, .-~ A)T where A; is i-th row of A.

m

C.1 Detailed version of Theorem 3]

Theorem 32. Suppose Assumption|I|holds for both p(z) and q(x).Let o, p and v > 0 be constants
such that H,(0,) < cHg, I._1 ® V, < pH,(0) and V, < vV, hold. Whenever

n 2 max {K;q(r)glog(ed/é), O'pl/KainqK;q(’l’) (glv+ \/glog(e/d))} , (60)
where d 2 d(c — 1), we have with probability at least 1 — 0,
d+ \/;10 e/d
Ly(0n) — Ly(0,) 5 13, VIO, (61)
—a _ -1 a . -1,
e “+a—-1H, HP,S]E[Lp(en)]_LpSe a—1H, Hp. 62)

o? n o? n
Here H, = H,(0.) and H, = H,(0.); and E is the expectation over {y; ~ p(yi|x;, 0:)}7—;.
Furthermore,

= O(VapKo K14 Ko (r (M (d+ Vlog(c/6) /n). (63)

C.2  Proof sketch of Eq.(7)

Here we present the basics of step 6 in the full proof of Theorem [3|(see Appendix [C.4). Some details
of this step are established in the steps 1-5 of the full proof.

Let 0y = 0., 01 = 0,, and A £ 0,, — 0... Define ¢, () = L, (0. +tA), we first prove that there exits
a > 0s.t [ (t)] < agy(t). Thus the premise of Proposmonlils satisfied. By Eq. (]:) and the

fact that VL ( ») = 0 (Lemma24), we have

e “+a-— e“—a—1 -
AL AI, < L0~ Loo) < TSR, (64

By Taylor theorem, there exists 0 between 0,, and 0, such that
VQn(0,) = VQn(6,) + Hy(6)A = H, (A)A, (65)

where the last equality follows by VQ,, (f,,) = 0 because the empirical loss Q,, is convex and 6, is
its solution. We can prove that if the sample bound Eq. (6) holds,

H, (0) ~ H,, (66)
where “~” means that there exits a1, az > 0 such that a,H, < Hn(é) = agH,. Thus we have

181, = ATH,A ~ ¥Q,(0.) " (H, ' H,H, ) VQ, (0.)
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= (H,"H,H, ", VQ.(0.)VQ.(0.) ). (67)

Then we prove that

= - 1 1
E{yimp(yilonoir, [VQn(0:)VQn(6.)T] = ﬁHn(H*) ~ ﬁHq. (68)
Substitute this into Eq. (67), we have
o 1 _
E(yip(uilecpyi, (187, &~ (Hy ' Hy). (69)

By taking expectation over Eq. and using Eq. (69), we can get Eq. (7).

C.3 Supporting tools

In the following proposition, we present and prove a tail bound for the average sum of independent
random matrices {A;};c[n satisfying E[A;] = T and Eq. (70).

Proposition 33. Let Ay, --- , A, be d x d be independent symmetric matrices such that E[A;] = I5.
There is constant K > 0 such that for any i € [n],
sup |lu' Asully, <K, (70)
ueSd-1

where S4=1 is the unit sphere in RY, | - |y, is the norm for sub-exponential random variable
(Definition E}. Define matrix S,, = % Z?Zl A,;. Then for every t > 0, with probability at least
1 — 2exp(—ckt?) we have

CxVd+t

N (71)

n — 15| < maxqa,a”y, where a =
S, — I < 2 h

Here ck , Cy, are constants that depend on K.

Proof. The proof follows a covering argument. We consider 1/4—net A/ of the unit sphere S d-1,

By Lemma 5.2 in [22], [N < 9‘7. Since S,, is symmetric, we can use Lemma 5.4 in [22]] to bound
matrix operator norm using points in 1/4—net N:

-
[Sn — I3 < Zgleaje/(K(Sn —Ig)a:,x>’ = 2111163/\)[(‘916 S,z —1

) (72)

where the last equality follows by ||z|l2 = 1 on /. Thus it is sufficient to prove with the given
probability,
Zm%c ’xTSnx - 1' < max{a,a’} £ e (73)
TE
Pick an arbitrary z € A, then

nz' Spx = Z T Az 2 Z ZZ-Q, (74)
i=1 i=1
where we define random variable Z; £ 2" A;z. We have the following properties for Z;:
E[Zi] = E[xTAia:] = <xT,E[Ai]x> =1,
T (a)
1Zillg, = Nz Aizlly, < K,

(v)
1Zi = Uy, = 12 = E[Zi]lly, < 2[|Zilly, < 2K,
where inequality (a) follows by Eq. (70), inequality (b) follows by Jensen’s inequality.
Thus Z1 — 1,75 —1,--- , Z, — 1 are independent centered sub-exponential random variables. Using

Corollary 5.17 in [22]], we can get

€ 1< € c .
]P’(|xTSnx— 1| > 5) :P<|E ;(ZZ -1)| > 5) < Zexp[—K—l2 min(e, €2)n]
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< Qexp[f%cﬂn} < Zexp[f%(clz(cflmr t3)].

Take the union bound of all x € N, let

CK:%a Crx = K+/log9/ci,

we have
€ n C1 ~
P <£;ne%\}/( |xTSnx -1| > 2) <9 -2exp[—ﬁ(0%d+t2)]
01t2
< 2exp [plog9 —djlog9 — ﬁ}

le2 9
= 2exp(—ﬁ) = 2exp(—ckt?).

As we noted in Eq. (73)), this completes the proof.
Corollary 34. Under the premise of Proposition|33| whenever
n 2 K*(d +log(1/4)),
with probability at least 1 — 0,
1/21; S, =< 3/2I3

Proof. Lett = 2K+/log(1/6)/c1, by Eq. we have
iKQ log(1/24)

2exp(—cxt?) < 2exp (— 74
C1

) =4
Letn = %KQ(CT—F log(1/4), then

oVt RV VIgD)

Vv 252 /T
EK d +log(1/6)

<

)

DN | =

and thus max{a, a®} < 1/2. Therefore, with probability at least 1 — d, we have
1
IS0~ 13l < 5,
and thus 1/2157 <'S,, < 3/2I .

C.4 Proof of Theorem [3|(Theorem

(75)

(76)

(77)

(78)

(79)

(80)

81

(82)

We present the full proof of Theorem [3 as the following. Some of the techniques used in the proof

are inspired by [24]].

Proof. By the definitions of o, p and v in Theorem [3] we have the following basic inequalities. Given

vectors v € R% and u € R‘I, we have the following norm relations:
lvllv, < Vvivlv,, [vlly-1 < VVlvlly-r,
lulla, < Vollulls,,
lully, < Volulls,,

where \pr 21,8 V.

(83)
(84)
(85)

step 1. Let V,, = \/ﬁHp_l/ 2662”(0*), then V,, is a centered, isotropic sub-Gaussian random vector.

Indeed, since VQ,,(6,) = 1 2 ien) VL., (0.), we have
1 -
E  [Vo]=—H, Y2y E. .. [Vl (0,)]=0
{zi~7rq}?:1[ ] N iez[n] ol (6]
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1 - -
E [VaV/]= H/(n > Eenp[VE(0.)VE, (9*>T])Hq”2

{Zi“"ﬂ'q}?:1

1€[n]
=H, '*HH,? =1 (86)
By Lemma(T§]
1 e
IValls £ 2 1 =M AV 0I5, = K (87)
i€[n]

Now we apply the upper bound for quadratic form of sub-Gaussian random vector derived in Eq.
from Lemma[20] we can get

Kfq(Zh ﬁlog(e/a))

= 1 ;
IVQu(0)lEr, -+ = L lIVall2 S - : (88)

step 2. W.l.o.g we assume that Assumption E holds with 7 = O(1) and denote Ko , = Ko ()

Ko, = Ky ,(r) for ease of discussion. Now we show that the Hessian H,(6) is a good approximation
to H, forany 6 € B, #(0.) = {0 : |0—0.|lv,,cc <7}, where? = 1/cfor some constant ¢ depending

on Ko,q and Ko 4.
Fix 0y = 0, and pick arbitrary 6; € O, let 6, = 0y + tA, where A £ 0, — 6. Define function
$q(t) £ Lg(0r) = Eorr, [£2(61)] (89)

Our goal is to show that ¢, () is pseudo self-concordant, i.e. we intend to get some constant C' > 0
s.t. |¢g ()| < Oy (t). First we observe that

O (t) = B, yymm, [ (4, 0:2) [A, Az]] = By ), [AT (V2 ) (0r2)) A]
= AT By gy, [V ) (002)] A = | Al 5, (90)
Note that £(y, ) is the loss function defined in Eq. and ¢”(y,n) is the Hessian w.r.t 7).
On the other hand, by Lemma@lwe have
165 (1) < Ea gy, [0 (y, 02)[Az, Az, Az]]]
< 2E (s y)mm, [y, 6:0)[ Az, A Az o]

2
< 0B m, [((0,002) A2, )3 [, (1A 1)
where the last inequality follows by Cauchy-Schwartz inequality.

