
A Additional notations502

In this work, matrices are written in bold uppercase letters. Vectors are written in bold lowercase503

letters only if they indicate network parameters (such as bias). For a matrix A 2 Rm⇥n, we use504

A[i, :] 2 R1⇥n (resp. A[:, i] 2 Rm⇥1) to denote the row (resp. column) vector corresponding the505

ith row (resp. column) of A. To ease the notation, we write A[i, :]v to denote the scalar product506

between A[i, :] and the vector v 2 Rn. This notation will be used regularly when we decompose the507

functions of one-hidden-neural networks into sum of functions corresponding to hidden neurons.508

For a vector v 2 Rd, v[I] 2 R|I| is the vector v restricted to coefficients in I ✓ JdK. If I = {i} a509

singleton, v[i] 2 R is the ith coefficient of v. We also use 1m and 0m to denote an all-one (resp.510

all-zero) vector of size m.511

For a dense (fully connected) feedforward architecture, we denote N = (NL, . . . , N0) the dimensions512

of the input layer N0 = d, hidden layers (NL�1, . . . , N1) and output layer (NL), respectively. The513

parameters space of the dense architecture N is denoted by NN: it is the set of all coefficients of the514

weight matrices Wi 2 RNi⇥Ni�1 and bias vectors bi 2 RNi , i = 1, . . . , L. It is easy to verify that515

NN is isomorphic to RN where N =
PL

i=1 Ni�1Ni +
PL

i=1 Ni is the total number of parameters516

of the architecture.517

Clearly, NI ✓ NN since:518

NI := {✓ = ((Wi,bi))i=1,...,L : supp(Wi) ✓ Ii, 8i = 1, . . . , L.}. (5)

A special subset of NI is the set of network parameters with zero biases,519

N
0
I := {✓ = ((Wi,0Ni

))i=1,...,L : supp(Wi) ✓ Ii, 8i = 1, . . . , L.}. (6)

Given an activation function ⌫, the realization R
⌫
✓ of a neural network ✓ 2 NN is the function520

R
⌫
✓ : x 2 RN0 7! R

⌫
✓ (x) := WL⌫(. . . ⌫(W1x+ b1) . . .+ bL�1) + bL 2 RNL (7)

We denote R
⌫ : ✓ 7! R

⌫
✓ the functional mapping from a set of parameters ✓ to its realization. The521

function space associated to a sparse architecture I and activation function ⌫ is the image of NI under522

R
⌫ :523

F
⌫
I := R

⌫(NI). (8)

When ⌫ = � the ReLU activation function, we recover the definition of realization in Equation (1).524

We use the shorthands525

R✓ := R
�
✓

FI := F
�
I ,

(9)

as in the main text. This allows us to define LI (cf. Equation (2)) as LI := R
Id(N 0

I ) where ⌫ = Id is526

the identity map, which is a subset of linear maps RN0 7! RNL .527

B Proofs for results in Section 3528

B.1 Proof of Proposition 3.1529

Proof. First, we remind the problem of the training of a sparse neural network on a finite data set530

D = {(xi, yi)}Pi=1:531

Minimize
✓2NI

L(✓) :=
PX

i=1

`(R✓(xi), yi), (10)

which shares the same optimal value as the following optimization problem:532

Minimize
D2FI(⌦)

L(D) :=
PX

i=1

`(D[:, i], yi) (11)

where ⌦ = {xi}
P
i=1. This is simply a change of variables: from R✓(xi) to the ith column of533

D = R✓(⌦). We prove two implications as follows:534
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1. Assume the closedness of FI(⌦) for every finite ⌦. Then an optimal solution of the optimization535

problem (10) exists for every finite data set {(xi, yi)}Pi=1. Consider a training set {(xi, yi)}Pi=1536

and ⌦ := {xi}
P
i=1. Since D := 0P⇥NL

2 FI(⌦) (by setting all parameters in ✓ equal to zero),537

the set FI(⌦) is non-empty. The optimal value of (11) is thus upper bounded by L(0). Since the538

function `(·, yi) is coercive for every yi in the training set, there exists a constant C (dependent539

on the training set and the loss) such that minimizing (11) on FI(⌦) or on FI(⌦) \ B(0, C)540

(with B(0, C) the L2 ball of radius C centered at zero) yields the same infimum. The function541

L is continuous, since each `(·, yi) is continuous by assumption, and the set FI(⌦) \ B(0, C) is542

compact, since it is closed (as an intersection of two closed sets) and bounded (since B(0, C) is543

bounded). As a result there exists a matrix D 2 FI(⌦) \ B(0, C) yielding the optimal value for544

(11). Thus, the parameters ✓ such that R✓(⌦) = D is an optimal solution of (10).545

2. Assume that an optimal solution of problem 10 exists for every finite data set {(xi, yi)}Pi=1. Then
FI(⌦) is closed for every ⌦ finite. We prove the contraposition of this claim. Assume there exists
a finite set ⌦ = {xi}

P
i=1 such that FI(⌦) is not closed. Then, there exists a matrix D 2 RNL⇥P

such that D 2 FI(⌦) \ FI(⌦). Consider the dataset {(xi, yi)}Pi=1 where yi 2 RNL is the ith
column of D. We prove that the infimum value of (10) is V :=

PP
i=1 `(yi, yi). Indeed, since

D 2 FI(⌦), there exists a sequence {✓k}k2N such that limk!1 R✓k(⌦) = D. Therefore, by
continuity of `(·, yi), we have:

lim
k!1

L(✓k) =
PX

i=1

lim
k!1

`(R✓k(xi), yi) =
PX

i=1

`(yi, yi) = V.

Moreover, the infimum cannot be smaller than V because the ith summand is at least `(yi, yi)546

(due to the assumption on ` in Proposition 3.1). Therefore, the infimum value is indeed V . Since547

we assume that y is the only minimizer of y0 7! `(y0, y), this value can be achieved only if there548

exists a parameter ✓ 2 I such that R✓(⌦) = D. This is impossible due to our choice of D which549

does not belong to FI(⌦). We conclude that with our constructed data set D, an optimal solution550

does not exist for (10).551

B.2 Proof of Lemma 3.2552

The proof of Lemma 3.2 (and thus, as discussed in the main text, of Theorem 3.1) use four technical553

lemmas. Lemma B.1 is proved in Appendix C.1 since it involves Theorem 4.1. The other lemmas are554

proved right after the proof of Lemma 3.2.555

Lemma B.1. If A 2 LI\LI ✓ RNL⇥N0 then the function f : x 7! f(x) := Ax satisfies f 2556

FI(⌦) \ FI(⌦) for every subset ⌦ of RN0 that is bounded with non-empty interior.557

Lemma B.2. Consider ⌦ = {xi}
P
i=1 a finite subset of Rdand ⌦0 = [�B,B]d such that ⌦ ✓ ⌦0. If558

f 2 FI(⌦0) (under the topology induced by k · k1), then D :=
⇥
f(x1) . . . f(xP )

⇤
2 FI(⌦).559

Lemma B.3. Consider R✓, the realization of a ReLU neural network with parameter ✓ 2 I. This560

function is continuous and piecewise linear. On the interior of each piece, its Jacobian matrix is561

constant and satisfies J 2 LI.562

Lemma B.4. For p,N 2 N, consider the following set of points (a discretized grid for [0, 1]N ):

⌦ = ⌦N
p =

⇢✓
i1
p
, . . . ,

iN
p

◆
| 0  ij  p, ij 2 N, 81  j  N

�
.

If H 2 N satisfies p � 3NH , then for any collection of H hyperplanes, there exists x 2 ⌦N
p such

that the elementary hypercube whose vertices are of the form
⇢
x+

✓
i1
p
, . . . ,

iN
p

◆
| ij 2 {0, 1} 81  j  N

�
✓ ⌦N

p

lies entirely inside a polytope delimited by these hyperplanes.563

We are now ready to prove Lemma 3.2.564
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Proof of Lemma 3.2. Since LI is not closed, there exists a matrix A 2 LI \ LI, and we consider
f(x) := Ax. Setting p := 3N04

P
L�1
i=1 Ni we construct ⌦ as the grid:

⌦ =

⇢✓
i1
p
, . . . ,

iN0

p

◆
| 0  ij  p, ij 2 N, 81  j  N0

�
,

so that the cardinality of ⌦ = {xi}
P
i=1 is P := (p + 1)N0 . Similar to the sketch proof, consider565

D :=
⇥
f(x1), f(x2), . . . , f(xP )

⇤
. Our goal is to prove that D 2 FI(⌦) \ FI(⌦).566

First, notice that D 2 FI(⌦) as an immediate consequence of Lemma B.2 and Lemma B.1.567

It remains to show that D /2 FI(⌦). We proceed by contradiction, assuming that there exists ✓ 2 NI568

such that R✓(⌦) = D.569

To show the contradiction, we start by showing that, as a consequence of Lemma B.4 there exists570

x 2 ⌦ such that the hypercube whose vertices are the 2N0 points571

⇢
x+

✓
i1
p
, . . . ,

iN0

p

◆
| ij 2 {0, 1}, 81  j  N0

�
✓ ⌦, (12)

lies entirely inside a linear region P of the continuous piecewise linear function R✓ [1]. Denote572

K = 2
P

L

i=1 Ni a bound on the number of such linear regions, see e.g. [24]. Each frontier between a573

pair of linear regions can be completed into a hyperplane, leading to at most H = K2 hyperplanes.574

