
A DiffTraj Details & Hyperparameters472

In this section, we cover the specific details of DiffTraj, including the DiffTraj framework, the473

Traj-UNet structure, and the implementation details.474

A.1 Architecture475
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Figure 4: The network architecture used by DiffTraj in modeling ✏✓ (xs
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0 ) is divided into two
modules, down-sampling and up-sampling, each containing multiple Resnet blocks.

As illustrated in Fig. 4, DiffTraj is divided into two modules, i.e., down-sampling and up-sampling,476

and conditional module. Each down-sampling and up-sampling module consists of multiple stacked477

Resnet blocks. Between the two of them, a transitional module based on the attention mechanism is478

integrated. To better learn the noise of each time step and guide the generation, DiffTraj integrates a479

conditional module to embed the time step and external traffic information, later fed to each block.480

Since the CNN structure can only accept data of fixed shape, we first sample each trajectory as a481

tensor of [2, length]. Specifically, if the trajectory is below the set length, it is added using linear482

interpolation, and if it is greater than that, the redundant portion is removed using linear interpolation.483

Thus, the model will generate fixed-length trajectories, which will then be tailored to the desired484

length by the conditional information.485
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The main blocks of Traj-UNet are presented in Fig. 5, i.e., Resnet block, Embedding block, and486

middle attention block. Among them, each sampling block (down-sampling and up-sampling) consists487

of multiple Resnet blocks, each containing a series of group normalization, nonlinear activation,488

and 1D-CNN layers. Then, Traj-UNet applies up-sampling or down-sampling to the output, where489

down-sampling uses max pooling and up-sampling uses interpolation. After this, Traj-UNet integrates490

a middle attention block, which consists of two Resnet blocks and an attention layer. Note that491

there are no additional down-/up-sampling operations in the Resnet block. Finally, we integrate a492

conditional embedding block to learn the diffusion time step and conditional information. For the493

diffusion step, we employ Sinusoidal embedding to represent each t as a 128-dimensional vector,494

and then apply two shared-parameter fully connected layers. For conditional information, such as495

distance, speed, departure time, travel time, trajectory length, and starting and ending locations,496

we use the Wide & Deep module for embedding. After getting the diffusion step embedding and497

conditional embedding, we sum them up and add them to each Resnet block.498

A.2 Implementation Details499

For the proposed DiffTraj framework, we summarize the adopted hyperparameter settings in Table 3.

Table 3: Hyperparameters setting for DiffTraj.

Hyperparameter Setting value

Diffusion Steps 500
Skip steps 5
Guidance scale 3
� (linear) 0.0001 ⇠ 0.05
Batch size 1024
Sampling blocks 4
Resnet blocks 2
Input Length 200

500

The training and sampling phase of the proposed framework is summarized in Algorithm 1 and501

Algorithm 2, respectively. The detailed implementation code is attached in Supplementary.502

Algorithm 1 Diffusion Training Phase
1: for i = 1, 2, . . . , do
2: Sample x0 ⇠ q(x),
3: t ⇠ Uniform {1, . . . , T}
4: ✏ ⇠ N (0, I)

5: L =
��✏� ✏✓

�p
↵̄tx0 +

p
1� ↵̄t✏, t

���2
6: ✓ = ✓ � ⌘r✓L
7: end for

Algorithm 2 Diffusion Sampling Phase
1: Sample xs

T ⇠ N (0, I)
2: for t = T, T � S, . . . , 1 do
3: Compute µ✓ (x

s
t, t | xco

0 ) according to Eq. (5)
4: Compute p✓

�
xs
t�1 | xs

t,x
co
0

�
according to Eq. (4)

5: end for
6: return x0
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B Details of the Experimental Setup503

B.1 Dataset504

We evaluate the performance of DiffTraj and all baselines methods on two datasets with different505

cities, Chengdu and Xi’an1. Both datasets are collected from cab trajectory data starting from506

November 1, 2016, to November 30, 2016. Table 4 summarizes the statistical information of these507

two datasets, and Fig. 6 shows the trajectory distribution and heat map of these two datasets, where508

the deeper color indicates the more concentrated trajectory in the region. For all datasets, we remove509

all trajectories with lengths less than 120 and sample them to a set fixed length.510

Table 4: Statistics of Two Real-world Trajectory Datasets.

Dataset Trajectory Number Average Time Average Distance

Chengdu 3 493 918 11.42min 7.42 km
Xian 2 180 348 12.58min 5.73 km

(a) Chengdu Trajectory
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Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright).

(b) Chengdu Heatmap (c) Xi’an Trajectory
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(d) Xi’an Heatmap

Figure 6: Origin trajectory distribution of two cities.