Now we bound both of the square root terms in Eq. (91). For the first square root term, let A2
H, (6,)'2A/||Allw, (6,)> then A = || A1, (0, Hq(6:) "'/2A and || A]|2 = 1. We have

6//(% etl')[Al', A.’L‘] = &Tv2g(z,y) (etx)&
= ||A||%1q(9t)ATHq(9t)_1/2V2f(m’y) (0,2)H,(6,)"/2A. (92)

We claim that £ (y, 0;x)[Az, Ax] is a sub-exponential random variable. Indeed,

@ - "
'y, 6r)[Ax, Azl < A o, 1A TH(80) T2V (Gr2)Hy (6) 72 A

Y1
®)
IRy sup [[0TH (622 (B HL, (60 2ul,
ueSd-1
© 2y
< A, 0 K 2.0 (93)

where (a) follows by Eq. (92), (b) follows by the fact that | 3”2 =1, (¢) follows by Assumption
By the property of sub-exponential random variable in Lemma [14H(1)| we can obtain that

2 —2 e Eq. -2
Bz yymm, [(£7(y, 00)[Az, Ax))"] S Ko | Al 0,) R ()2 (94)

Y
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On the other hand, let A;r be the ith row of A € R(¢=U*d_ For z: ~ q(z), define random variable
£(z) £ ||Az||oo, we claim that (z) is sub-Gaussian. Indeed,

€)= [Azlloe = max [(z, Ai)| = max [(V, ;P VA
i€[c—

i€le—1]
) V1 24,
= s IV (Vi o )
i€fe—1] Va2 Ad
V1/2A- V1/2A,
< ||lA max <V1/2$, 1 l>‘é A ‘<V1/2$7W>‘ 95)
180y, oo 2% Va2 A )| 2 18 v Va2 1A T

where we define i(x) for each x as the index such that the maximum is attained. Now we have

Vl/zAiw
le@llva < [|A]l, OOH< e HA(H(V)>

< HAHVq,oo uES}S‘l‘E)—l ||<V;1/2.’E,'LL>||¢2 = HAHVWOOHV;UQZEHQPQ

< [Ally, o« Ko (96)
where the last inequality follows by Assumption [IH(1)] Applying Lemma [I2}j(2)] we have

2
E (s, (187113 = Bong[IE@)P] S | Ally, K5 o ©7)

Now substitute Egs. and into Eq. (91)), we can prove that ¢, (¢) is pseudo self-concordant:
|65 (0] < ClAIv, Ko K2l Allfr, 5, = ClAlV, 0 Ko K28 (8), 98)

where the last equality follows by Eq. (90). We consider the ball B, #(0,) = {# € © : ||§ —
0+|lv,.00 < T}, where 7' is defined by
2 1

C log \/§ . K07q?27q '

r

99)

Thus for any 6 € B, ~(6.), by Eq. (98)
|6y ()] < log V2 ¢y (1). (100)

Now we satisfy the premise of Propositionby setting S = log /2. With Eq. we can conclude
that for any 6 € B, #(6.),

1/vV2H, < H,(0) < vV2H,,. (101)

step 3. In this step, we consider an e-net V. on ball B, #(6.) under metric || - |[v, oo (7 is defined in
Eq. (99)). We intend to approximate empirical Hessian H,, (0) using H,,(6'), where 6’ € N-.

Since {;}?_, are drawn independently from ¢(x), by (26) in Lemma [20]it holds with probability at
least 1 — & that

il S K3, (a4 Vdlog(e/9)) ). (102)
By union bound and Eq. (83)), with probability at least 1 — & we have

max ||x1||V , S K q(d + flog(en/é))) £ R? (103)

Let N\, be an e-net on ball B, ~(6..) with ¢ defined as

b log\f
2.

(104)
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Denote P : B, #(0.) — N as the projection of 6 € B, (6. onto the e—net, i.e. P(f) is the closest
point in NV, to § under norm || - ||/, 00"

. o . {
P(0) € arg 91'21/\1}6 0 —0"lv, 00 (105)
We remark that the choice of P () does not effect our results. Now pick arbitrary §; € O7(0.),
6o = P(0), 0, = 0y + t(01 — 0y), and ¢, (t) = Q,,(0;). Using Proposition |30, we have
O ()] < 267,(1) max (61 = o)l oo

< 20, (0101 — Oollv,. max|zily

< 2Regy (1) = log V2 - ¢11(1), (106)

where the last inequality follows by Eqgs. (103)) and (L05). Thus ¢,,(¢) is pseudo self-concordant, and
we can apply Propositionwith S = log v/2. By Eq. we have

1/V2H,(P(0)) < H,(0) < V2H,(P(0)), V0 € B,#(6.). (107)
step 4. In this step we approximate empirical Hessian H,,(0) using H,(¢), for all § € N.

Note that H,(0) = V?Q,(0) = 13" V20, (0x;). For an arbitrary § € N, let A; =
H,(0)~1/2V2¢.,(0)H,(0) /2, then E[A;] = I;and

1
- > A =H,(0)/PH,(0)H,(0) /2. (108)
1€[n]

By Assumption E {A;}"_, satisfy the premise of Proposition @ Applying Corollary @and
then using union bound over all § € A,, we obtain that whenever

n > Ky (d+log(IN.|/9), (109)

where | V.| is the number of points contained in N , then with probability at least 1 — 4,

1/215 < % Z A; <3/21;,  YOEN. (110)
i€[n]
By Eq. (108), Eq. is equivalent to
1/2H,(0) < H, () < 3/2H,(0), V0 € N.. (111)

Now we intend to derive a bound for n to satisfy Eq. (109). First we need to estimate an upper bound

for |V, |. By Proposition 4.2.12 in [23]], we have |N| < (%?)d Thus a sufficient condition for (109)
is

nzK;p<[{+ Jlog(ig)). (112)

Recall that 7 = O (1 /(KoﬂKg,q)) e=0 (1 / (Ko,q\/d + ﬂlog(en/&))) , then

T g (eKo,q\/d + \/&log(en/é))'

— 113
66 KO,QKQ,(] ( )

log (

Thus it is sufficient to let
n > Ky  dlog(ed/s), (114)
which is the first bound at Eq. (6).

step 5. Next we prove that if n is larger than the second bound of Eq. (6)), then 6,, € B, #(6.) and
Eq. holds. First, combining Eqgs. (101)), (107) and (111)), we have with probability at least 1 — J,

1
JHy S HL(0) <3H,, V0 € By7(0.). (115)
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Let 0y = 0., pick arbitrary 6; € B, 7(0.), 0, = 0y + tA, where A £ 0; — 6. By Eq. (90), we
already have ¢;/(0) = H&”Hq On the other hand, we can show that

1 & .
Pn(t) = - Zﬁﬁ(yu@xi)[A%Aﬂ = [[Allm,, 6. (116)

i=1
Thus Eq. (115) reduces to

*d)"( ) < @(t) <3¢5(0),  tel01] (117)

Integrating this twice, we have ¢/ (0)t> < ¢, (t) — ¢n(0) — ¢/, (0)t < 3¢/ (0)t . Let t = 1, we
can get with probability at least 1 — 6,

1, ~ = - S
1A, < @n(6) = Qu(6.) — (VQn(0.), A) < 3[|AllFy, (118)
Using Cauchy-Schwartz inequality, we can obtain
1, ~ - .
Qn(6) = Qn(6.) = 7 AN, +(VQn(6.), A)

1, ~ - -
> IR, (181, — 419Qu (0], ). (119)
Our goal is to prove that given n lower bounded by the second bound in Eq. (), 0,, € B, 7. Since

Q(0) is a convex function and O(6.) is a convex set, it suffices to show that the right hand side of
Eq. (L19) is non-negative for all § € 0B, 7, i.e. ||Allv,,cc = 7. First note that

o Eq q@
[Allw, 2 TH \/ HAIIV 7\/ ||A||v

Eq. @
|| v, \/ — 7> (120)
opv opv C, /apuKO,qu,q

Jlog(e/ﬁ))

n

. K2, <d+
Since we have proved that [|[VQy,(0.)(g, -+ <
with Eqs. (120) and (119), we have 6,, € B, #(6.) if

nz O',Ol/Kg,quz,qF;q (J+ \/jlog(e/é)). (121)

in step 1, connecting this

Now let 8; = 6,,, then A = vec(6, — 0,). Since @y, (6,) < Qn(0.), from Eq. (119) we can get
[vec(Bn — 0.) |31, < IV Qn(02) 1, - (122)

We have proved that 1/ \/§Hq <H,(6) < \/in in Eq. (101}, it can be reduced to
1
V2
Integrating twice on [0, 1], we have 2—\1/§¢f1’(0)t2 < ¢y(t) — ¢4(0) < §¢g(0)t2. Since 6,, €
By #(0+), we can assume ¢ = 0,,. Lett = 1, we can get

¢ (0) < ¢y (t) <V2¢)(0), 0<t<1 (123)

q

Ly(62) — Lo(02) "= 6,(0,) - py(0.) "L £Hvec( 0 — 0.1,
Eq. Eq @) | K} d+ \/glog(e/(S)
miIIVQn( 0,1 S b 8 ) (124)

step 6. Now we bound the excess risk with respect to p(z), i.e. L,(6,,) — L, (64).
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Our goal is to use the Taylor expansion property in Proposition 31} First we have to show that L,,(6)
is pseudo self-concordant. Let 0y = 0,, 6, = 0,,, and 0; = 0y + tA, where A = 0, — 0. Define

Gp(t) & Lyp(0:) = Eonr, [0.(6;)]. (125)
We can follow the argument from step 2 and obtain that
¢y (1) < CllAllv,,00 Kop K250y (). (126)

Note that

N Eq.@ N Eq.@) N
1Allv, 0 < lAlg, < VelAls, < VoplAls,

Bq. {7 d+ Vdlog(e/s
< \/UpKl,q\/ - 8(e/9) (127
Substitute this into Eq. (126), we have |¢//(t)| < ag)(t), where
— d+ \/glo e/d
a= O(,ﬁa,oKO,pKl,qu,p\/ng(/)). (128)

Now we can use Propositionand let S = a. Note that VL, (6,) = 0, by Eq. we have

67Q+0471 - eafafl

1Al < Lp(On) — Ly(6s) <

o2 » o2 ”AHH (129)
By Taylor theorem, there exits 6 € B, #(0.) between 6, and 6, such that
VQn(0s) = VQn(6,) + H, (A)A. (130)

Since VQ,,(6,,) = 0, we have
VQn(0,) = H,(0)A. (131)

By Eq. (113), we have 1H, < H,,(#) < 3H,. Define M, ,, 2 H,"/?(H,,(6))"'H,"/?, then

L= M,, <4 (132)
For the lower bound in Eq. (129), we have with probability at least 1 — §,
Ly(f) — Ly(0.)> P = LATH,A
= T L (ATHL () (HA () H L () ) (HL.(0)A)
Eq_(B31) eiaaiza_lﬁ@?n( )THq_1/2Mq,n(Hq_1/2Hqu_1/2)quan_l/zﬁQn(G*)
Fe {09 %(H “TH,H, ", VQn(0.)VQu(0,) 7). (133)

Similarly, we can derive the upper bound:

e* —«

Ly(0,) — Ly(6.) < aiATH A

e —a—1- _ _ _ _ -
= TVQW( ) H,VAM L, (H, 7 PHH, )M, H, T Y2VQ,(6.)
< 16%<H “'H,H, L, VQ.(0.)VQ.(6.)7T). (134)

i.4.d

Given {z;}, "~ q(z), we have

E{ywp(yilwu 34 [VQH( )ﬁQn(G*)T}
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n

Byt oo, | 2 V(00 392, (0.)]