Since p = 3N0K2
� 3N0H , by Lemma B.4 there exists x 2 ⌦ such that the claimed hypercube lies575

entirely inside a polytope delimited by these hyperplanes. As this polytope is itself included in some576

linear region P of R✓, this establishes our intermediate claim.577

Now, define v0 := x and vi := x+ (1/p)ei, i 2 JN0K where ei is the ith canonical vector. Denote
P 2 RNL⇥N0 the matrix such that the restriction of R✓ to the piece P is fP(x) = Px+ b. Since P
is the Jacobian matrix of R✓ in the linear region P , we deduce from Lemma B.3 that P 2 LI. Since
the points vi belong to the hypercube which is both included in P and in ⌦ we have for each i:

P(v0 � vi) = fP(v0)� fP(vi)

= R✓(v0)�R✓(vi)

= f(v0)� f(vi)

= A(v0 � vi).

where the third equality follows from the definition of D and the fact that we assume R✓(⌦) = D.578

Since v0 � vi = ei/p, i = 1, . . . , n are linearly independent, we conclude that P = A. This implies579

A 2 LI, hence the contradiction. This concludes the proof.580

We now prove the intermediate technical lemmas.581

Proof of Lemma B.2. Since f 2 FI(⌦0), there exists a sequence {✓k}k2N such that:

lim
k!1

sup
x2⌦0

kf(x)�R✓k(x)k = 0

Denoting Dk :=
⇥
R✓k(x1) . . .R✓k(xr)

⇤
, since xi 2 ⌦ ✓ ⌦0, i = 1, . . . , P , it follows that Dk582

converges to D. Since Dk 2 FI(⌦) by construction, we get that D 2 FI(⌦).583

Proof of Lemma B.3. For any ✓ 2 I, R✓ is a continuous piecewise linear function since it is the
realization of a ReLU neural network [1]. Consider P a linear region of R✓ with non-empty interior.
The Jacobian matrix of P has the following form [28, Lemma 9]:

J = WLDL�1WL�1DL�2 . . .D1W1

where Di is a binary diagonal matrix (diagonal matrix whose coefficients are either one or zero).584

Since supp(DiWi) ✓ supp(Wi) ✓ Ii, we have: J = WL
QL�1

i=1 (DiWi) 2 LI .585
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Proof of Lemma B.4. Every edge of an elementary hypercube can be written as:✓
x, x+

1

p
ei

◆
, x 2 ⌦N

p

where ei is the ith canonical vector, 1  i  N . The points x and x+ (1/p)ei are two endpoints.586

Note that in this proof we use the notation (a, b) to denote the line segment whose endpoints are587

a and b. By construction, ⌦N
p contains pN such elementary hypercubes. Given a collection of H588

hyperplanes, we say that an elementary hypercube is an intersecting hypercube if it does not lie589

entirely inside a polytope generated by the hyperplanes, meaning that there exists a hyperplane that590

intersects at least one of its edges. More specifically, an edge and a hyperplane intersect if they have591

exactly one common point. We exclude the case where there are more than two common points since592

that implies that the edge lies completely in the hyperplane. The edges that are intersected by at least593

one hyperplane are called intersecting edges. Note that a hypercube can have intersecting edges, but594

it may not be an intersecting one. A visual illustration of this idea is presented in Figure 3.595

intersecting edge

hyperplane

non-intersecting edge
a) b) c)

Figure 3: Illustration of definitions in R2: a) an intersecting hypercube with two intersecting edges;
b) not an intersecting hypercube, but it has two intersecting edges; c) not an intersecting hypercube
and it only has two intersecting edges (not three according to our definitions: the bottom edge is not
intersecting).

Formally, a hyperplane {w>x+ b = 0} for w 2 RN and b 2 R intersects an edge (x, x+ 1
pei) if:596

8
><

>:

(w>x+ b)
h
w>(x+ 1

pei) + b
i
 0

and
w>x+ b 6= 0 or w>(x+ 1

pei) + b 6= 0

(13)

We further illustrate these notions in Figure 4. We emphasize that according to Equation (13), `3 in597

Figure 4 does not intersect any edge along its direction.

`1

`2

`3

intersecting hypercube

non-intersecting hypercube

hyperplane

intersecting edge

Figure 4: Illustration of intersecting hypercubes and hyperplanes in R2.
598

Clearly, the number of intersecting hypercubes is upper bounded by the number of intersecting edges.599

The rest of the proof is devoted to showing that this number is strictly smaller than pN if p � 3NH ,600

as this will imply the existence of at least one non-intersecting hypercube.601
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To estimate the maximum number of intersecting edges, we analyze the maximum number of edges
that a given hyperplane can intersect. For a fixed index 1  i  N , we count the number of edges of
the form (x, x + 1

pei) intersected by a single hyperplane. The key observation is: if we fix all the
coordinates of x except the ith one, then the edges (x, x + 1

pei) form a line in the ambient space.
Among those edges, there are at most two intersecting edges with respect to the given hyperplane.
This happens only when the hyperplane intersects an edge at one of its endpoints (e.g., the hyperplane
`2 and the second vertical line in Figure 4). In total, for each 1  i  N and each given hyperplane,
there are at most 2(p+ 1)N�1 intersecting edges of the form (x, x+ 1

pei). For a given hyperplane,
there are thus at most 2N(p+ 1)N�1 intersecting edges in total (since i 2 JNK). Since the number
of hyperplanes is at most H , there are at most 2NH(p+ 1)N�1 intersecting edges, and this quantity
also bounds the number of intersecting cubes as we have seen. With the assumption p � 3NH , we
conclude by proving that pN > 2NH(p+ 1)N�1. Indeed, we have:

2NH(p+ 1)N�1

pN
=

2NH

p

✓
p+ 1

p

◆N�1

=
2NH

p

✓
1 +

1

p

◆N�1

<
2NH

p

✓
1 +

1

p

◆NH


2NH

3NH

✓
1 +

1

3NH

◆NH


2e1/3

3
⇡ 0.93 < 1

where we used that (1 + 1/n)n  e ⇡ 2.71828, the Euler number.602

B.3 Proof of Theorem 3.4603

Proof. We denote X =
⇥
x1, . . . , xP

⇤
2 RN0⇥P , the matrix representation of ⌦. Our proof has three604

main steps:605

Step 1: We show that we can reduce the study of the closedness of FI(⌦) to that of the closedness606

of a union of subsets of RP , associated to the vectors W2. To do this, we prove that for any element607

f 2 FI(⌦), there exists a set of parameters ✓ 2 NI such that the matrix of the second layer W2608

belongs to {�1, 0, 1}1⇥N1 (since we assume N2 = 1). This idea is reused from the proof of [1,609

Theorem 4.1].610

For ✓ := {(Wi,bi)2i=1} 2 NI, the function R(✓) has the form:

R✓(x) = W2�(W1x+ b1) + b2 =
N1X

i=1

w2,i�(w1,ix+ b1,i) + b2

where w1,i = W1[i, :] 2 R1⇥N0 ,w2,i = W2[i] 2 R,b1,i = b[i] 2 R. Moreover, if w2,i is different
from zero, we have:

w2,i�(w1,ix+ b1) =
w2,i

|w2,i|
�(|w2,i|w1,ix+ |w2,i|b1,i).

In that case, one can assume that w2,i can be equal to either �1 or 1. Thus, we can assume611

w2,i 2 {±1, 0}. For a vector v 2 {�1, 0, 1}1⇥N1 , we define:612

Fv = {[R✓(x1), . . . ,R✓(xP )] | ✓ 2 NI,v} (14)

where NI,v ✓ NI is the set of ✓ = {(Wi,bi)2i=1} with W2 = v 2 {0, 1}1⇥N1 , i.e., in words, Fv is613

the image of ⌦ through the function R✓, ✓ 2 NI,v.614

Define V := {v | supp(v) ✓ I2} \ {0,±1}1⇥N1 . Clearly, for v 2 V, Fv ✓ FI(⌦). Therefore,
[

v2V
Fv ✓ FI(⌦).

Moreover, by our previous argument, we also have:

FI(⌦) ✓
[

v2V
Fv.

Therefore,
FI(⌦) =

[

v2V
Fv.
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Step 2: Using the first step, to prove that FI(⌦) is closed, it is sufficient to prove that Fv is closed,615

8v 2 V. This can be accomplished by further decomposing Fv into smaller closed sets. We denote616

✓0 the set of parameters W1,b1 and b2. In the following, only the parameters of ✓0 are varied since617

W2 is now fixed to v.618

Due to the activation function �, for a given data point xj 2 ⌦, we have:619

�(Wxj + b1) = Dj(Wxj + b1) (15)

where Dj 2 D, the set of binary diagonal matrices, and its diagonal coefficients Dj [i, i] are620

determined by:621

Dj [i, i] =

⇢
0 if W[i, :]xj + b1[i]  0
1 if W[i, :]xj + b1[i] � 0

. (16)

Note that Dj [i, i] can take both values 0 or 1 if W[i, :]xj + b1[i] = 0. We call the matrix Dj the
activation matrix of xj . Therefore, for (15) to hold, the N1 constraints of the form (16) must hold
simultaneously. It is important to notice that all these constraints are linear w.r.t. ✓0. We denote z a
vectorized version of ✓0 (i.e., we concatenate all coefficients whose indices are in I1 of W and b1,b2

into a long vector), and we write all the constraints in (15) in a compact form:

A(Dj , xj)z  0N1

where A(Dj , xj) is a constant matrix that depend on Dj and xj .622

Set ✓ = (v, z). Given that (15) holds, we deduce that:

R✓(xj) = v�(Wxj + b1) + b2 = vDj(Wxj + b1) + b2 = V(Dj , xj ,v)z

where V(Dj , xj ,v) is a constant matrix that depends on Dj ,v, xj . In particular, R✓(xj) is also
a linear function w.r.t the parameters z . Assume that the activation matrices of (x1, . . . , xP ) are
(D1, . . . ,DP ), then we have:

R✓(⌦) = (V(D1, x1,v)z, . . . ,V(DP , xP ,v)z) 2 R1⇥P .

