Appendix

A Additional Instruction Tuning Implementation Details

To fine-tune the instruction-tuned length predictor module, we followed a specific procedure. First,
we prepared the dataset by sampling each instruction four times. One sample was obtained using
greedy decoding with a temperature of 0, while the other three samples were generated using a
temperature of 1.0 with different random seeds. The maximum length among the four samples was
used as the target length for each instruction.

For the training dataset, we constructed new instructions by appending the requirement of perceiving
the response length only. The prompt we used for this purpose was: "Don’t output the response for
the above instruction. Instead, you need to predict the number of tokens in your response. Output
only one number."

During the training process, we employed the same hyperparameters as the Vicuna [4] instruction
tuning process on LLaMA [34]. Specifically, we set the learning rate to 0.00005 and trained the model
for three epochs. We applied the LoRA [16] method solely to the query and key linear layer. The
training was conducted on a single 80GB A100 GPU. All codes are implemented in PyTorch [26].

B Distribution of Instruction-in-Wild Dataset

The histogram of response length on Instruction-in-Wild [36] dataset is shown in Figure 5. The
response length is more diverse and contains more responses with a long length.

304 Vicuna 500
25 £ 400
> 2
g 201 $ 300
()
5151 £
i 8200
101 8
100
5]
0 0
0 100 200 300 400 500 0 100 200 300 400
Response Length Data Point
(a) Response length distribution of Instruction-in- (b) Distribution of response length on instruction-
Wild dataset. in-Wild dataset per sample.

Figure 5: Distribution of response length on instruction-in-Wild dataset.

C Discussion on Sequence Scheduling with PiA

In the main text, we presented the sequence scheduling technique using instruction-tuned models,
where the LoRA weight was utilized for response length perception. However, recent LLMs such as
GPT-4 and Claude have shown promising performance in Perception in Advance (PiA), which allows
them to leverage PiA for sequence scheduling without the need for additional weights.

To further improve the speed of inference in this setting, one potential approach is to reuse the
key-value (kv) cache of input queries from the response length perception stage during the inference
stage. This eliminates the need for recomputing the kv-cache on input instructions, thereby saving
valuable processing time.

One strategy we explored is offloading the kv-cache to the main memory and then loading it back
into the GPU memory. However, the transfer time between the CPU and GPU can be significant and
greatly impact overall performance, often surpassing the time saved by recomputation. To address
this, one possible improvement is to offload and load only a portion of the kv-cache asynchronously,
reducing the transfer time overhead. This is an area that we leave for future work and exploration.

12

Another approach we investigated involved compressing the kv-cache and storing it directly in the
GPU memory. We applied FlexGen’s quantization method [29] for compression and found that it had
minimal impact on performance. However, this approach does consume additional memory and can
lead to smaller batch size, potentially degrading overall performance. A potential avenue for further
exploration is to combine compression and offloading techniques to strike a balance between memory
usage and performance.

Considering these factors, we have chosen to continue using the recomputation strategy for the PiA
response length perception module in our proposed pipeline. While there is potential for optimizations
through offloading and compression, further investigation and refinement are required to achieve
substantial performance gains in practice.

D Inference Time Grows with Token Position Index

0.06500
0.0850
0.06475
0.0825
] o 0.06450
_E 0.0800 E
© © 0.06425
© 0.0775 Q
] @ 0.06400
2 0.0750 e
£ £ 0.063751
0.0725
0.06350
0.0700
0.06325
0 100 200 300 400 500 0 100 200 300 400 500
Token Position Index Token Position Index
(a) batch-size=16 (b) batch-size=1

Figure 6: Inference time grows with the token position index.

In transformer models, the inference time for tokens located toward the end of a sequence is typically
longer due to the need for self-attention operations on more keys and values. This results in a linear
increase in the inference time required for tokens as the location index grows, as illustrated in Figure
6. Consequently, saving redundant computations on longer sequences has a more significant impact
compared to shorter ones. This observation explains why the growth ratio of throughput can be higher
than the ratio of saved redundant tokens.

13