n N 3
i=1 =1
1 & - -
:ﬁ ZE%NP(?JHM,H*)[VK% (9 )vézi 2 ZEylf\/p(yIpﬁl 0« )[Vf (9 )Vﬁ (9*)T]
i=1 i#j  Yi~pyslTi,0+)
@1\ @ 1 &
ZE%NP (ilen00) [V o (0 VL ( ZJEZ,M (i l2s,00) (V22 (05)]
=1
1
=—H,,(0.) (135)
n

where (a) follows by the independence between y; and y; and the fact that
Ey,~p(yilz:.6.)[VE(z, ) (0)] = 0 from Lemma|24} (b) follows by Lemmal|25}

Similar to the argument in step 4, using Corollary [34] we have with probability at least 1 — &,
1 3

where the requirement for n is already satisfied due to the second bound for n in Eq. (6). Since
Hq_l/ 2Hqu—1/ 2 s symmetric positive definite, we can assume it has eigen-decomposition

H, *H,H,” /> = ¢ \ivs] . Then

(H,'"H,H, ", H,(0.)) = <H P, e, VP, (0.0H, V)
= ZAwf(Hp*1/2Hn(9*)Hp*1/2)vi. (137)

Using Eq. (136), we can get upper bound and lower bound of Eq. (137):

1 _ _ _ 3 _
S (Hy ™ Hy) < (Hy 'HH, ' H(0.)) < S(H, ' H). (138)

Combining Egs. (138) and (135), we have

<H _17H > - -1 V.
L < Byl 001 <Hq 'H,H, 17in(6*)VQn(9*)T>

- 1 —1 -1 3<Hq_17HP>
- 5<Hq H,H, ™', H,(6.)) < e ad

(139)

Combining this with the upper bound Eq. (134) and lower bound Eq. (133), we can obtain with
probability at least 1 — 6,

e +a—1(H, ! H,) 24(e® —a—1) (H, ', H,)
< E[Ly(0,)] — Lp(0s) < . 14
xC —P < E[Ly(0n)) — Ly(6.) € ——— n (140)
where the expectation E is w.r.t {y; ~ p(y;|x;, 0.) 7.
O

D Parameter discussion

In this section, we discuss the constants introduced in Lemma [2. In Proposition [35, we derive
upper bounds for K , and K> ,(r) when Assumption E holds. If we additionally assume that
p(x) ~ N(0,V,), then we can derive bounds for p, K ,, K1, and K> ,,(r) in Proposition[37| Note
that we discuss constants for p(z) here as example, but the results can be similarly extended to ¢(z)
if the same assumption holds for g(x).

Proposition 35. Suppose Assumption |: holds for p(x). p is the minimum constant defined in
TheoremE]such thatI._; ® V, = pH,,. Then
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(1) For K, defined in Lemma|2{(2)| we have
K1, < 2/pKo,. (141)
(2) For K p,(r) defined in Lemma[2{3)| let p(0) > 0 be constant s.t. I._1 @ V, < p(0)H,,(0) for
0 € B,.(0.), we have
Kyp(r) <2 sup p(0)KG,,. (142)
0€B,-(0.)

Proof. For the ease of notation, we use ¢ = ¢ — 1 and d = d(c—1). We define h(x, 6)RE for a given
r € R?and § € R®*4 by

exp(x ' 6;)
1+3 cgexp(a’0s)’

h;(z,0) = Vi € [q] (143)

where 0; is the i-th row of 6.

(1) Denote V), £ I ® V,,, then V,, < pH, and H,”"/? < . /5V, '/?. Thus
L, ™2V 0,0 (0)llva < VPRIV, Y2V 0 (62) e (144)
By Proposition the i-th row (i € [c]) of matrix V{(, ,y(6,) is

Ol (g4 (0+)

V() (0.)]i = 20,

= ﬂ’b(x7 y)$7
where B3;(z,y) £ —1(,—; + hy(,6.).
. T
Therefore (Vf(z,y)(ﬁ*)) = [Bi(z, )z ", Ba(x,y)xT, -, Be(x,y)x ] and thus

(V1 /2VL(0.)(62))
=[B1(@. ) (V;20)T, Baa,y)(V, 22) T Bl ) (V,22)T) (149)
We also observe that for any (z, y),

T

> el exp(xTQ;-‘)

Bi(z,y)| <1+ <2 (146)
By definition of the sub-Gaussian vector norm we have
IV 25y 0o & sup (V253 (02); ) s (147)
ue
where S~ is the unit sphere in R%. For any u € S%~!, we represent u! = [u] ,uj,- - ,udl,

where u; € R? for each i € [¢]. Then for any y € [c], by Eq. (145) we have

V52 Ol = | 3 Bl pyul V2| (148)
ic[e] ’
For a given x and u € SJ*I, define
u(z) € argmax|uTV V2g, (149)
u;,1€[C]
where the choice of u(x) does not effect our result. By Eq. (146},
1V, 2V L (60 ) Wl < 20l(u(z)) TV 2]y, (150)

Since ||u(z)]| < 1, by combining Eqgs. (150) and (147) we can get
IV, 2V ) (0:) s < 2 sup ||vTV Y2y, = 20V, 2y, < 2Kop.  (15D)

vES
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(2) Let W,,(0) £ V,/*H,(6)~1/2, then W,,(8) < \/p(0)1. First, we observe that

sup [[uTH,(0) 72V () (0)H, (0) " 2ully,
ueSI—1
= sup ||UT\7;1/2v2£($,y)(0)\7[:1/2””1111

VAW, (0)u
llull2<1

Y sup (V@) VY202 OV V2 o8

flull2<1

<p(0) sup ||uT\~7;1/2V2Z(z7y)(9)\7_1/211”%, (152)

p
ueSd—1

where (a) follows by the fact that Ay,ax (W, (0)) < 1/p(6)) and thus {v = W, (0))
1} c{Vp(O)u - [lulz < 1}.

By Proposition , we have the Hessian V2, () € R4*4 with the following form:

Hlulla <

IS

an(z, 0z’ - agg(x, 0)zx’

V20 )(0) = : : (153)
agz(z, Nz’ - ag(z,0)xx’
where
Oz,-7j(9) = 1{l:]}h2(1‘7 0) — hz(l', 9)1’1] (JC, 9) (154)

For any u € S9!, we decompose it into ¢ chunks with dimension d, i.e. u” = [u] -+, u]]
and u; € RY. Since V,, = I; ® V,,, we have V,, /2 = I; ® V, /% Define @; £ V, /?u;,

a2V, Py thent” =[], ,ul]. For the “sup” term in Eq. (T52), we have

sup HuTV;1/2v2£(Ly)(0){};1/2“”1&1: sup HﬂTVQE(Ly)(Q)ﬂH%

ueSd-1 weSd—1

(@ sup H Z Z aij(:c,ﬂ)ﬂszTﬂjH
u€SI " ic[e) jeldl
®)

= sup Z Z a;j(z, G)U;I—(V;l/Zx)(Vgl/Qm)Tuj‘
u€ST T ic[e) jele]

1

; (155)
1

where (a) follows by Eq. (154), (b) follows by u; = V, L/ 2ui.
Now we intend to upper bound Eq. (155) by using |\V;1/2x||,/,2 < Ky,p. First forany x € R
and v € S 1, we define

u(z) € argmax |u;r (V;1/2x)(V;1/2m)Tui|,
UME[E]

where the choice of u(z) does not effect our result. Since for any a, b € R, we have inequality
lab] < # < max{a?, b*}, then

|uiT(V;1/2x)(V;1/2x)Tuj| < |u(sc)T(V;l/Qx)(Vgl/Qac)Tu(a:)|, Vi,j € [c]. (156)
On the other hand, by Eq. (154) we have

h;(z,0) — h2(z,0) ifi=j,

|cvij (0, 0)] {hi(x,ﬂ)hj(ﬂﬁ,@) otherwise. (7

Thus

S 3 Jaus e, 0) = 3 [, 0) — b (2, 0) + e, 0)[ (e, 0)] — h(a, )]
i€[c] jelc] i€[q]
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= 3" [+ Ih(, 0) 1) hi(z, 0) — 203 (2, 0)]

i€fd)
= (1+|[h(z,0)[1)[h(z,0)l, =2 > hi(x,0)
i€fd)
<2, (158)

where the last inequality follows by the fact that ||h(z, 6)|; =1 —

1
H"Zse[a exp(z ' 05) <L

Now substitute Eq. (155) into Eq. (152), we can obtain that
sup [[uTH,(0) 72V () (0)H,(0) " 2ully,

uesd-1
<p(0) sup ’ Z Z oz, 0)u 1/2 )(V;l/zx)Tuj‘
’U.GSd 1 ’LE[T jE

1
(@)

<p0) s (323 las(@.0)]) (u(@) (v, 20 (V, ) Tu(@))|
d—1 Py
“63 i€[c] je(e
(b) _
<20(0) sup [0V, 20)?y,
veSd-1
() _
D20(0) sup [0V, )2,
veSd-1
—1/2_ .12 ) 2
=2p(0)[V, "zl < 2p(0)Kq (159)

where (a) follows by Eq. (I56), (b) follows by Eq. (I58) and the fact that u(z) € R? and
|u(z)||2 < 1, (c) follows by Lemmal16, (d) follows by Lemma R{(D} Comparing Eq. (159) to
Eq. (8) (in Lemma[2}{(3)), we can get

Kyp(r) <2 sup +/p(0)Kop. (160)
0B, (6.)

O

Before establishing the result for Gaussian design, we provide a form of Hessian expression of the
loss function with respect to 6 in the following lemma.

Lemma 36. For any (x,y) and parameter 0, NV?{(, ,\(0) = T(0)Z(0)", where T(0) =
0" (y, 02))'/? @ z.

Proof. The proof is trivial. By chain rule, V2{(, ,\(0) = ¢’ (y,0z) @ xx . O

In the following proposition, we consider the case for a Gaussian design, i.e. p(z) ~ N(0,V,).
In particular, we present the bounds for constants p, Ky p, K1, and K5 () used in Theorem Eby
using 0, V,, and 7. Our bound for p is inspired Proposition D.1 in [24], where the binary logistic
regression on Gaussian design is considered.

Proposition 37 (Gaussian design). Suppose p(z) ~ N(0,V,), AssumptionEholds Sor p(x). Sup-

pose that p > 0 is the minimum constant such that 'V, 2I:® V, X pH,, then for p and constant
defined in Lemma 2] we have

3/2
p S (2+max)6.l%,) 2 (161)
Kop S 1, (162)
Kip < (2+m?x||9*,i||%,p)3/4, (163)

Kap(r) S (2+T2+Héé[%~)](H9*,iH%/p)3/4, (164)

where 0, ; is the i-th row of 0, € R(c=1)xd
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Proof.