To emphasize that R✓(⌦) depends linearly on z, for the rest of the proof, we will write R✓(⌦) as a
vector of size P (instead of a row matrix 1⇥ P ) as follows:

R✓(⌦) = V(D1, . . . ,DP )z where V(D1, . . . ,DP ) =

0

B@
V(D1, x1,v)

...
V(DP , xP ,v)

1

CA .

Moreover, to have (D1, . . . ,DP ) activation matrices, the parameters z need to satisfy:

A(D1, . . . ,DP )z  0Q

where Q = PN1 and

A(D1, . . . ,DP ) =

0

B@
A(D1, x1)

...
A(DP , xP )

1

CA .

Thus, the set of R✓(⌦) given the activation matrices (D1, . . . ,DP ) has the following compact form:

F (D1,...,DP )
v := {V(D1, . . . ,DP )z | A(D1, . . . ,DP )z  0}.

Clearly, F (D1,...,DP )
v ✓ Fv since each element is equal to R✓(⌦) with ✓ = (v, z) for some z. On the

other hand, each element of Fv is an element of F (D1,...,DP )
v for some (D1, . . . ,DP ) 2 D

P since
the set of activation matrices corresponding to any ✓ is in D

P . Therefore,

Fv =
[

(D1,...,DP )2DP

F (D1,...,DP )
v .
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Step 3: Using the previous step, it is sufficient to prove that F (D1,...,DP )
v is closed, for any623

v, (D1, . . . ,DP ) 2 D
P . To do so, we write F (D1,...,DP )

v in a more general form:624

{Az | Cz  y}. (17)

Therefore, it is sufficient to prove that a set as in Equation (17) is closed. These sets are linear625

transformations of an intersection of a finite number of half-spaces. Since the intersection of a626

finite number of halfspaces is stable under linear transformations (cf. Lemma B.5 below), and the627

intersection of a finite number of half-spaces is a closed set itself, the proof can be concluded.628

Lemma B.5 (Closure of intersection of half-spaces under linear transformations). For any A 2

Rm⇥n,C 2 R`⇥n,y 2 R`, there exists C0
2 Rk⇥m,b0

2 Rk such that:

{Ax | Cx  y} = {C0z  b0
}.

Proof. The proof uses Fourier–Motzkin elimination 4. This method is a quantifier elimination
algorithm for linear functions 5. In fact, the LHS can be written as: {t | t = Ax,Cx  y}, or more
generally, ⇢

t | 9x 2 Rn s.t. B
✓
x
t

◆
 v

�
✓ Rm

where
�
x
t

�
is the concatenation of two vectors (x, t) and the linear constraints imposed by B

�
x
t

�
 v629

replace the two linear constraints Cx  y and t = Ax. The idea is to show that:630

⇢
t | 9x 2 Rn s.t. B

✓
x
t

◆
 v

�
=

⇢
t | 9x0

2 Rn�1 s.t. B0

✓
x0

t

◆
 v0

�
(18)

for some matrix B0 and vector v0. By doing so, we reduce the dimension of the quantified parameter631

x by one. By repeating this procedure until there is no more quantifier, we prove the lemma. The632

rest of this proof is thus devoted to show that B0,v0 as in (18) do exist.633

We will show how to eliminate the first coordinate of x[1]. First, we partition the set of linear634

constraints of LHS of (18) into three groups:635

1. S0 := {j | B[j, 1] = 0}: In this case, x[1] does not appear in this constraint, there is nothing636

to do.637

2. S+ := {j | B[j, 1] > 0}, for j 2 S+, we can rewrite the constraints B[j, :]
�
x
t

�
 v[j] as:

x[1]  �[j] +
nX

i=2

↵[i]x[i] +
mX

i=1

�[i]t[i] := B+
j (x0, t)

for some suitable �[j],↵[i],�[i] where x0 is the last (n� 1) coordinate of the vector x.638

3. S� := {j | B[j, 1] < 0}: for j 2 S�, we can rewrite the constraints B[j, :]
�
x
t

�
 vj as:

x[1] � �[j] +
nX

i=2

↵[i]x[i] +
mX

i=1

�[i]t[i] := B�

j (x0, t).

For the existence of such x[1], it is necessary and sufficient that:639

B+
k (x0, t) � B�

j (x0, t), 8k 2 S+, j 2 S�. (19)

Thus, we form the matrix B0 and the vector v0 such that the linear constraints written in the following
form:

B0

✓
x0

t

◆
 v0

represent all the linear constraints in the set S0 and those in the form of (19). Using this procedure640

recursively, one can eliminate all quantifiers and prove the lemma.641

4More detail about this method can be found in this link
5In fact, the algorithm determining the closedness of LI is also a quantifier elimination one, but it can be

used in a more general setting: polynomials
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B.4 Proofs for Lemma 3.3642

Since we use tools of real algebraic geometry, this section provides basic notions of real algebraic643

geometry for readers who are not familiar with this domain. It is organized and presented as in the644

textbook [2] (with slight modifications to better suit our needs). For a more complete presentation,645

we refer readers to [2, Chapter 2].646

Definition B.1 (Semi-algebraic sets). A semi-algebraic set of Rn has the form:
k[

i=1

{x 2 Rn
| Pi(x) = 0 ^

`i^

j=1

Qi,j(x) > 0}

where Pi, Qi,j : Rn
7! R are polynomials and ^ is the “and” logic.647

The following theorem is known as the projection theorem of semi-algebraic sets. In words, the648

theorem states that: The projection of a semi-algebraic set to a lower dimension is still a semi-algebraic649

set (of lower dimension).650

Theorem B.6 (Projection theorem of semi-algebraic sets [2, Theorem 2.92]). Let A be a semi-
algebraic set of Rn and define:

B = {(x1, . . . , xn�1) | 9xn, (x1, . . . , xn�1, xn) 2 A}

then B is a semi-algebraic set of Rn�1.651

Theorem B.6 is a powerful result. Its proof [2, Section 2.4] (which is constructive) shows a way to652

express B (in Theorem B.6) by using only the first n� 1 variables (x1, . . . , xn�1).653

Next, we introduce the language of an ordered field and sentence. Readers which are not familiar654

to the notion of ordered field can simply think of it as R and its subring as Q. Example for fields655

that is not ordered is C (we cannot compare two arbitrary complex number). Therefore, the notion656

of semi-algebraic set in Definition B.1 (which contains Qi,j(x) > 0) does not make sense when the657

underlying field is not ordered.658

The central definition of the language of R is formula, an abstraction of semi-algebraic sets. In659

particular, the definition of formula is recursive: formula is built from atoms - equalities and660

inequalities of polynomials whose coefficients are in a subring Q of R. It can be also formed by661

combining with logical connectives “and”, “or”, and “negation” (^,_,¬) and existential/universal662

quantifiers (9, 8). Formula has variables, which are those of atoms in the formula itself. Free variables663

of a formula are those which are not preceded by a quantifier (9, 8). The definitions of a formula and664

its free variables are given recursively as follow:665

Definition B.2 (Language of the ordered field with coefficients in a ring). Consider R an ordered666

field and Q ✓ R a subring, a formula � and its set of free variables Free(X) are defined recursively667

as:668

1. An atom: if P 2 Q[X] (where Q[X] is the set of polynomials with coefficients in Q)669

then � := (P = 0) (resp. � := (P > 0)) is a formula and its set of free variables is670

Free(�) := {X1, . . . , Xn} where n is the number of variables.671

2. If �1 and �2 are formulas, then so are �1 _�2,�1 ^�2 and ¬�1. The set of free variables672

is defined as:673

(a) Free(�1 _ �2) := Free(�1) [ Free(�2).674

(b) Free(�1 ^ �2) := Free(�1) [ Free(�2).675

(c) Free(¬�1) = Free(�1).676

3. If � is a formula and X 2 Free(�), then �0 = (9X)� and �00 = (8X)� are also formulas677

and Free(�0) := Free(�) \ {X}, and Free(�00) := Free(�) \ {X}.678

Definition B.3 (Sentence). A sentence is a formula of an ordered field with no free variable.679

Example B.1. Consider two formulas:

�1 = {9X1, X
2
1 +X2

2 = 0}

�2 = {9X1, 9X2, X
2
1 +X2

2 = 0}
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While �1 is a normal formula, �2 is a sentence and given an underlying field (R, for instance), �2 is680

either correct or not. Here, �2 is correct (since X2
1 +X2

2 = 0 has a root (0, 0)). Nevertheless, if one681

consider �0

2 = {9X1, 9X2, X2
1 +X2

2 = �1}, then �0

2 is not correct.682

An algorithm deciding whether a sentence is correct or not is very tempting since formula and683

sentence can be used to express many theorems in the language of an ordered field. The proof or684

disproof will be then given by an algorithm. Such an algorithm does exist, as follow:685

Theorem B.7 (Decision problem [2, Algorithm 11.36]). There exists an algorithm to decide whether686

a given sentence is correct is not with complexity O(sd)O(1)k�1

where s is the bound on the number687

of polynomials in �, d is the bound on the degrees of the polynomials in � and k is the number of688

variables.689

A full description of [2, Algorithm 11.36] (quantifier elimination algorithm) is totally out of the690

scope of this paper. Nevertheless, we will try to explain it in a concise way. The key observation is691