(1) Proof of Eq. (161).

First, we consider the decorrelated design z £ V, 1/ 2x, thus z ~ A(0,Iz). Define parameter
= 9V,1,/2, and denote &, = O*V},/z. Then we have 0z = £z. By Lemma

, we have

where Z(0) = [¢"(y, 0z)]'/? ® x, note that Hessian ¢ (y, fx) € R®*® has no dependence on
label y.

Now we define Z(¢) 2 V, */?%(0), then
&) = Tz V([ (y,02)]'? @ 2) = ([t (y, 02)]'%) @ (V%)
="y, @ 2. (166)
Then the covariance matrix of Z(&,) has the following form:
U(E) = E[(6)3(E) ]
=E.[("(y,€&2) ® (227)] (167)
_ V;I/QHP\N/';I/Q,

where the last equality follows by definition of Z(£,) and Eq. (163). Thus, we can upper bound p
by finding lower bound of A\, (P (€. )) since by the definition of p, we have

1

P S R (F(E)) (1ow
For any z ~ N(0,I;), we have
0" (y,&.2) = T(2) —h(2)h(2) ", (169)
where h(z) € R¢ and
() = exp(sz*,i)
EAUREES ypr e ) (7
and T'(2) = diag(hy(2),ha(z),- -+ ,hz(2)). Thus for any z ~ N(0,1z),
0'(y,602) = T(2)"/2 |1 = (D(2)7/2h(2)) (T(z)/2h(2)) " | P(2) /2
= (1= |I0(z)"/*h(2)3)T(2)
= (1= [h(z)[1)L(2), (171)

where the last equality follows by the fact that the i-th component of I'(z)~1/2h(z) is y/h;(z).
Substitute this into Eq. (I67), we can get

(&) = E. [(1- (=) )0E) @ (27)]. 172)
Note that T'(z) is a diagonal matrix, we additionally have
Muin[# ()] = Ain ( E= [(1 = [B(2)]|)T(2) @ (227)] )

= min Aumin( E= [Bi(2)(1 = [B(2)l11)==7] ). (173)

For any arbitrary i € [¢], we have
exp(z &)

hi(z>(1—h(z)||1>=<1 = e ))2~
t Qe XPLE b

(174)
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By the symmetry of A/(0, I7), w.l.o.g. we can assume that &, ; is parallel to e1, where e; is the
unit vector of the first coordinate. Thus we have 2 ¢, ; = ||&. i||221 and

exp(t;z
b1 - b)) = P s, 079
(1 + 58+ eXP@ﬂl))
where we use ~ to represent the intersection of Sand 2, 8 =3, exp(z &, ;) and we define
t; by
ti 2 €l = 0.V 22 = [|0:]]v,- (176)
Now by Eq. (I73) we have

E. [bi(2)(1 — [B(2)[11)227 | ~ By, lexp(—tiz])22T]

k 0j_4
= 177
{Odl /ﬁIdJ 177

where k and x| have the following forms if we denote the standard one dimensional Gaussian
density function as ¢(-):

K= / " expl—[teul)u(u)du, (178)
o= [ eplluoud (179)

By Eqs. (168), (I73) and (I77), we can upper bound p by finding the lower bounds for x and x| .
First we denote the Gaussian integral as G(t) = ftoo e="*/2qu, which has sharp bounds as

2€—t2/2 2e—t2/2
— < Gt) £ ——m——, t>0. 180
t+Vt2+4 ()7t+\/t2+87r o (180)

For x, we have

™ Jo T 0
= \/5 Ceti/? /Oo e_”2/2(v —1)%dv
™ t,

i

= \F R[4 2)G(t) — tie .
m

@ 23 +1) L ti(ti— V7 +4)+2

TR e O N

_2VE+A-t) 8 - 1 (181)
WVE+4+t)2  (VE+4+t)3 — (7 +2)%2

where (a) follows by the lower bound of G(t;) from (180). Similarly for « ,
KL =1/ 2 / e~tiu=u? /2y,
™ Jo
_ /get§/2 ) /"O V20 — /zet?ﬂG(ti)
™ ¢ v
> 1

~ @ )
Combining (177), (I81) and (182), we can get for each i € [¢],
. 1
Awin ( E= [Bi(2) (1 = [B(2)l11)2=" | ) 2 minr, r0} 2 R (183)
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Substitute this into (173), we have

Amin[¥(€4)] 2 min —————.
[W(&)] < i

Combining this with the bound of p in (168)) and the definition of ¢; in (176), we can obtain that

L ‘ 3/2
< ———— <max(2+ [|6.4]% )¥? = (2 +max||6.:]3,)7.  (185)
P )\mm[‘I’(é-*)] ’Le[a( || 7Z||Vp) ( iE[E] || ,7,||Vp)

(184)

(2) Since z ~ N'(0,V,), V, %z ~ N(0,1,). Forany u € S, uTV,/*z ~ N(0,1). Thus

IVy alle, = sup [Ju"V, ey, $1 (186)
uedSe—

and Ko, S 1.

(3) Substitute Egs. (161)) and (162) into Eq. (141), we have

3/4

Kip < 2VpKop < (24 max|0uifl, ) (187)
i€[c P

(4) Substitute Egs. (161) and (162) into Eq. (142)), we have

Ky p(r) <2 sup p(Q)Kg)p
0€B,-(0+)

S sup (2+ma§|\9i|\%p)3/4

max;e|[q) H9i79*,i\|vp§r i€]

S 2+ +rgé?g]c||0*,ill%p)3/4, (188)

where the last inequality follows by the triangle inequality ||0; v, < [|6; — 6+ :|lv, + [|0x.illv,-

O

E Bounded domain

For the case of bounded domain, we present the assumptions in Assumption [38] which are similar to
the regularity assumptions used in [11]. Then we present the excess risk L, (6,,) — L, (6.) bounds in
Theorem[#0] Our proof is inspired by the proof of Theorem 5.1 in [28].

Assumption 38. There exist constants L1, Lo and L3 > 0, for any sample (x,y) randomly drawn
from distribution m,(x,y) or m4(x,y), the following conditions are satisfied:

(1) H,, and H, are positive definite.
(2) gradient and Hessian of loss function with respect to 0 at 0, are bounded.:

[vec(Veiay) (B)er,+ < L1, [Hy V2Vl (0 H, 2| < Ly, (189)

(3) Lipschitz continuity of Hessian: there exits a neighborhood around 0,. denoted by B(0..) such
that V0’ € B(0.),

[F, 72 (9200000 (02) = V200 (0) ) B, 72| < Lalivec(@, = 0) |, (190)

Remark 39. We did not explicitly assume that x € R is bounded. However, by Proposition|23| each
row of gradient V (x,y)(0,) is the scaling of x. Thus Assumption ﬁ assumes that x is bounded
implicitly.

Theorem 40. Suppose Assumption@holds. Let 0 > 0 be the constant such that H,, < cH,. For
any 6 € (0,1), whenever

n > 256 max {L302 log(2d(c — 1)/5),1og(1/5)a4L§L§}, (191)
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with probability at least 1 — 0, we have

3 (1 —¢,) Trace(H, 'H,) 5 (14 ¢,) Trace(H, 'H,)
8 (14 ¢€4)? n < E[Lp(0n)] = Lp(0:) < 8 (1—¢)? n ’

where E is the expectation over {y; ~ p(y;|z;,0.)}I'—q, €p and €4 are given by

6, = 2021, Ly | 2-F8108(1/0) 644@2\/@(%(6—1)/5)”0%% 2 + 8log(1/0)
n n n
(193)

Remark 41. For Theorem @ if Eq. (191) holds, we can upper bound €, and €,. This results in a
simpler upper bound for the excess risk with respect to p(x):

E[L,(0)] — Lp(6.) < gw

We show this at the end of the proof of Theorem

(192)

(194)

proof of Theorem {0} We deploy the notation of ),,(#) and H,,(6) defined in Eqgs. and for
the ease of notation. Throughout the whole proof. we treat parameter as vector, i.e. § € R?. Denote
the samples drawn from 7, (x, y) by {z; = (zi, y:) S mq(z,y)}7,. Since H, < 0 H,, for a vector

v € RY we have
[ollg, -+ < Vollvllg, -1, [vlla, < Volvln,. (195)

For the ease of notation, we define norms for a matrix A € R‘ixgby
|Alp & 5, 2AH, V2 Ao £ H, T 2AH, V. (196)
Note that for a matrix symmetric semi-positive definite matrix A € SJ,
Hq*1/2AHq*1/2 _ (qul/szl/z)(prl/zAprl/z)(le/QHq*I/Q)
< oH, Y2AH,"'/? (197)

where the last inequality follows by the fact Ayax (H, ~'/?H,,'/?) = /7. Thus we have the following
relation between these two norms:

[Allq < ollAllp- (198)
step 1. We aim to choose a ball By (6,) centered at 6, and n sufficiently large such that for any
0 € B1(0.), H, () approximates H, in the spectral sense with high probability.

First, we have by triangle inequality that
IH(0) = Hyllg < [Hn(0) — Hy(6:)llq + [Hn(0:) — Hyllg- (199)
To bound the first term in Eq. (199), we can use Assumption [38H(3)} i.e. if § € B(.), then

Eq. (198)
[Hn(0) —Hn(0)llo = ofHn(0) — Hu(0.)[|p < oLsl|0 — 6. ]m,- (200)

Now we consider the second term on the right hand side of Eq. l) LetX; = Hp_l/ 2 (VQEZi (0.)—
H,)H, '/?foreachi € [n]and S = L 3" | X;. Since E[V2,,(0.)] = V?L,(0.) = Hy, then
E[X;] = 0. By Eq. (189), we have ||V2Z,,(0.)||p < La. Thus for any i € [n]:
IXill = V22, (62) — Hy|| p < 2L,
IEXD) < EIIXF| < E[X;]* < 4L3. (201)

Let 4 = 2L, and v = 4L3 in the matrix Bernstein inequality (i.e. ??), we have with probability at
least 1 — 4,

S < 4L,

log(2d/8) 4
# A (202)
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Note that ||H,,(6.) — Hy||p = ||S||. Then with probability at least 1 — 4,
L. (0.) = H, o < o[, (0.) — | < oer. 203)

Substitute Eqs. (200) and (203) into Eq. (199), we can get
[HL.(0) — Hyllg < o Ls |0 — 0. |, + oer. (204)

Now consider a ball centered at 6,,:
< L}v
P 40’L3
then o L3 || — 0. ||;, < 1/4 for any 6 € B (0.). Besides, if we choose n such that

Bi(0.) £{0: 110 — 0. ]lm

n > 256 L30> log(2d/9), (205)
we have
1
€< —. (206)
40

Substitute Eq. (206) into Eq. (204), we have ||H,,(§) — Hy||o < 1/2 and thus with probability at
least 1 — 9,

1
5Hy = H,(0) =

N W

H,. (207)

step 2. Next we show that when n is large enough, 6,, € B;(6,.) with high probability. Given 6, by
Taylor’s expansion there exits 6 between 6 and 6, such that

Qn(e) = Qn(e*) + VQ”(H*)T(Q - 9*) + %(9 - 0*)TV2QN(é)(0 - 9*)

Then for all 8 € B4 (6..),

1
2 VQuO.)T (0 -0+ Lo - 0.,

b
210 6o, (316~ 6. lot, ~ 19Qu(6),
1
NG
where (a) follows by Eq. (207), (b) follows by Cauchy-Schwartz inequality, and (c) follows by
Eq. (193).
Now if we can show for all § € 9B;6,), the right hand side of Eq. @) is non negative, then
0, € B1(6.) because @,,(0) is a convex function. Let &; = Hp71/2V€z,i (6.)and S = L3 &,
Then E[¢;] = H, '/*VL,(6.) = 0 by Lemma By Assumption for any 7 € [n] we have
&l = [V Lz, (0) g, -+ < La,
E[[l&)1%) < L7. (209)

(c)
Z|9—9*||Hq< |e—e*||Hp—¢5||vczn<9*>||Hp1) 208)

Let 4 = Ly and v = L? in the vector Bernstein inequality (i.e. ??), with probability at least 1 — § we
have

2+ 8log(1/6) A
n

IVQn(0:) [, = ISIl < Ln €2. (210)

Now if we choose n such that

n > 256(2 + 8log(1/6))o* L3 L2,
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then

1
< —.
“ = 16Ls0° 1D
Thus for all § € 0B (6,), combining Egs. (208)), 210) and (211)) we have
1
— > — Ux — Ux - n\Yx* -1
Qu(6) = Qul6.) 2 10~ 0.1, ( 7710~ 0, ~ VEITQ (0. o, )
> 06— O, (= — Vo) =0 212)
= Mo\ § 5 40L; V16020 )

Then with probability at least 1 — 0, 6,, € B1(0.).

step 3. We denote A £ §,, — 6., then by Taylor’s theorem, there exits gn between 6,, and 6, such that

0=VQ,(0,) =VQu(0.) +H,(0,)A. (213)
In this step, we get a spectral relation between H,, (gn) and H,.
We have ensured that Hn(an) is positive definite in step 1 (by Eq. ), thus
A= —(H,(6,)) " 'VQu(b.), 214)
and with probability at least 1 — § we have

-1

HAHHq = (ATI_IqA)l/2 = [VQn(e*)T(Hn(gn)) Hq (Hn(gn))_van(o*)}l/Q

- [(VQH(H*)TH,Il“) (qu/2 (H,.(6,)) 'H, (Hn(an))lqu/z) (qu/QHn(e*))] "
< 1,2 (L (6,))  H (FL(6,)) 7 H Y2 V2 H, 2V Q,(6.))|

< |IH, Y (L (0,)) H 219 (02) 51, -+

< 251V Qu (0. s,

(%) 2\/oey, (215)

where (a) follows by Eq. (195) and 1/2H,, < H,,(f,,) from Eq. (207) since 6,, € B(6,.). (b) follows
by Eq. (210).

Denote A £ [9} — 0,, since én lies between 6,, and 6.., we have
1A, < Ala, < 2Voe. (216)
Following a similar argument as step 1, we can obtain that
[Hn(0) — Hgllo < [Hn(6n) — Hn(6:)ll@ + [[Hn(0:) — Hyllg
S O'”Hn(an) - Hn(a*)HP + g€l
< oL3|Alla, + o

(a)
< 20%Lzeq + 061 = €y, 217)

where (a) follows by Eq. l) and the fact that || A e, < Vo A || 11, Note that we can upper bound
€4 by using Eqs. (206) and (211):

€, = 202 Laey + 01 < % (218)

Thus, with probability at least 1 — §, we have

(1 - e)H, < H,(6,) < (1 + ¢,)H,. (219)
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step 4. Now we use Taylor’s expansion to get bounds for L, (6,,) —

there exits z,, between 6,, and 6, such that

1
Ly(On) = Ly(0.) = 51 Al ),

where the first order term vanishes because VL, (6.) = 0 by Lemma

From the Lipschitz condition Assumption we have

~ - (a)
HHp(Zn) - HpHP S L3||Z'IL - G*HHP S 2U2L3€2 é €p,

where inequality (a) follows by

~ Eq. (195) Eq. @15)
120 = Oulll, < 1Alw, < VolAla, < 20°e.

Note that we can upper bound €, by using Eq. 211):

—_

€p = 202 Laey < 3

Thus,

(1—e)Hy, 2 Hy(z,) < (1+¢)H,.

Define matrices M, ,, and M, ,, as follows:

M, 2 H,"*(H,(0,)) 'H,"/?,

an =
M, 2 H, ?H,(z,)H, />
By Eqs. (219) and (222), we have

1
)\max M n < )
( q, ) 1— eq

)\min (Mq,n) Z

1

1+¢ ’
Amax(]-v-[p,’n) S (1 + ep)a )\Inin(Mp,n) Z (1 - ep)~

L,(6,). By Taylor’s theorem,

(220)

(221)

(222)

(223)

(224)

Now we can bound the excess risk L,,(6,,) — L, (6.) by using the Taylor expansion in Eq. (220):

Ly(62) ~ Ly(0.) = 5ATH,(,)A

1 _ ~ -
ZQATle/Q(Hp 1/2Hp(2n)Hp I/Q)le/QA

1
- 5ATH,,U?NIP,”HP1/2A.
Observe that,
ATH,A

—ATH, (6,)H,”"/? (H,"?(H,(6,))

H,(H,(0,)) H,"?)H,”"/*H,(6,)A,

AM

and

M = (H,"*(H,(0,)) 'H,/?)(H,”*H,H,”/?) (H,'*H,(6,)) " 'H,"/?)

=My, (Hq71/2Hqu71/2) My.n
Substitute Eq. (227) into Eq. (226), we have

ATH,A = (ATH,(6,)H,”*)M,,,(H,”/*H,H, V*)M, ., (H, "/*H,(0,)A).

(225)

(226)

(227)

(228)

Based on the previous steps, with probability at least 1 —J, we have a lower bound for L,,(6,,) — L, (6+)

by Eq. 223):

LP (97,,) - Lp (9*)
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1
:iATH,,I/?Mmel/?A

%Amm(Mp,n)NHpA
1 ~ _ _ _ ~
> 5 Amin (M) (A THi (6 Hy ™% M (H ™/ H, H %) Mg o (Hy ™/ 2H (00)A)

1 ~ _ -~ ~
ziAnlin(MP,n))‘gnin(Mq,n)(ATHn(en)Hq lHPHq 1Hn(9n)A)

1 (1—¢p) -1 —1 T
>~ P H, 'H,H R(0)VQ,(0.)7), 22
5 ey (He HpH T VQu(0.)VRn(8)T) (229)

where the last inequality follows by Egs. li and li and the fact that Hn(gn)A =-VQ.(b.)
from Eq. (2T4).
By similar argument, we can get an upper bound:
1 ~ B B ~
Lp(0n) = Lp(0+) < 5 Amax (M )\ (Mg n) (AT Hy, (60)Hy  HyH,~ H (6)A)

< §<(11+€”)2<HqIHquHVQn(e*)vczn(a*)T) (230)
—€q)

Following the same argument as we derive Eq. (135) in Appendix [C.4, given {z;},, we have

1
E{yimp(y:|21.0.) Ll[vcgn(e*)vc)n(e*)ﬁ = EHn(e*). (231)
Now if we take conditional expectation on both sides of Eqs. (229) and (230), we can obtain that

1 (1—-¢,) (H,'"HH, " H,(0.)

5 £ < z £ > < E{ywp(yi\aciﬂ*)}?:l [Lp(en) - Lp(e*)]

2(1+¢)? n
H,'H,H, ' H,(®.
S1(1+6p)< q pHy  Ha( )> (232)
2(1—¢€)? n
From the analysis in step 1, we have with probability at least 1 — 4,
1
IHn(604) —Hgllg <oer < 7, (233)
where the last inequality follows by Eq. (206). Thus
SH, < H,(0.) < H,. 234)
and
3 5
1 Trace(H, 'H,) < (H, 'H,H, ", H,,(0.)) < 1 Trace(H, 'H,). (235)
Substitute Eq. (233)) into Eq. (232)), we have with probability at least 1 — 4,
1 —¢,) Trace(H, 'H 1 Trace(H, 'H
§ ( 6?) ace( q P) S E[Lp(en)] _ Lp(e*) S 5 ( +€P) ace( q ;D) (236)

8(1+¢q)? n 8 (1 —¢)? n ’
where E is the expectation over {y; ~ p(y;|x;, 0.) Y.

Note that, with the upper bounds given in Egs. (218) and (221}, we can additionally bound the upper
bound of Eq. (236):

E[Lp(en)] — LP(H*) < § (1 + €p) Trace(Hq—al)

T 8(1—¢g)? n
5 1+1/8 Trace(H, 'H,)
~ 8(1-3/8)2 n
_ gTrace(Hq_al). 237)
5 n
O
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F Proofs of Section 4!

Notation. For a positive integer k, let S* be the cone of symmetric matrices with dimension k x k,
S’i be the cone of symmetric semi-positive definite matrices with dimension k£ x k, and Si . be the
cone of symmetric positive definite matrices with dimension k£ X k.