Theorem B.6, the central result of real algebraic geometry. As discussed right after Theorem B.6, its692

proof implies that one can replace a sentence by another whose number of quantifiers is reduced by693

one such that both sentences agree (both are true or false). Applying this procedure iteratively will694

result into a sentence without any variable (and the remain are only coefficients in the subring). We695

check the correctness of this final sentence by trivially verifying all the equalities/inequalities and696

obtain the answer for the original one.697

Proof of Lemma 3.3. To decide whether LI is closed or not, it is equivalent to decide if the following
sentence (see Definition B.3) is true or false:

9A,(8XL, . . . ,X1, P (A,XL, . . . ,X1) > 0)^

(8✏ > 0, 9X0

L, . . . ,X
0

1, P (A,X0

L, . . . ,X
0

1)� ✏ < 0)

where P (A,X1, . . . ,XL) :=
P

(i,j)(A[i, j]� P I
i,j(XL, . . . ,X1))2.698

This sentence basically asks whether there exists a matrix A 2 FI \ FI or not. It can be proved that699

this sentence can be decided to be true or false using real algebraic geometry tools (see Theorem B.7),700

with a complexity O
⇣
(sd)C

k�1
⌘

where C is a universal constant and s, d, k are the number of701

polynomials, the maximum degree of the polynomials and the number of variables in the sentence,702

respectively. Applying this to our case, we have s = 2, d = 2L, k = NLN0 + 1 + 2
PL

`=1 |I`|703

(remind that |I`| is the total number of unmasked coefficients of X`).704

B.5 Polynomial algorithm to detect support constraints I = (I, J) with non-closed LI.705

The following sufficient condition for non-closedness is based on the existence in the support706

constraint of 2⇥ 2 blocks sharing the essential properties of a 2⇥ 2 LU support constraint.707

Lemma B.8. Consider a pair I = (I, J) 2 {0, 1}m⇥r
⇥ {0, 1}r⇥n of support constraints for the708

weight matrices of one-hidden-layer neural network. If there exists four indices 1  i1, i2  m, 1 709

j1, j2  n and two indices k 6= l, 1  k, l  r such that:710

1. For each pair (i, j) 2 {(i1, j1), (i1, j2), (i2, j1)} we have:

(i, j) 2 supp(I[:, k]J [k, :]) and (i, j) /2 supp(I[:, `]J [`, :]), 8` 6= k.

2. The pair (i2, j2) belongs to supp(I[:, k]J [k, :]) and to supp(I[:, l]J [l, :]).711

then LI is non-closed.712

Proof. First, it is easy to see that the assumptions of this lemma are equivalent to those of [18,
Theorem 4.20] since supp(I[:, k]J [k, :]) is precisely the kth rank-one support of the pair (I, J)
[18, Definition 3.1]. Without loss of generality, one can assume that i1, j1 = 1, i2, j2 = 2 and
k = 1, l = 2. We will prove that A 2 LI \ LI where

A :=

✓
A0 0
0 0

◆
2 Rm⇥n, with A0 :=

✓
0 1
1 0

◆
2 R2⇥2.

This can be shown in two steps:713
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1. Proof that A 2 LI: For any ✏ > 0, consider two factors:

X✏ =

✓
X0

✏ 0
0 0

◆
,Y✏ =

✓
Y0

✏ 0
0 0

◆

where X0

✏,Y
0

✏ 2 R2⇥2 respect the support constraints corresponding to the LU architecture. It is
not hard to see that such a construction of (X✏,Y✏) satisfies the support constraints (I, J) (due to
the assumption of the lemma and the value of indices). Moreover, we also have:

kA�X✏Y✏kF = kA0
�X0

✏Y
0

✏kF

Thus, to have kA�X✏Y✏kF  ✏, it is sufficient to choose a pair of factors (X0

✏,Y
0

✏) respecting714

the LU architecture of size 2⇥ 2 such that kA0
�X0

✏Y
0

✏kF  ✏. Such a pair exists, since the set715

of matrices admitting the exact LU decomposition is dense in R2⇥2. This holds for any ✏ > 0.716

Therefore, A 2 LI.717

2. Proof that A /2 LI: Assume there exist a pair of factors (X,Y) whose product XY = A and
supports are included in (I, J). Due to the assumptions on the pairs (i1, j1), (i1, j2), (i2, j1), we
must have: 8

<

:

X[1, 1]Y[1, 1] = A[1, 1] = 0

X[2, 1]Y[1, 1] = A[2, 1] = 1

X[1, 1]Y[1, 2] = A[1, 2] = 1.

It is easy to see that it is impossible. Therefore, A /2 LI.718

Given a pair of support constraints I, it is possible to check in time polynomial in m, r, n whether the719

conditions of Lemma B.8 hold. A brute force algorithm has complexity O(m2n2r). A more clever720

implementation with careful book-marking can reduce this complexity to O(min(m,n)mnr).721

C Proofs for results in Section 4722

C.1 Proof of Theorem 4.1723

In fact, Theorem 4.1 is a corollary of Lemma B.1. Thus, we will give a proof for Lemma B.1 in the724

following.725

Proof of Lemma B.1. Since A 2 LI\LI ✓ RNL⇥N0 , we have:726

1. A /2 LI.727

2. There exists a sequence {(Xk
i )

L
i=1}k2N such that limk!1 kXk

L . . .Xk
1 �Ak = 0 for any728

norm defined on RN0 .729

We will prove that the linear function: f(x) := Ax satisfies f 2 FI \ FI (where FI is the closure of730

FI in (C0(⌦), k ·k1), that is to say f is not the realization of any neural network but it is the uniform731

limit of the realizations of a sequence of neural networks). Firstly, we prove that f /2 FI. For the732

sake of contradiction, assume there exists ✓ = (Wi,bi)Li=1 2 NI such that R✓ = f . Since R✓ is the733

realization of a ReLU neural network, it is a continuous piecewise linear function. Therefore, since ⌦734

has non-empty interior, there exist a non-empty open subset ⌦0 of Rd such that ⌦0
✓ ⌦ and R✓ is735

linear on ⌦0, i.e., there are A0
2 RNL⇥N0 , b 2 RNL such that R✓(x) = A0x+ b0, 8x 2 ⌦0. Since736

f = R✓, we have: A0 = A and also equal to the Jacobian matrix of R✓ on ⌦0. Using Lemma B.3737

and the fact that A /2 LI, we conclude that f /2 FI.738

There remains to construct a sequence {✓k}k2N, ✓k = (Wk
i ,b

k
i )

L
i=1 2 NI such that limk!1 kR✓k�

fk1 = 0. We will rely on the sequence {(Xk
i )

L
i=1}k2N for our construction. Given k 2 N we simply

define the weight matrices as Wk
i = Xk

i , 1  i  L. The biases are built recursively. Starting from
ck1 := supx2⌦ kWk

1xk1 and bk
1 := ck11N1 , we iteratively define for 2  i  L� 1:

�k
i�1(x) := Wk

i�1x+ bi�1

cki := sup
x2⌦

k�k
i�1 � . . . � �

k
1 (x)k1

bk
i := cki 1Ni

.
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The boundedness of ⌦ ensures that cki is well-defined with a finite supremum. For i = L we define:

bk
L = �

L�1X

i=1

(
LY

j=i+1

Wj)b
k
i .

We will prove that R✓k(x) =
�
Xk

L . . .Xk
1

�
x, 8x 2 ⌦. As a consequence, it is immediate that:

lim
k!1

kR✓k � fk1 = lim
k!1

sup
x2⌦

kR✓k(x)� f(x)k2

 lim
k!1

kXk
L . . .Xk

1 �Ak2!2 sup
x2⌦

kxk2 = 0

where we used that all matrix norms are equivalent and denoted k · k2!2 the operator norm associated
to Euclidean vector norms. Back to the proof that R✓k(x) =

�
Xk

L . . .Xk
1

�
x, 8x 2 ⌦, due to our

choice of cki , we have for 2  i  L� 1:

�k
i�1 � . . . � �

k
1 (x) � 0, 8x 2 ⌦

where � is taken in coordinate-wise manner. Therefore, an easy induction yields:

R✓k(x) = �k
L � � � �k

L�1 � . . . � � � �k
1 (x)

= �k
L � �k

L�1 . . . � �
k
1 (x)

= Wk
L(. . . (W

k
2(W

k
1x+ bk

1) + bk
2) . . .) + bk

L

= (Xk
L . . .Xk

1)x+
L�1X

i=1

(
LY

j=i+1

Wj)b
k
i �

L�1X

i=1

(
LY

j=i+1

Wj)b
k
i

= (Xk
L . . .Xk

1)x.