F.1 Proof of Lemmal[3

Proof. 1. We can verify convexity by considering an arbitrary line, given by Z+tV, where Z € Sfl; I
and V € SdN. We define g(t) = f(Z + tV), where ¢ is restricted to the interval such that

Z+1tV e S‘i . From covex analysis, it is sufficient for us to prove the convexity of function g.
We have

g(t) = ((Z + V)™ Hy (b))
— Trace (ZY/2H, (00)Z"/* (1 +tZ~/>VZ~1/2) 7. (238)

We can write Z~Y/2VZ~1/2 in its eigendecomposition form, i.e. Z-12yz7-12 = QEQT,
where 3 = diag{\1,--- , A;}. Then we have

g(t) = Trace (Z"/°H,(00)Z/*Q(I + =) 'Q")
= Trace ((QTZ!/2H,(60)Z"/*Q) (1+ ) )

d
1
= § : [QTZ'/°H,(0,)Z'*Q] . (239)
1+ tN
and thus
" ! 2)7 Trl/2 1/2
90 = 1y QT2 H )2 ) (240)

=1

Since Z + tV is positive definite, so is I + tZ~/2VZ~1/2. Thus 1 + t\; > 0 for all i € [d]. In
addition, QTZU ’H, GO)ZI/ 2Q is also positive definite, then its diagonals are all positive. Thus
g(t)” > 0 by Eq. (240), we conclude that g is convex, and thus f is convex.

2. If A <B,then B~! — A~! < 0. Thus (B~' — A~ H,(6y)) < 0 since H,(fy) is positive
definite, i.e.

f(A) = f(B). (241)

3. Property 3 is trivial to prove.

F.2 Solving relaxed problem by entropic mirror descent

We present the algorithm for solving relaxed problem Eq. (I4) using entropic mirror descent in
Algorithm[2} Let z = b, then Eq. (14) is equivalent to:

o = arg min f (1) 2 (Y kiH(z:) " Hy(00)). (242)
RERY 1€[m]
Ill =1

Line 5 of the algorithm computes the gradient of f(x):
0f (k)
s
9i Or

where 3 = Zie[m] r;H(x;). We present the convergence rate of the algorithm in Theorem IAE,
which is adopted from Theorem 5.1 in [29].

= —(H(z;), X7 H,(60)=7"), (243)
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Algorithm 2 RELAXSOLVE(b, H, (6y), {H(z;) }ie[m))
Output: z,

I k=(1/m,1/m,---,1/m) €R™
2: fort =1to71 do /1 T is iteration number

Bt — O( /logm)
Y« Z ki H(x;)

3

4 16 m
5: —(H(z;), 27 'H,(0p)27"), Vi € [m]
6: m — K exp( ﬁtgl)

7. K; 72]6[1”]

8: end for

9: zo < bk

Theorem 42. Suppose f : R™ O X — R is convex Lipschitz continuous function w.rit || - |1, i.e.
|f(z) — f(y)| < L¢|lz — yl|1. Consider using entropic mirror descent algorithm with T steps and
1 2 log, n

step size 1y = , denote solution at step t as x. Then we have

2logn

min (@) — min f(z) < Ly =

1<t<T (244)

F.3  Proof of Proposition ]

We first introduce the background of the regret minimization problem in Appendix [F.3.1. Note that in
this section, we consider that the loss matrix F, at each step ¢ can be any symmetric, semi-positive

definite matrix (i.e. F; € Si). This is more general than the case of F; € {H(z;)}™, in §4.3. Then
we give the proof of Proposition [§]in Appendix [F.3.2]

F.3.1 Background of regret minimization

We introduce a regret minimization problem in the adversarial linear bandits setting with full infor-
mation. Consider a game of b rounds. At each round ¢ € [b]:

* the player chooses an action A; € A7, where Ay = {A € Rixd; A = 0 , Trace(A) = 1}

« afterwards, the environment reveals a loss matrix F; € S‘j_

o the loss (A, F;) is incurred

The goal of the player is to minimize the regret over all rounds, which is defined by

b b
Regret({A,}0_,) £ Z A F,) — igg ~<U,ZF,¢). (245)
t=1 d t=

The regret represents the excess loss compared to the loss incurred by a single optimal action U € A5
in hindsight. In our setting, the loss incurred by a single optimal action is actually the minimum
eigenvalue of the summed matrix of the loss matrices. We remark this property in Lemma[43]

Lemma 43. Forany A € S‘_i;, Amin(A) = infyea (U, A).

Proof. Since A € S‘I, we have eigendecomposition A = VAV T, where A = diag{\y,---, g}
Assume that A; > --- > A7 > 0 and v; is the eigenvector asscoiated with eigenvalue \; for ¢ € [d].

We first show Apin(A) > infuea (U, A). Let B = VJV(;I, then B > 0 and Trace(B) = 1, i.e.
B € Aj. Thus

i < =vi Ty-=A>= A
Jnf (U,A) < (B,A) = vIVAV V5= Aj = Auin(A). (246)
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On the other hand, for any U € A~, we have

UZ)\VV Z)\v Uv;

ie[d] ie[d]
> A7 > v Uvi =2\{U,VV) = \;Trace(U) = Ay (247)
i€[d]
Since Eq. (247) holds for any U € A, then
Amin(A) < ot (U,A). (248)

Combining Eq. (246) and Eq. (248), we can get Ain(A) = infyea (U, A).
O]

Follow-The-Regularized-Leader (FTRL). FTRL algorithm chooses action A, at the beginning of
each round based on the previous loss matrices {Fl} . In particular, for a given regularizer w(-)
and learning rate 7 > 0.

t—1
A; =argminw(A), A, = argmin {77 Z(A, F;) + w(A)} (t > 2). (249)
AEAJ AEAJ -1

We deploy the ¢, /o-regularizer introduced by [14]:w(A) = —2 Trace(A'/2). Under such a regular-
izer, we can derive the closed form for Ay, i.e. Eq. (17).

F.3.2 Proof of Proposition

Proof. By Theorem 28.4 in [[17], we have an upper bound for regret as following:

dlamw Ag)
ZD (As, Arpa),

b
Regret({A;}0_,) & Z A, Fy) — 1nf (U, ZFt
t=1 K 77 t=1
(250)

where diam,, (A 5) £ maxa Bea; W(A) — w(B) is the diameter of A7 with respect to w , D, is
w-induced Bregman divergence, and At+1 is defined by

At+1 = arg min {n(A, F.) + Dw(A,At)}. (251)
A>0

Since the regularizer w(A) = —2 Trace(A'/?) for any A > 0, w(A) is differentiable and it has
gradient Vw(A) = —A~1/2. By definition of Bregman divergence, we have for any A, B > 0:

Dy(A,B) = w(A) — w(B) — (A — B, Vw(B))
= —2Trace(A'/? 4+ 2 Trace(B/?) + (A — B,B™1/?)
= (A, B7'/?) 4 Trace(B'/?) — 2 Trace(A/?). (252)

Substitute Eq. (252) into (251)), we can get
A, = argmin {n(A,F;) + (A, A;1/2> + Trace(A,}m) — 2 Trace(AY?)} £ g(A).
A0

By the first order optimality condition of convex optimization, we have
nF+ AV AP =0,
and thus A, | = (A_l/2 + nF4)~2. Therefore, by Eq.
Du(Ay, Aryr) = (A, A %) + Trace(A}/3) — 2 Trace(A,/?)
= (A, A% 4 F,) + Trace[(A; /? + 7F,) '] — 2 Trace(A;/?)
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— (A, nFy) + Trace[(A; '/ +nF,) "' — A}?). (253)
Substitute Eq. (253)) into Eq. (250), we can get

b b
a di .
Auin(3Fy) & UiélL(U,ZFt)Z—% ZTrace A2 (AT 4R
= d t=1

(b)
>—7 fZTrace A2 — (A, 1/2+77Ft) '], (254)

where equality (a) follows by Lemma 3 and inequality (b) follows by the fact that diam,, (A7) <
2V/d.

Since Eq. (254) holds for any F, € S?, then let F, € {ﬁ(xi)}ie[m] and Eq. (iﬁl) is proved. O

F.4 Proof of Proposition 9]

In Appendix [F4.1] we present some key inequalities that we need for the proof. In Appendix [F.4.2]
we present the full proof of Proposition[9} It is worth noting that a similar property to Proposition [9]is
proven in [14] However, in their setting, the loss matrices are rank-1 matrices, specifically of the
form 7; 33 , where 7, is a vector. On the other hand, in our setting, the loss matrices are transformed

Fisher information matrices (i.e. H(xl) as defined in Equation lﬁ). This distinction significantly
complicates the derivation of a general result such as Eq. (24) in Proposition[9 The proof is by no
means trivial. We remark that we do not assume special structure on points from unlabeled pool
U = {&; }ie[m) and the ground truth parameter 6, in our proof to Proposition|2}

F.4.1 Supporting Lemmas

ZiE[m] TiQi

Lemma 44. For any i € [m], a; > 0, b; > 0, m; > 0, then max;c(m,) @+ > e

i€[m

Proof. We can use induction to prove the inequality. If n = 2, without loss of generality, we can
assume a1 /by > az/bs, then
arby > azby

mi1a1by + maa1by > mia1by + maanby
and
ﬂ azy _ a1 7101 + 202
b bo b1 — mb +7T2b2'

max{

Suppose the inequality is satisfied when n = m — 1, i.e.

ax > Zie[m—l] Ty

a;
% . (255)
i€[m—1] b Zie[m—l] 7T'lb7

Whenn =m,

a;
max — = ma x{ ma —,
ie[m] b iefm—1] b; by

a; am {Zie[m—l] A Am }
— (2 max —w——, —
> e i b
D ie[m] Titi
>=rem
Zze[m] mibi
The last inequality follows by the previous derivation when n = 2. Thus by induction, the inequality

is proved for any positive integer n. O

2ic[m] @

Lemma d5. Foranyi € [m], a; >0, b; > 0, then 3¢\, 175, = W
i€[m] 7t
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Proof. We can use induction to prove this inequality. When n = 2,
[a1(1+b2) + az(1+b1)](1 + by + b2)
= a1(1 + bg)( + bl) + albg(l + bg) + CLQ(l + bl)(l + bg) + a2b1(1 + bl)
(a1 + az)(l + bl)(l + bz) + a1b2(1 + bz) + a2b1(1 + bl)
> (a1 +a2)(1+b1)(1 + be). (256)
(

Divide (1 + b1)(1 + b2)(1 + by + b2) on both sides of Eq. (256), we can get

aq + a9 - [a1(1+b2)+a2(1+b1)](1+b1+b2)
1+b1  14by (14 b1)(1 4 b2)(1 + by + ba)
Eq. 259 (a1 —|—a2)(1+b1)(1—|—62) a1 + ao
> = . (257)
(14+01)Q+ba)(1+by1+b2) 14+b1+by
Suppose the inequality is satisfied when n = m — 1, i.e.
a; Zie[m—l] a;
Z > ) (258)
iemoy 10T 1+ 2 ietm—1 bi
When n = m,
% m Eq. @ Zz m— a; m
Z . +1jlrb = 1+£[ - b-+1ib
i€[m] Y iglm—1] m i€[m—1] 7 m
Eq. @ i
> 267 (259)
1+ Zze[m] bi
O
Lemma 46. For any matrices A,B € St, we have
T A
(T+B)1, Ay > — race(A) (260)

~ 1+ Trace(B)’

Proof. Denote eigenvalues of matrix A as oy > ap > -+ > a) > 0 and eigenvalues of matrix B
as 1 > o > -+ > B, > 0. Then eigenvalues of (I+B) lare 0 <1+ 3;)7 ' < (1+32)7!
< (14 B,)~!. Thus we have

(ERI YRS g

® P ;
g i1 oz, _ Trace(A) 7 261)
1+>% 8 1+ Trace(B)

where inequality (a) follows by the lower bound of Von Neumann’s trace inequality [30], inequality
(b) follows by Lemma &3]

O
F.4.2 Proof of Proposition[J]
Proof. Recall that in §[4.3] we define B, by
B, /%= A;'? +aD, (262)
where D = (2,)~ /2D (3,)~!/2. In addition, we have
1; 7B > ziH(x;) Ba {0 Y 2D+ Y 2, PPl =D+ > z,PP]. (263)
i€[m]

1€[m] i€[m] i€[m]
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step 1. We first decompose % ’Iﬁrace[Ai/Q - (A;l/2 + nH(x;)) "] for any i € [m] into the sum of
two inner products between matrices. By Woodbury’s matrix identity, we have

(AP 4 pH () = B, PP )

B,* —yB,*P;(1+ P/ B,°P;)"'P/B,/*. (264)
Thus
1 _ ~
| Trace[ Ay — (A7Y2 4 ()
1 ~ ~ ~ ~
—~ Trace(A/? - BY/?) + <(I +9P]BY?P,) !, PZBtP¢>. (265)
1

We apply Woodbury’s matrix identity to Bi /% in Eq. (262), then
B,/ = (A7? 4+ 0(S6)7/?D(8) /) !
-1
= A7 Al (20)72 DT 4 (2e) T 2AYA®) TV ()2 AR 266)

LE
Thus

% Trace(A;/2 — Btl/Z)
=((D R AY R T () A ) )
:<D1/2 (I i 77D1/2(Eo)_l/gAtl/Q(Eo)_l/QDl/Q)_1D1/2, (20)_1/2At(20)_1/2>
:<(I + nDl/z(20)—1/2At1/2(EO)—1/2D1/2)*1’ Dl/Q(EQ)_l/ZAt(Eo)_1/2D1/2>. (267)
Substitute Eq. (267) into Eq. (263)), we can get
TracelA}” (A, + ()]
:<(I i nDl/z(20)71/2Ai/2(20)71/2]31/2)_17D1/2(20)71/2At(20)71/2D1/2>
+{(T+ 7P B}*P)) " PIBP;). (268)

step 2. Now we intend to find a lower bound for max;e ] % Trace[Ai/2 - (A_l/2 + nH(z;) "]

using Eq. (268). For the first inner product on the right hand side of Eq. (268), we can apply
Lemma (46t

1
<(I + T]Dl/z( ) 1/2A1/2(20)71/2) ’D1/2(20)71/2At(20)71/2D1/2>

Trace(D'/2(Z,) /2 A4(2,)~/2D1/?)
"1+ nTrace(DV/2(,)~1/2A1/%(8,)-1/2D1/2)
<Ata]5>

__AD) (269)
1+1(A;"*, D)
Similarly, applying Lemma 6| to the second term on the right hand side of (268)), we can get
- - Trace(P] B, P, B, PP/
(T+9PB*P) " PIBP;) > race( 1/)2 < L ) @)
1+ nTrace(PTB P, ) 1+n(B,/", P;P])

Substitute Eq. and Eq. (270) into Eq. (268) and apply Lemma[43] we can get
(A, D) (B,,P,P])
L+7(A2D) 14 n(B/%,P,P])

Y

1 _ ~
ﬁ“ace[Ai/z — (A7 4 nH ()]
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<At7 15> + <Bt7 ]-Szf)zT>
" 1+ (A%, D) + (B>, P,P])]

271)

Now by Lemma[4]and Eq. (271):
= 5 PT
s Tl = (A2 B ) > e
S Zz‘e[ ] %0, (A, D > + Zze Z<>,i<Bt7PiPi )
" Sicm) 7o+ M iepm) 7o (A1"% D) + Ticim 204(B1/ % PP
_ (A, bD) + (B, 1- D)
b+ (A% D) + (B2 1—bD)]’
where the last equality follows by Eq. and the fact that

(272)

1E[m] ZO,i == b.

step 3. In this step, we will show that the numerator of Eq. (272) is lower bounded by 1 — 1/2b. First
note that we have derived that Bl/2 A,}/Q - 77A7}/2EAi/2 in Eq. |i Then

B: = (A" —nA,"EA; %)
= A, — (WALEAY? 1+ nAPEA, — ?A}*EAEA?) = A, - G. (273)

2G
Substitute this into the numerator of , we have
(A;,bD) + (B;, 1 —bD) = (A, bD) + (A, — G,I1—bD)
= Trace(A,;) — (G,I— bD)
=1-(G,I-bD), (274)
where the last equality follows by Trace(A;) = 1. Now we intend to find an upper bound for
(G,I—- bﬁ>. First note that since Ai/ZEAtEA,}/2 >~ 0, by the definition of G in Eq. we have

G < nAEA? + nAlEA,. (275)

Recall the definition of E in Eq. (266), we claim that E < D. Indeed, since (20)’1/2Ai/2(20)’1/2
is positive definite, we have

D 4 (Se) "2 ()7 = D,

Thus [D L p(Z)~2A 3 (s )_1/2}7 = D and therefore,

—1 ~
E 2 (86)72[D7 4 ()2 (20) TV (80) 72 2 (20)VAD(8) 2 = D

(276)
Now we have
. Eq. .
@ 1- D) F L AEA? 4 AVEA,T - bD)
= (B, A;”*(I - bD)A,) + n(E, Ay(I — bD)A,’?)
E
“E0 B AY(1— DA, + A, (I— bD)AY?)
=27 Trace(At D) — b Trace(At/QDAt D) £ h(D), (277)

where we define function A : Sfl; — R. By Eq. (263), bD < T and thus the domain of function A is
domh = {D € 81 : D < L1}.

We intend to find an upper bound for ~(D). First we prove that i(D) is a concave function. We can
verify its concavity by considering an arbitrary line, given by Z + tV, where Z,V € S‘i. Define
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g(t) :== h(Z 4 tV), where ¢ is restricted to the interval such that Z + ¢tV € domh. By convex
analysis theory, it is sufficient to prove the concavity of function g. Note that

g(t) =2n Trace[A::/Q(Z +tV)] —2nb Trace[Ai/Q(Z +tV)ALZ +tV)]
= —2nbt? Trace(AimVAtV) + 2nt Trace(Af/QV)

— bt Trace(AY VA, Z + AY?ZA, V) + 2 Trace(ZAY?) — 2nb Trace(A )2 ZA,Z).
(278)

Thus ¢”(¢t) = —4nb Trace(Ai/QVAtV) and ¢”(t) < 0 because Ai/2VAtV > 0. Therefore g(t)
is concave and so is h(D). Now consider the gradient of hA(D):

Vh(D) = 2nA3? — anpA}/’DA,. (279)
Let V(D) = 0, we can get D = 21 € domh. Thus
~ 1 7 3/2 n 3/2 Ui 3/2 7
= —_— = — —_ — = — < —
ﬁiﬁihh@) h(%I) b Trace(A;’'”) 5 Trace(A;’”) 5 Trace(A,’”) < TR (280)
where the last inequality follows by the fact that all eigenvalues of A, lie in [0, 1] and Trace(A;) = 1.

Combining Eq. . Eq. (277) and Eq. (280), we can conclude that

(A, bD) + (B, I — bD) > 1—%. (281)

step 4. Now we derive an upper bound for the denominator of the right hand side of Eq. (272). By
Eq. (266), we have
(A{2.0D) + (B,*.1 - 1D) = (A;*.1D) + (A,”* —nA;*EA;"*, 1 - 1D)
= Trace(Atl/Q) — n(Ai/zEA%/Q, I- bf))

(@ ® =
< Trace(AY?) < V4, (282)

where (a) follows by the fact that both At1 / 2EAt1 /% and T — bD are positive semidefinite, (b) follows
by the following property:

Trace(A}?) = " M(AY?) < Vd |3 R(AVY =Vd [3 M(A)=Vd (283
i€ld] i€[d] i€ld]
where \;(A.) is the i-th eigenvalue of A, the inequality follows by the Cauchy-Schwarz inequality,
the last equality follows by Trace(A;) = 1.

step 5. Now substitute Eq. (281) and Eq. (282) into Eq. (272)), we have

1 _ . A,.bD) + (B,., I —bD 1— 21
e £ Trace[A}/? — (A" + nfi(z) ") = —— 7 (B Ve T
i€lml 1 b+nl(A?bD) + (B>, 1-D)] b+ nVd
(284)

O

F.5 Proof of Theorem [10]

Proof. Letb = 32d/e® + 16\/;/62, n= 8\/3/6, by Propositionlél, we have

b
S TracelA,”? — (A, + F,) 7]
t=1

- 1-% b3 >32J/62+16\/§/e274\/3/e

= b+77\/c? b+77\/(;~_ 3267/624-16\/6?/624—807/6
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32d/e +16Vd/e + 8d/e — (8d/e + 4V d/e) . 8d/c+ 4V d/e

32d/e2 + 16V d/e? + 8de 4(8d/e+ 4V d/e) + 8V d[e
>1 = i (285)
Substitute Eq. (283) into Eq. (I8) in Proposition@ we have
b
1 —
)\min(z F,))>——+ - ZTrace AL/? — (A, 1z nF,) ™
2 1
> - f +l-S=1-S>— (286)
8\/7/6 4 2 1 + €
By Proposition[7} we can get
b
(3 F)<a+of (287)
t=1
O

F.6 Proof of Theoremd]