739

C.2 Proof of Theorem 4.2740

Given the involvement of Theorem 4.2, we decompose its proof and present it in two subsections: the741

first one establishes general results that do not use the assumption of Theorem 4.2. The second one742

combines the established results with the assumption of Theorem 4.2 to provide a full proof.743

C.2.1 Properties of the limit function of fixed support one-hidden-layer NNs744

The main results of this parts are summarized in Lemma C.2 and Lemma C.3. It is important to745

emphasize that all results in this section do not make any assumption on I.746

We first introduce the following technical results.747

Lemma C.1 (Normalization of the rows of the first layer [26]). Consider ⌦ a bounded subset of RN0 .748

Given any ✓ = {(Wi,bi)2i=1} 2 NI and any norm k · k on RN0 , there exists ✓̃ := {(W̃i, b̃i)2i=1} 2749

NI such that the matrix W̃1 has unit norm rows, kb̃1k1  C := supx2⌦ sup
kuk1hu, xi and750

R✓(x) = R✓̃(x), 8x 2 ⌦.751

Proof. We report this proof for self-completeness of this work. It is not a contribution, as it merely752

combines ideas from the proof of [26, Lemma D.2] and [26, Theorem 3.8, Steps 1-2].753

We first show that for each set of weights ✓ 2 NI we can find another set of weights ✓0 =754

{(W0

i,b
0

i)
2
i=1} 2 NI such that R✓ = R✓0 on RN0 and W0

1 has unit norm rows. Note that755

kb0

1k1 can be larger than C. Indeed, given ✓ 2 NI, the function R✓ can be written as:756

R✓ : x 2 RN0 7!
PN1

j=1 hj(x) + b2 where hj(x) = W2[:, j]�(W1[j, :]x + b1[j]) denotes the757

contribution of the jth hidden neuron. For hidden neurons corresponding to nonzero rows of Wk
1 ,758

we can rescale the rows of Wk
1 , the columns of Wk

2 and bk
1 such that the realization of hj is invari-759

ant. This is due to the fact that w2�(w>

1 x+ b) = kw1kw2�((w1/kw1k)>x+ (b/kw1k)) for any760

w1 6= 0 2 RN0 ,w2 2 RN2 , b 2 R. Neurons corresponding to null rows of Wk
1 are handled similarly,761
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in an iterative manner, by setting them to an arbitrary normalized row, setting the corresponding762

column of Wk
2 to zero, and changing the bias bk

2 to keep the function R✓ unchanged on RN0 , using763

that w2�(0>x + b) + b2 = 0�(v>x + b) + (b2 +w2�(b)) for any normalized vector v 2 RN0 .764

Thus, we obtain ✓0 whose matrix of the first layer, W0

1, has normalized rows and R✓ = R✓0 on RN0 .765

To construct ✓̃ with kb̃1k1  C we see that, by definition of C, if kw1k = 1 and b � C then766

w>

1 x+ b � �C + b � 0, 8x 2 ⌦. (20)

Thus, the function w2�(w>

1 x+ b) = w2(w>

1 x+ b) is linear on ⌦ and

w2�(w
>

1 x+ b) + b2 = w2(w
>

1 x+ C) + ((b� C)w2 + b2)

= w2�(w
>

1 x+ C) + ((b� C)w2 + b2)

Thus, for any hidden neuron with a bias exceeding C, the bias can be saturated to C by changing767

accordingly the output bias b2, keeping the function R✓ unchanged on the bounded domain ⌦ (but768

not on the whole space RN0). Hidden neurons with a bias b  �C can be similarly modified.769

Sequentially saturating each hidden neuron yields ✓̃ which satisfies all conditions of Lemma C.1.770

Lemma C.2. Consider ⌦ a bounded subset of RN0 , for any I = (I2, I1), given a continuous function771

f 2 FI(⌦), there exists a sequence {✓k}k2N, ✓k = (Wk
i ,b

k
i )

2
i=1 2 NI such that:772

1. The sequence R✓k admits f as its uniform limit, i.e., limk!1 kR✓k � fk1 = 0.773

2. The sequence {(Wk
1 ,b

k
1)}k2N has a finite limit (W?

1,b
?
1) where W?

1 has unit norm rows and774

supp(W?
1) ✓ I1.775

Proof. Given a function f 2 FI(⌦), by definition, there exists a sequence {✓k}k2N, ✓k 2 NI776

8k 2 N such that limk!1 kR✓k � fk1 = 0. We can assume that Wk
1 has normalized rows and bk

1777

is bounded using Lemma C.1. We can also assume WLOG that the parameters of the first layer (i.e778

Wk
1 ,b

k
1) have finite limits W?

1 and b?
1. Indeed, since both Wk

1 and bk
1 are bounded (by construction779

from Lemma C.1), there exists a subsequence {'k}k2N such that W'k

1 and b'k

1 have finite limits and780

R✓'
k ! f as R✓k ! f . Replacing the sequence {✓k}k2N by {✓'k}k2N yields the desired sequence.781

Finally, since W?
1 = limk!1 Wk

1 , W?
1 obviously has normalized rows and supp(W?

1) ✓ I1.782

Definition C.1. Consider ⌦ bounded subset of Rd, a function f 2 FI(⌦) and a sequence {✓k}k2N783

as given by Lemma C.2. We define (ai, bi) = (W?
1[i, :],b

?
1[i]) the limit parameters of the first layer784

corresponding to the ith neuron. We partition the set of neurons into two subsets (one of them may be785

empty):786

1. Set of active neurons: J := {i | (9x 2 ⌦, aix+ bi > 0) ^ (9x 2 ⌦, aix+ bi < 0)}.787

2. Set of non-active neurons: J̄ = JN1K \ J .788

For i, j 2 J , we write i ' j if (W?
1[j, :],b

?
1[j]) = ±(W?

1[i, :],b
?
1[i]). The relation ' is an789

equivalence relation.790

We define (J`)`=1,...,r the equivalence classes induced by ' and we use (↵`,�`) := (ai, bi) for some791

i 2 J` as the representative limit of the `th equivalence class. For i 2 J`, we have: (ai, bi) =792

✏i(↵`,�`), ✏i 2 {±1}. We define J+
` = {i 2 J` | ✏i = 1} 6= ; and J�

` = J` \ J
+
` .793

For each equivalence class J`, define H` := {x 2 ⌦ | ↵`x + �` = 0} the boundary generated794

by neurons in J` and the positive (resp. negative) half-space partitioned by H`, H+
` := {x 2 ⌦ |795

↵`x + �` > 0} (resp. H�

` := {x 2 ⌦ | ↵`x + �` < 0}). For any ✏ > 0 we also define the open796

half-spaces H(✏,+)
` := {x 2 Rd

| ↵>

` x+ �` > ✏} and H(✏,�)
` := {x 2 Rd

| ↵>

` x+ �` < �✏}.797

Definition C.1 groups neurons sharing the same “linear boundary” (or “singular hyperplane” as in798

[26]). This concept is related to “twin neurons” [28], which also groups neurons with the same active799

zone. This partition somehow allows us to treat classes independently. Observe also that800

supp(↵`) ✓
\

i2J`

I1[i, :], 81  `  r. (21)
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Definition C.2 (Contribution of an equivalence class). In the setting of Definition C.1, we define the
contribution of the ith neuron 1  i  N1 (resp. of the `th (1  `  r) equivalence class) of ✓k as:

hk
i :RN0 7! RN2 : x 7! Wk

2 [:, i]�(W
k
1 [i, :]x+ bk

1 [i]) ,

gk` :RN0 7! RN2 : x 7!

X

i2J`

hk
i (x) .

Lemma C.3. Consider ⌦ = [�B,B]d, f 2 FI(⌦) and a sequence {✓k}k2N as given by Lemma C.2,
and ↵`,�`, 1  `  r, ✏i, i 2 J as given by Definition C.1. There exist some �`,b 2 RN2 ,A 2

RN2⇥N0 such that:

f(x) =
rX

i=1

�`�(↵`x+ �`) +Ax+ b 8x 2 ⌦ (22)

lim
k!1

X

i2J`

✏iW
k
2 [:, i]W

k
1 [i, :] = �`↵`, 81  `  r (23)

lim
k!1

X

i2J`

✏ib
k
1 [i]W

k
2 [:, i] = �`�`, 81  `  r (24)

supp(�`) ✓
[

i2J`

I2[:, i], 81  `  r (25)

Proof. The proof is divided into three parts: We first show that there exist �`,b 2 RN2 and801

A 2 RN2⇥N0 such that Equation (22) holds. The last two parts will be devoted to prove that802

equations (23) - (25) hold.803

1. Proof of Equation (22): Our proof is based on a result of [26], which deals with the case of a804

scalar output (i.e, N2 = 1). It is proved in [26, Theorem 3.8, Steps 3, 6, 7] and states the following:805

Lemma C.4 (Analytical form of a limit function with scalar output [26]). In case N2 = 1 (i.e., output806

dimension equal to one), consider ⌦ = [�B,B]d, a scalar-valued function f : ⌦ 7! R, f 2 FI(⌦)807

and a sequence as given by Lemma C.2, there exist µ 2 RN0 , �`, ⌫ 2 R such that:808

f(x) =
rX

`=1

�`�(↵`x+ �`) + µ>x+ ⌫, 8x 2 ⌦ (26)

Back to our proof, one can write f = (f1, . . . , fN2) where fj : ⌦ ✓ RN0 7! R is the function f
restricted to the jth coordinate. Clearly, fj is also a uniform limit on ⌦ of {R✓̃k}k2N for a sequence
{✓̃k}k2N which shares the same Wk

1 with {✓k}k2N but W̃k
2 is the jth row of Wk

2 . Therefore,
{✓̃k}k2N also satisfies the assumptions of Lemma C.4, which gives us:

fj(x) =
rX

`=1

�`,j�(↵`x+ �`) + µ>

j x+ ⌫j , 8x 2 ⌦

for some µj 2 RN0 , �i,j , ⌫j 2 R. Note that ↵`,�` and r are not dependent on the index j since
they are defined directly from the considered sequence. Therefore, the function f (which is the
concatenation of fj coordinate by coordinate) is:

f(x) =
rX

`=1

�`�(↵`x+ �`) +Ax+ b, 8x 2 ⌦

with �` =

 �i,1

...
�i,N2

!
,A =

0

@
µ>
1

...
µ>
N2

1

A ,b =

 ⌫1

...
⌫N2

!
.809

2. Proof for Equations (23)-(24): With the construction of �, we will prove Equation (23) and810

Equation (24). We consider an arbitrary 1  `  r. Denoting ⌦� the interior of ⌦ and H` :=811