In this section, we intend to prove Theorem . Our main approach is combining Theorem [3 and
Theorem |10. In order to account for the effect of using ERM 6 as surrogate for 6., we first define
optimal sampling over 6. (Definition 47) and optimal sampling over 6o (Definition 48). Corollary 49|
is a direct result from Proposition[9] At the end of this section, we give the proof for Theorem 4]
Definition 47. [optimal sampling in hindsight] Suppose we know 9*, we select points X, defined by
X, € argmin<Hq(9*)_1,Hp(9*)>, where ¢(z) = Z 5(z' — x) (288)
XcU mo b Sux
| X|=b z 0

Denote the empirical distribution on points Xo U X, by q.(x).
Definition 48. [optimal sampling over ERM] The optimal sampling over ERM 0 is defined by

> 6 —x) (289)

' €XoUX

X*Eargmin<Hq(90)_1,Hp(90)>, where ¢(x)
T

Denote the empirical distribution on points Xy U X, by @i (x).
Corollary 49. Given e € (0,1), consider n = 8\/67/6, b > 32d/e + 16\/(?/62 in Algorithm Then

we have
1

((Hy(60)) " H,(60)) < (1 +€)((Hz. (60)) " Hy(6o)). (290)

Proof. Let X be the set of points selected by Algorithml by Eq we have:

:%ZH(:,;), H; ( ZH

rzeX xEX
where n = ng + b, and thus

((H14(60)) " H, (60)) = nf( > H(z)). (291)

reX
By Definition @ we know that X, is the optimal solution to optimization problem Eq. (13). Since
[« is the optimal value of the objective function in (13)), we have
1

(H. (00) ™" Hy(00)) = n( (32 H(@) ™ Hy(6)) = nf. (292)

reX,

By Theorem (10| we have f (3", . v H(z)) < (1 + €) f.. Combining this with Egs. (291)) and (292),
we can obtain Eq. (290). O
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Figure 4: Plots of first two coordinates of points draw from the joint distribution pi,(x, ).

proof of TheoremH] By Eq. (7) we have
e —ap —1 . <(Hq(‘9*))_1aHp(9*)>

E[L,(6o)] — Lp(0s) < o ol : (293)
where
Q) = 03./01p\/(g+ \/glog(e/é))/(no +b), (294)

where 01 = )\max(Hq_al) . From the step 2 of the proof of Theorem [3| we have with probability
at least 1 — 6,
1
ﬁHq(e*) < H,(6,_1) < V2H,(6.). (295)
Combining results from step 6 in the proof of Theorem 3 with Eq. in Proposition 3T, we can
obtain that with probability at least 1 — 9,

¢=%0H,(6,) < H,(09) < ¢®H,(6.), (296)
where
ap = C:’)),/Uo,o\/(ci—i— \/glog(e/é))/no, (297)

where 09 = Amax(Hy'H,) , go(z) is the empirical distribution over the inital labeled points, i.e.
qo(z) & Ez'eXo O(x — ).
Therefor we have

((B,0.)) <

< V/2e00 < (Hq(00)) 71’ Hp(90)>

-1

,Hq(ﬁ*)>
< V2ero(1+ 6)<(Hﬁ* (6)) ", HP(60)>
(g V2e™ (1 + e)<(Hq*(90)>_1’ Hp(00)>

(d) _
< 220 (14 ) (H,. (0.)) ' H, (0.))
= 2¢22(1 4 €)OPT, (298)

where (a) and (d) follow by Eqs. (295) and (296), (b) follows by Corollary 9] (c) follows by the fact
that g, is the optimal sampling distribution to minimize ((H,(6o)) ™", H,(6o)) (see the definition of
optimal sampling over ERM in Definition 48).

By Eqs. (293) and (298), we can obtain Eq. (9).

G Additional experimental details

G.1 Synthetic experiments

We use numerical tests on synthetic datasets to demonstrate the two excess risk bounds derived in
Theorem [32] (detailed version of Theorem[3): Eq. (6I) and Eq. (62).
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Figure 5: Excess risk of ¢(x) as a function of n, d and ¢ — 1. The dashed black line in the left plot
indicates inversely linear relation. The dashed black lines in the center and right plots indicate linear
relations.
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Figure 6: Aoy (H, 'H,) vs (H, ', H,) in dilation tests (left plot) and translation tests (right plot).

Gaussian Setup.  For a given dimension d, we choose p(z) ~ N (0, V,,), where V,, = 1001,. For
a given class number ¢, we define §, € R(¢~1)*9 such that points generated by p(x) are almost
equally distributed across the ¢ classes. Besides, we normalize the row of 6., i.e. ||, ;]2 = 1. In
Fig. EI, we plot the first two coordinates of the points draw from the joint distribution pi,(z, y), where
each point is colored by its class id.

We use Monte Carlo method to approximate the risk of p(z) at a given parameter 6, i.e. L,(0) =
E(e,y)~my (2,) L (ay) (0)]- In specific, we draw N = 50,000 i.i.d. points {x;};c[n) from p(z), for
each z;, we draw M = 100 i.i.d. labels {y;; } je(ar) from p(y|z;, 0.), then we can estimate the risk
by

Lp(a) 2 E(%u)N%(Lv w(ﬂw)(a)] = IEJUNP(JC) EyNP(y\wﬁ* [éxy(e)]

ZZ

(299)

Ti,Yi5)

Demonstration of excess risk bound for ¢(z) (Eq. (61)). We use g(z) ~ A/(0,1001,) to demon-
strate Eq. . Let {(%4, i) }ic[n) be samples i.i.d draw from 7, (z,y). Denote the ERM estimate as
0,, defined by Eq. (4). In Fig.[5, we plot the excess risk with respect to () (i.e. Lq(6r) — Lq(6x))
against n, d and ¢ — 1. From theses plots, we can observe that the excess risk almost linearly depends
on %, d and ¢ — 1 respectively. This observation is consistent to our upper bound derived in Eq. .

Demonstration of excess risk bounds for p(z) (Eq. .)
types of ¢(z) used in dilation and translation tests. In Fig. 6| we plot the relations of Ay (H, " H,)
(which is ¢ in Theorem @) and FIR ((H, -1 ,H,,). For the dilation tests, we present the plots of
excess risk of p(z) vs FIR, n, and FIR /n respectlvely in Fig. |: We plot the results for translation
tests in Fig.[8, As mentioned in SectlonE these results are consistent to the bounds we derived in
Eq. (62). One interesting ﬁndmg is that from the lower rows of Figs.[7]and [8] the excess risk is upper
bounded by £ 9 FIR when n is large. This observation is consistent with the upper bound we derived in
the bounded domain case (Eq. (T94) in Appendix[E).

In §l we have introduced the different

Non-sub-Gaussian distributions. We consider two non-sub-Gaussian distributions: multivariate
Laplace distribution and t-distribution. For ¢(z), we only consider the translation case. We fix ¢ = 2
and vary d, n and ¢(z). In Fig. E, we plot Amax (H, "H,) vs FIR in different distributions. For
multivariate Laplace distribution tests, we plot excess risk of p(x) vs FIR, n and FIR /n respectively
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Figure 7: Gaussian dilation tests: excess risk of p(z) vs FIR (upper row), n (middle row) and FIR/n
(lower row). For all plots in the lower row, the less transparent dots represent the larger sample size
n, the black dashed lines represent linear relation y = gx.

in Fig. [I0. We plot results for the multivariate t-distribution in Fig.[IT. We can observe that the

results are consistent to the excess risk bound derived in Eq. (7), even though we have sub-Gaussian
distribution assumption in Theorem 3}
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Amax (H, "TH,) vs Trace(H, 'H,) in Multivariate Laplace tests and t-distribution tests.
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Figure 10: Multivariate Laplace distribution test: excess risk of p(«) vs FIR (upper), n (middle), and
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Algorithm 3 Spectral embedding via normalized graph Laplacian

Input: data points X € RV*P  nearest neighbor number k, target out put dimension d
Output: X € RV*d

Obtain k-nearest neighbor graph G on X.

Obtain adjacency matrix A and its degree matrix D from G (using ones as weights).

Calculate normalized Laplacian L «+ I — D~ 1/2AD~1/2,

Calculate the first d eigenvectors of L (corresponding to the d smallest eigenvalues of L):
{Ui}ie[d]' R

5: Form matrix X by stacking {v; };c[q column-wise.

Rl

G.2 Real-world Datasets

Data pre-processing. We use unsupervised learning to find an appropriate feature space that we
can then use for multi-class logistic regression. SImCLR [21] is a framework for contrastive learning
of visual representations. It learns representations by maximizing agreement between differently
augmented views of the same data example via a contrastive loss in the latent space. We also employ
a spectral embedding using the normalized nearest-neighbor graph Laplacian to extract features. We
present the algorithm in Algorithm [3] where we use k& = 256 as the number of nearest neighbor for all
three datasets. Below, we provide a more detailed description of the preprocessing steps performed
for each dataset.

* MNIST. We use the normalized Laplacian to reduce the dimension of the input data to dimension
of 20. In Algorithm[3, N = 60,000, D = 784, and d = 20. For the active learning runs, we
randomly select m = 3, 000 points (with 300 points in each class id) to form the unlabeled data set
U.

* CIFAR-10. First, we use pre-trained SimCLR model jon the whole training data and extract the
feature maps from the last layer (with dimension 512). Second, we use the normalized Laplacian
to reduce the dimension of the training data to dimension of 20. In Algorithm E, N = 50,000,
D = 512, and d = 20. For the active learning tests, we randomly select m = 3, 000 points (with
300 points in each class id) to form the unlabeled data set U.

* ImageNet-50. We first randomly select 50 classes from the training set of ImageNet. We use pre-
trained SImCLR model and extract the features with dimension 2048. Then we use the normalized
Laplacian to reduce the dimension of the training data to dimension of 40. In Algorithm [3,
D = 2048, and d = 40. or the active learning tests, we randomly select m = 5, 000 points (with
100 points in each class id) to form the unlabeled data set U.

Tuning hyperparameter 7. In Algorithm|I| we have to set the learning rate 7. We try different n
and select the one that maximizes )\min(zgzl H(z;,)) since this is our goal of the sparsification step
(lines 3-11 in Algorithm|T). Note that for each round of active learning, we only need to solve the
relaxed problem Eq. once. Furthermore, tuning 7 does not require labeling information.

Additional results. We have presented the classification accuracy on unlabeled set in Fig. [3. In
Fig. we plot the normalized weights z, (i.e. the solution of the relaxed problem Eq. (14)) at each
round of active learning tests. We present the images selected by different active learning methods
for MNIST (Fig.[13), CIFAR-10 (Fig.[14), and ImageNet-50 (Figs.[I5]and [16).
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https://github.com/google-research/simclr
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