{x 2 ⌦ | ↵`x + �` = 0} the hyperplane defined by the input weights and bias of the `-th class of812
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neurons, we take a point x0
2 (⌦�

\H`) \
S

p 6=` Hp and a fixed scalar r > 0 such that the open ball813

B(x0, r) ✓ ⌦�
\
S

p 6=` Hp. Notice that x0 is well-defined due to the definition of J (Definition C.1).814

In addition, r also exists because ⌦�
\
S

p 6=` Hp is an open set. Thus, there exists two constants815

0 < � < B and ✏ > 0 such that:816

(a) B(x0, r) ✓ [�(B � �), B � �]d.817

(b) For each p 6= `, the ball B(x0, r) is either included in the half-space H(✏,+)
p := {x 2 Rd

|818

↵>

p x+ �p > ✏} or in the half-space H(✏,�)
p := {x 2 Rd

| ↵>

p x+ �p < �✏}.819

(c) The intersection of B(x0, r) with H(✏,+)
` and H(✏,�)

` are not empty.820

For the remaining of the proof, we will use Lemma C.5, another result taken from [26]. We only state821

the lemma. Its formal proof can be found in the proof of [26, Theorem 3.8, Steps 4-5].822

Lemma C.5 (Affine linear area [26]). Given a sequence {✓k}k2N satisfying the second condition of823

Lemma C.2, we have:824

(a) For any 0 < � < B, there exists a constant � such that 8i 2 J̄ , hk
i are affine linear on825

[�(B � �), B � �]N0 for all k � � .826

(b) For any ✏ > 0, there exists a constant ✏ such that for each 1  `  r and each i 2 J` the827

function hk
i is affine linear on H(✏,+)

` [H(✏,�)
` for all k � ✏.828

The lemma implies the existence of K = max(�,✏) such that for all k � K, we have:
X

p 6=`

gkp(x) = Bkx+ ⌫k, 8x 2 B(x0, r),

for some Bk
2 RN2⇥N0 , ⌫k 2 RN2 . Therefore, for k � K, we have:

R✓k(x) = Bkx+ ⌫k +
X

i2J+
`

Wk
2 [:, i](W

k
1 [i, :]x+ bk

1 [i]), 8x 2 B(x0, r) \H(✏,+)
`

R✓k(x) = Bkx+ ⌫k +
X

i2J�
`

Wk
2 [:, i](W

k
1 [i, :]x+ bk

1 [i]), 8x 2 B(x0, r) \H(✏,�)
` .

Since we proved that f has the form Equation (22), there exist C 2 RN2⇥N0 , µ 2 RN2 such that

f(x) = (C+ �`↵`)x+ (µ+ �`�`), 8x 2 B(x0, r) \H(✏,+)
`

f(x) = Cx+ µ, 8x 2 B(x0, r) \H(✏,�)
`

As both B(x0, r) \H(✏,+)
` and B(x0, r) \H(✏,�)

` are open sets, and given our hypothesis of uniform829

convergence of R✓k ! f , we obtain,830

lim
k!1

Bk +
X

i2J+
`

Wk
2 [:, i]W

k
1 [i, :] = C+ �`↵`

lim
k!1

Bk +
X

i2J�
`

Wk
2 [:, i]W

k
1 [i, :] = C

lim
k!1

⌫k +
X

i2J+
`

bk
1 [i]W

k
2 [:, i] = µ+ �`�`

lim
k!1

⌫k +
X

i2J�
`

bk
1 [i]W

k
2 [:, i] = µ.

(27)

Proof for Equation (27) can be found in Appendix C.4. Equations (23) and (24) follow directly from831

Equation (27).832

3. Proof of Equation (25): Since ↵` 6= 0 (remember that k↵`k = 1), this is an immediate conse-833

quence of Equation (23) as each vector Wk
2 [:, j], j 2 J` is supported in I2[:, j] ✓ [i2J`

I2[:, i].834
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We state an immediate corollary of Lemma C.3, which characterizes the limit of the sequence of835

contributions {gk` }k2N of the `th equivalence class with |J`| = 1.836

Corollary C.1. Consider f 2 FI([�B,B]d) that admits the analytical form in Equation (22), a837

sequence {✓k}k2N as given by Lemma C.2, and Definition C.1. For all singleton equivalence classes838

J` = {i}, 1  `  r, we have limk!1 Wk
2 [:, i] = �` and limk!1 khk

` � �`�(↵>

` x+ �`)k1 = 0.839

Proof. We first prove that Wk
2 [:, i] has a finite limit. In fact, applying the second point of Lemma C.3

for J` = {i}, we have:
lim
k!1

Wk
2 [:, i]W

k
1 [i, :] = �`↵`

where �`,↵` are defined in Lemma C.3. Because limk!1 Wk
1 [i, :] = ↵` and k↵`k2 = 1, it follows840

that �` = limk!1 Wk
2 [:, i]. To conclude, since we also have �` = limk!1 bk

1 [i], we obtain841

hk
` (·) = Wk

2 [`, :]�(W
k
1 [`, :] ·+bk

1 [`]) ! �`�(↵`x+ �`) as claimed.842

The nice thing about Corollary C.1 is that the contribution gk` = hk
` admits a (uniform) limit843

if J` = {i}. Moreover, this limit is even implementable by using only the ith neuron because844

supp(↵`) ✓ I1[i, :] and supp(�`) ✓ I2[:, i].845

It would be tempting to believe that, for each P 2 {J̄} [ {J` | ` = 1, . . . , r} the sequence of846

functions
P

i2P gki (x) must admit a limit (when k tends to 1) and that this limit is implementable847

using only neurons in P . This would obviously imply that FI(⌦) is closed. This intuition is however848

wrong. For non-singleton equivalence class (i.e., for cases not covered by Corollary C.1), the limit849

function does not necessarily exist as we show in the following example.850

Example C.1. Consider the case where N = (1, 3, 1) and no support constraint, ⌦ = [�1, 1], take
the sequence {✓k}k2N which satisfies:

Wk
1 =

 
1
�1
1

!
,bk

1 =

 
0
0
1

!
,Wk

2 = (k �k �k) ,bk
2 = k

Then for x 2 ⌦, it is easy to verify that R✓k = 0. Indeed,

R✓k(x) =
3X

i=1

Wk
2 [:, i]�(W

k
1 [i, :] + bk

1 [i]) + bk
2

= k�(x)� k�(�x)� k�(x+ 1) + k

= k(�(x)� �(�x))� k(x+ 1) + k (since x+ 1 � 0, 8x 2 ⌦)

= kx� k(x+ 1) + k = 0

Thus, this sequence converges (uniformly) to f = 0. Moreover, this sequence also satisfies the851

assumptions of Lemma C.2. Using the classification in Definition C.1, we have one class equivalence852

J1 = {1, 2} and J̄ = {3}. The function gk1 (x) = k�(x) � k�(�x) = kx, however, does not have853

any limit.854

C.2.2 Actual proof of Theorem 4.2855

Therefore, our analysis cannot treat each equivalence class entirely separately. The last result in856

this section is about a property of the matrix A in Equation (22). This is one of our key technical857

contributions in this work.858

Lemma C.6. Consider ⌦ = [�B,B]d, f 2 FI(⌦) that admits the analytical form in Equa-859

tion (22), a sequence {✓k}k2N as given by Lemma C.2, then the matrix A 2 LI0 where860

I0 = (I2[:, S], I1[S, :]), S = J̄ [ ([1`rJ
�

` ), J̄ , J±

` are defined as in Definition C.1).861

Combining Lemma C.6 and the assumptions of Theorem 4.2, we can prove Theorem 4.2 immediately862

as follow:863

Proof of Theorem 4.2. Consider f 2 FI(⌦), we deduce that there exists a sequence of {✓k}k2N
that satisfies the properties of Lemma C.2. This allows us to define J̄ and equivalence classes
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J`, 1  `  r as well as (↵`,�`) as in Definition C.1. Using Lemma C.3, we can also deduce an
analytical formula for f as in Equation (22):

f(x) =
rX

i=1

�`�(↵`x+ �`) +Ax+ b, 8x 2 ⌦.

Finally, Lemma C.6 states that matrix A in Equation (22) satisfies: A 2 LI0 with I0 =864

(I2[:, S], I1[S, :]]), where S = J̄ [ ([r
`=1J

�

` ). To prove that f 2 FI, we construct the parame-865

ters ✓ = {(Wi,bi)2i=1} of the limit network as follows:866

1. For each 1  `  r, choose one index j 2 J+
` (which is possible since J+

` is non-empty). We set:867

868

(W1[i, :],W2[:, i],b1[i]) =

⇢
(↵`, �`,�`) if i = j
(↵`,0,�`) otherwise

(28)

This satisfies the support constraint because supp(↵`) ✓ I1[j, :] (by (21)) ↵` = limk!1 Wk
1 [j, :])869

and I2 = 1N2⇥N1 . This is where we use the first assumption of Theorem 4.2. Without it, supp(�`)870

might not be a subset of I2[:, j].871

2. For i 2 S: Since A 2 LI0 (cf Lemma C.6) and LI0 is closed (second assumptions of Theorem 4.2),872

there exist two matrices Ŵ1,Ŵ2 such that: supp(Ŵ1) ✓ I1[:, S], supp(Ŵ2) ✓ I2[S, :], and873

A = Ŵ2Ŵ1. We set:874

(W1[i, :],W2[:, i],b1[i]) = (Ŵ1[i, :],Ŵ2[:, i], C) (29)

where C = supx2⌦ kŴ1xk1. This satisfies the support constraints I due to our choice of Ŵ1,Ŵ2.875

The choice of C ensures that the function hi(x) := W2[i, :]�(W1[i, :]x+ b1[i]) is linear on ⌦.876

3. For b2: Let b2 = b� C
⇣P

i2S Ŵ2[:, i]
⌘

(b is the bias in Equation (22)).877

Verifying R✓ = f on ⌦ is thus trivial since:

R✓(x) =
N1X

i=1

W2[:, i]�(W1[i, :]x+ b1[i]) + b2

=
X

i/2S

W2[:, i]�(W1[i, :]x+ b1[i]) +
X

i2S

W2[:, i]�(W1[i, :]x+ b1[i]) + b2

=
rX

`=1

�`�(↵`x+ �`) +
X

j2S

Ŵ2[:, i](Ŵ1[i, :]x+ C) + b� C

 
X

i2S

Ŵ2[:, i]

!

=
rX

`=1

�`�(↵`x+ �`) + Ŵ2Ŵ1x+ b =
rX

`=1

�`�(↵`x+ �`) +Ax+ b = f.

Proof of Lemma C.6. In this proof, we define ⌦�

� = (�B + �, B � �)N0 , 0 < � < B. The choice of878

� is not important in this proof (any 0 < � < B will do).879

The proof of this lemma revolves around the following idea: We will construct a sequence of functions880

{fk
}k2N such that, for k large enough, fk has the following analytical form:881

fk(x) =
rX

`=1

�`�(↵`x+ �`) +Akx+ bk, 8x 2 ⌦�

� (30)

and limk!1 fk(x) = f(x) 8x 2 ⌦ \ ([r
`=1H`) (or equivalently fk converges pointwise to f on882

⌦ \ ([r
`=1H`)) and Ak admits a factorization into two factors Ak = XkYk satisfying supp(Xk) ✓883

I2[:, S], supp(Yk) ✓ I1[S, :], so that Ak
2 LI0 . Comparing Equation (22) and Equation (30), we884

deduce that the sequence of affine functions Akx+ bk converges pointwise to the affine function885

Ax + b on the open set ⌦�

� \ ([
r
`=1H`). Therefore, limk!1 Ak = A by Lemma C.7, hence the886

conclusion.887
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The rest of this proof is devoted to the construction of fk = R✓̃k where ✓̃k 2 NN are parameters888

of a neural network of the same dimension as those in NI but only partially satisfying the support889

constraint I. To guarantee that fk converges pointwise to f , we construct ✓̃k based on ✓k and harness890

their relation.891

Choice of parameters. We set ✓̃k = {(W̃k
i , b̃

k
i )

2
i=1} 2 NN where W̃k

2 2 RN2⇥N1 ,W̃k
1 2892

RN1⇥N0 are defined as follows, where we use Ck := supx2⌦ kWk
1xk1:893

• For inactive neurons i 2 J̄ , we simply set (W̃k
1 [:, i],W̃

k
2 [i, :], b̃

k
1 [i]) = (Wk

1 [:, i],W
k
2 [i, :],b

k
1 [i]).894

• For each equivalence class of active neurons 1  `  r, we choose some j` 2 J+
` (note that J+

` is
non-empty due to Definition C.1) and set the parameters (W̃k

2 [:, i],W̃
k
1 [i, :],b1[i]), i 2 J` as:

(W̃k
1 [i, :],W̃

k
2 [:, i], b̃

k
1 [i]) =

8
<

:

(Wk
1 [i, :],W

k
2 [:, i], C

k), 8j 2 J�

`

(Wk
1 [i, :],0, C

k), 8i 2 J+
` \ {j`}

(↵`, �`,�`), i = j`

(31)

For i 2 J` \ {j`}, we clearly have: supp(W̃k
1 [i, :]) ✓ I1[i, :] and supp(W̃k

2 [:, i]) ✓ I2[:, i]. The895

j`-th column of W̃k
2 is the only one that does not necessarily satisfy the support constraint, as896

supp(�`) * I2[:, j`] in general.897

• Finally, the output bias bk
2 is set as:

b̃k
2 := bk

2 +
rX

`=1

X

i2J�
`

(bk
1 [i]� Ck)Wk

2 [:, i]

| {z }
=:⇠k

`

(32)

Proof that fk := R✓̃k converges pointwise to f on ⌦ \ ([r
`=1H`). We introduce notations analog

to Definition C.2: for every x 2 RN0 we define:

h̃k
i (x) = W̃k

2 [:, i]�(W̃
k
1 [i, :]x+ b̃k

1 [i]), i = 1, . . . , N1; g̃k` (x) =
X

i2J`

h̃k
i (x), ` = 1, . . . , r

By construction898

h̃k
i = hk

i , 8i 2 J̄ , 8k, (33)

and we further explicit the form of h̃k
i , i 2 J` for x 2 ⌦ (but not on RN0 ) as:899

h̃k
i (x) =

8
<

:

Wk
2 [:, i](W

k
1 [i, :]x+ Ck), 8i 2 J�

`

0, 8i 2 J+
` \ {j`}

�`�(↵`x+ �`), i = j`

, (34)

We justify our formula in Equation (34) as follow:900

1. For i 2 J�

` : since Ck = supx2⌦ kWk
1xk1 by construction, W̃k

1 [i, :]x + bk
1 [i] = Wk

1 [i, :]x +901

bk
1 [i] � 0. The activation � acts simply as an identity function.902

2. For i 2 J+
` : Because we choose W̃k

2 [:, i] = 0.903

3. For i = j`: Obvious due to the construction in Equation (31).904

Given x 2 ⌦ \ ([r
`=1H`), we now prove that this construction ensures that for each ` 2 {1, . . . , r}905

lim
k!1

(g̃k` (x)� gk` (x) + ⇠k` ) = 0. (35)
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This will imply the claimed poinwise convergence since

lim
k!1

fk(x) = lim
k!1

R✓̃k(x) = lim
k!1

0

@
X

i2J̄

h̃k
i (x) +

rX

`=1

g̃k` (x) + b̃k
2

1

A

(33)&(35)
= lim

k!1

0

@
X

i2J̄

hk
i (x) +

rX

`=1

gk` (x)�
rX

`=1

⇠k` + b̃k
2

1

A

(32)
= lim

k!1

0

@
X

i2J̄

hk
i (x) +

rX

`=1

gk` (x) + bk
2

1

A = lim
k!1

R✓k(x) = f(x).

To establish (35), observe that as x 2 ⌦ \ ([r
`=1H`) we have x /2 H`. We thus distinguish two cases:906

Case x 2 H�

` .907

Using (31) we show below that for k large enough and x 2 H�

` , we have908

h̃k
i (x)� hk

i (x) =

⇢
(Ck

� bk
1 [i])W

k
2 [:, i], i 2 J�

`

0, i 2 J+
`

(36)

and thus

g̃k` (x)� gk` (x) + ⇠k` =
X

i2J`

⇣
h̃k
i (x)� hk

i (x)
⌘
+ ⇠k` =

X

i2J�
`

(Ck
� bk

1 [i])W
k
2 [:, i] + ⇠k` = 0.

We indeed obtain (36) as follows. Since x 2 H�

` , ↵`x + �` < 0, i.e., �↵`x � �` > 0. Therefore,909

given the definitions of J±

` (cf Definition C.1) we have:910

• For i 2 J�

` : limk!1(Wk
1 [i, :],b

k
1 [i]) = �(↵`,�`), hence for k large enough, we have Wk

1 [i, :]x+
bk
1 [i] > 0 so that �(Wk

1 [i, :]x+ bk
1 [i]) = Wk

1 [i, :]x+ bk
1 [i] and, as expressed in (36):

h̃k
i (x)� hk

i (x)
(34)
= Wk

2 [:, i](W
k
1 [i, :]x+ Ck)�Wk

2 [:, i](W
k
1 [i, :]x+ bk

1 [i]) = (Ck
� bk

1 [i])W
k
2 [:, i].

• For i 2 J+
` : similarly, we have Wk

1 [i, :]x+ bk
1 [i] < 0 for k large enough. Therefore, hk

i (x) = 0911

for k large enough. The fact that we also have h̃k
i (x) = 0 is immediate from Equation (34) if i 6= j`,912

and for i = j` we also get from Equation (34) that h̃k
i (x) = �`�(↵`x+ �`) = 0 since ↵`x+ �` < 0.913

Case x 2 H+
` . An analog to Equation (36) for x 2 H+

` is914

h̃k
i (x)� hk

i (x) =

8
<

:

Wk
2 [:, i](W

k
1 [i, :]x+ Ck), i 2 J�

`

�Wk
2 [:, i](W

k
1 [i, :]x+ bk

1 [i]), i 2 J+
` \ {j}

�`(↵`x+ �`)�Wk
2 [:, i](W

k
1 [i, :]x+ bk

1 [i]), i = j
. (37)

We establish it before concluding for this case.915

• For i 2 J�

` : by a reasoning analog to the case x 2 H�

` , we deduce that for k large enough

h̃k
i (x)� hk

i (x)
(34)
= Wk

2 [:, i](W
k
1 [i, :]x+ Ck).

• For i 2 J+
` : a similar reasoning yields hk

i (x) = Wk
2 [:, i](W

k
1 [i, :]x+ bk

1 [i]) for k large enough,916

while Equation (34) yields h̃k
j`(x) = �`�(↵`x+�`) = �`(↵`x+�`) (since ↵`x+�` > 0 as x 2 H+

` )917

and h̃k
i (x) = 0 if i 6= j`.918
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Using (37) we obtain for k large enough

g̃k` (x)� gk` (x) + ⇠k` =
X

i2J`

⇣
h̃k
i (x)� hk

i (x)
⌘
+ ⇠k`

=
X

i2J�
`

Wk
2 [:, i](W

k
1 [i, :]x+ Ck)�

X

i2J+
`

Wk
2 [:, i](W

k
1 [i, :]x+ bk

1 [i]) + �`(↵`x+ �`) + ⇠k`

(32)
=
⇣ X

i2J�
`

Wk
2 [:, i]W

k
1 [i, :]�

X

j2J+
`

Wk
2 [:, i]W

k
1 [i, :] + �`↵`

⌘
x

+
⇣
⇠k` +

X

i2J�
`

Wk
2 [:, i]C

k

| {z }P
i2J

�
`

Wk

2 [:,i]b
k

1 [i]

�

X

i2J+
`

Wk
2 [:, i]b

k
1 [i] + �`�`

⌘

where in the last line we used the expression of ⇠k` from (32). Due to Equations (23) and (24) it919

follows that limk!1 g̃k` (x)� gk` (x) + ⇠k` = 0, 8x 2 H+
` .920

Thus combining both cases, we conclude that limk!1 g̃k` (x)� gk` (x)+ ⇠k` = 0, 8x /2 H`, as desired.921

Proof of the expression (30) with Ak
2 LI0 for large enough k. From (34), we first deduce that

fk(x) =
N1X

i=1

h̃k
i (x) + b̃k

2 =
rX

`=1

�`�(↵`x+ �`) +
X

i2S

h̃k
i (x) + b̃k

2 , 8x 2 RN0 .

where we recall that S := J̄ [ ([1`rJ
�

` ). There only remains to show that, for k large enough,
we have

P
i2S h̃k

i (x) = Akx + bk for every x in the restricted domain ⌦�

� , where Ak
2 LI0 and

bk
2 RN2 . Note that for i 2 J`, our construction assures that h̃k

i is affine on ⌦. Moreover, in
the restricted domain ⌦�

� , for k � � large enough, h̃k
i , i 2 J̄ also behave like affine functions (cf

Lemma C.5). Therefore,
X

i2S

h̃k
i (x) =

⇣X

i2S

�ki W̃
k
2 [:, i]W̃

k
1 [i, :]

⌘
x+ ck, 8x 2 ⌦�

� , k � �

for some vector ck and binary scalars �ki . In fact, �ki = 0 if i 2 J̄� := {j 2 J̄ | W?
1[j, :]x+b?

1[j] 
0, 8x 2 ⌦} and �ik = 1 otherwise. Thus, one chooses Ak =

P
i2S �ki W̃

k
2 [:, i]W̃

k
1 [i, :],b

k = ck and
the construction is complete. This construction allows us to write Ak = Ŵk

2Ŵ
k
1 with:

Ŵk
1 = W̃k

1 [S, :]

Ŵk
2 = W̃k

2 [:, S]diag({⌫
k
i | i = 1, . . . , N1})

where diag({⌫ki | i = 1, . . . , N1}) 2 RN1⇥N1 is a diagonal matrix, ⌫ki = �ki for i 2 S and 0922

otherwise. It is also evident that supp(Ŵk
2 [:, S]) ✓ I2[:, S], supp(Ŵk

1 [S, :]) ✓ I1[S, :]. (since the923

multiplication with a diagonal matrix does not increase the support of a matrix). This concludes the924

proof.925

C.3 Proof for Corollary 4.2926

Proof. The proof is inductive on the number of hidden neurons N1:927

1. Basic case N1 = 1: Consider ✓ := {(Wi,bi)2i=1} 2 NI, the function R✓ has the form:

R✓(x) = w2�(w
>

1 x+ b1) + b2

where w1 = W1[1, :] 2 RN0 ,w2 = W2[1, 1] 2 R. There are two possibilities:928

(a) I2 = ;: then w2 = 0, FI is simply a set of constant functions on ⌦, which is closed.929

32



(b) I2 = {(1, 1)}: We have I2 = 11⇥N1 , which makes the first assumption of Theorem 4.2 satisfied.930

To check that the second assumption of Theorem 4.2 also holds, we consider all the possible931

non-empty subsets S of J1K: there is only one non-empty subset of I2, which is S = J1K. In932

that case, LIS = {W2 R1⇥N0 | supp(W) ✓ I1}, which is closed (since LIS is isomorphic to933

R|I1|). The result thus follows using Theorem 4.2.934

2. Assume the conclusion of the theorem holds for all 1  N1  k (and any N0 � 1). We need to935

prove the result for N1 = k + 1. Define H = {i | I2[1, i] = 1} the set of hidden neurons that are936

allowed to be connected to the output via a nonzero weight. Consider two cases:937

(a) If |H|  k, we have FI = FIH , which is closed due to the induction hypothesis.938

(b) If H = Jk + 1K, we can apply Theorem 4.2. Indeed, since I2 = 11⇥N1 , the first condition of939

Theorem 4.2 is satisfied. In addition, for any non-empty S ✓ JN1K, define H := [i2SI[i, :] ✓940

JN0K the union of row supports of I1[S, :]. It is easy to verify that LIS is isomorphic to R|H|,941

which is closed. As such, Theorem 4.2 can be applied.942

C.4 Other technical lemmas943

Lemma C.7 (Convergence of affine function). Let ⌦ be a non-empty interior subset Rn. If the944

sequence {fk
}k2N, fk : Rn

7! Rm : x 7! Akx + bk where Ak
2 Rm⇥n,bk

2 Rm converges945

pointwise to a function f on ⌦, then f is affine (i.e., f = Ax+ b for some A 2 Rm⇥n,b 2 Rm).946

Moreover, limk!1 Ak = A and limk!1 bk = b.947

Proof. Consider x0 2 ⌦0, an open subset of ⌦ (⌦0 exists since ⌦ is a non-empty interior subset of
Rn). Define gk(x) = fk(x)� fk(x0) and g(x) = f(x)� g(x0). The function gk is linear and gk

converges pointwise to g on ⌦ (and thus, on ⌦0). We first prove that g is linear. Indeed, for any
x, y 2 ⌦,↵,� 2 R such that ↵x+ �y 2 ⌦, we have:

g(↵x+ �y) = lim
k!1

gk(↵x+ �y)

= lim
k!1

↵gk(x) + �gk(y)

= ↵ lim
k!1

gk(x) + � lim
k!1

gk(y)

= ↵g(x) + �g(y)

Therefore, there must exist A 2 Rm⇥n such that g(x) = Ax. Choosing b := g(x0), we have948

f(x) = g(x) + g(x0) = Ax+ b.949

Moreover, since ⌦0 is open, there exists a positive r such that the ball B(x, r) ✓ ⌦0. Choosing
xi = x0 + (r/2)ei with ei the ith canonical vector, we have:

lim
k!1

gk(xi) = lim
k!1

(r/2)Akei = (r/2)Aei,

or, equivalently, the ith column of A is the limit of the sequence generated by the ith column of950

Ak. Repeating this argument for all 1  i  n, we have limk!1 Ak = A. This also implies951

limk!1 bk = b immediately.952

D Closedness does not imply the best approximation property953

Since we couldn’t find any source discussing the fact that closedness does not imply the BAP, we954

provide an example to show this fact.955

Consider C0([�1, 1]) the set of continuous functions on the interval [�1, 1], equipped with the norm
sup kfk1 = maxx2[�1,1] |f(x)|, and define S, the subset of all functions f 2 C0([�1, 1]) such that:

Z 1

0
f dx�

Z 0

�1
f dx = 1

It is easy to verify that S is closed. We show that the constant function f = 0 does not have a956

projection in S (i.e., a function g 2 S such that kf � gk1 = infh2S kf � hk1).957
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First we observe that since f = 0, we have kf � hk1 = khk1 for each h 2 S, and we show that958

infh2S kf � hk1 � 1/2. Indeed, for h 2 S we have:959

1 =

Z 1

0
h dx�

Z 0

�1
h dx 

����
Z 1

0
h dx

����+
����
Z 0

�1
h dx

����  2khk1 = 2kf � hk1. (38)

Secondly, we show a sequence of {hn}k2N such that hn 2 S and limn!1 khnk1 = 1/2. Consider
the odd function hn (i.e. hn(x) = �hn(�x)) such that:

hn(x) =

⇢
cn, x 2 [1/n, 1]
ncnx x 2 [0, 1/n)

where cn = n/(2n� 1). It is evident that hn 2 S because:
Z 1

0
hn dx�

Z 0

�1
hn dx = 2

Z 1

0
hn dx = 2

 Z 1/n

0
hn dx+

Z 1

1/n
hn dx

!

= 2

✓
cn
2n

+
cn(n� 1)

n

◆
=

cn(2n� 1)

n
= 1

Moreover, we also have limn!1 khnk1 = limn!1 cn = 1/2.960

Finally, we show that 1/2 cannot be attained. By contradiction, assume that there exists g 2 S such961

that kf � gk1 = 1/2, i.e., as we have seen, kgk1 = 1/2. Using Equation (38), the equality will962

only hold if g(x) = 1/2 in [0, 1] and g(x) = �1/2 in [�1, 0]. However, g is not continuous, a963

contradiction.964
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