B.2 Evaluation Metrics511

As trajectory generation aims to generate trajectories that can replace real-world activities and further512

benefit downstream tasks, we need to evaluate the “similarity” between the generated trajectories513

and real ones. In this work, we follow the common practice in previous studies [8] and measure the514

quality of the generated ones by Jenson-Shannon divergence (JSD). JSD compares the distribution515

of the real and generated trajectories, and a lower JSD indicates a better match with the original516

statistical features. Suppose that the original data has a probability distribution P and the generated517

data has a probability distribution G, the JSD is calculated as follows:518

JSD(P,G) =
1

2
EP


log

P

P +G

�
+

1

2
EG


log

G

G+ P

�
. (8)

For the evaluation, we divided each city into 16⇥16 size grids and recorded the corresponding values519

for each grid. Based on this, we adopt the following metrics to evaluate the quality of the generated520

trajectories from four perspectives:521

• Density error: This a global level metric that used to evaluate the geo-distribution between the522

entire generated trajectory D (Tgen ) and the real trajectory D(T ).523

Density Error = JSD (D(T ),D (Tgen )) , (9)
where D(·) denotes the grid density distribution in a given trajectory set, and JSD(·) represents the524

Jenson-Shannon divergence between two distributions.525

• Trip error: This a trajectory level metric that measures the correlation between the starting and526

ending points of a travel trajectory. Specifically, we calculate the probability distribution of the527

start/end points in the original and generated trajectories and use JSD to measure the difference528

between them.529

1These datasets can be downloaded at https://outreach.didichuxing.com/
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• Length error: This a trajectory level metric to evaluate the distribution of travel distances. It can530

be obtained by calculating the Euclidean distance between consecutive points.531

• Pattern score: This is a semantic level metric defined as the top-n grids that occur most frequently532

in the trajectory. We define P and Pgen to denote the original and generated pattern sets, respectively,533

and compute the following metrics:534

Pattern score = 2⇥
Precision (P, Pgen)⇥ Recall (P, Pgen)

Precision (P, Pgen) + Recall (P, Pgen)
(10)

B.3 Baselines535

In this section, we introduce the implementation of baseline methods.536

• Random Perturbation (RP): We generate �0.01 ⇠ 0.01 random noise to perturb the original537

trajectory. This degree of noise ensures that the maximum distance between the perturbed points538

and the original does not exceed 2 km539

• Gaussian Perturbation (GP): We generate Gaussian noise perturbed original trajectories with540

mean 0 and variance 0.01.541

• Variational AutoEncoder (VAE) [15, 30]: In this work, trajectories are first embedded as a542

hidden distribution through two consecutive convolutional layers and a linear layer. Then, we543

generate the trajectories by a decoder consisting of a linear layer and two deconvolutional layers.544

The size of convolution kernels in convolutional and deconvolutional layers is set to 4 to ensure545

that input and output trajectories have the same size.546

• TrajGAN [9]: The trajectory is first combined with random noise and then passes through a547

generator consisting of two linear layers and two convolution layers. Subsequently, a convolutional548

layer and a linear layer are adopted as the discriminator. The generator and the discriminator are549

trained in an alternating manner.550

• Diffwave [13]: Diffwave is a Wavenet structure model designed for sequence synthesis, which551

employs extensive dilated convolution. Here, we use 16 residual connected blocks, each consisting552

of a bi-directional dilated convolution. Then they are summed using sigmoid and tanh activation,553

respectively, and fed into the 1D CNN.554

• Diff-scatter: We randomly sample GPS scatter points from trajectories and generate scatter points555

using a 4-layer MLP (neutrons: {128, 256, 256, 128}) and the diffusion model.556

• Diff-wo/UNet: This model uses only two Resnet blocks combined with a single attention layer557

between them. Compared with DiffTraj, this model does not have a UNet-type structure, which558

can be used to evaluate the necessity of the UNet structure.559

• Diff-LSTM: This model has the same UNet-type structure and number of Resnet blocks as560

DiffTraj, and the difference is that Diff-LSTM replaces the CNN with LSTM in Resnet block.561

• DiffTraj-wo/Con: DiffTraj-wo/Con represents that the Wide & Deep conditional information562

embedding module is removed. The rest is the same as DiffTraj.563
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C Additional Experiments564

C.1 Data Utility Setup565

In this paper, we use inflow/outflow traffic forecasting to test the utility of the generated data.566

Inflow/outflow traffic forecasting is a critical task in urban traffic management that involves predicting567

the volume of vehicles entering (inflow) or leaving (outflow) a specific region within a certain period568

of time. In this experiment, we divided a city into 16⇥ 16 grids, where each grid represents a specific569

region. The traffic volume entering (inflow) or leaving (outflow) each region within a certain period570

is predicted. The primary goal of this experiment is to train various prediction models using both571

original and generated trajectory data, comparing their prediction performance. This evaluation572

provides an important perspective on the real-world applicability of the data generated by DiffTraj,573

assessing not just the fidelity of the generated trajectories, but also their utility in downstream tasks.574

In the experimental setup, we train the prediction models using the generated data and the original575

data separately, and then test their prediction performance on real data. Advanced neural network576

models, such as AGCRN, Graph WaveNet, DCRNN, and MTGNN, have been employed to handle577

this task due to their ability to capture complex spatial-temporal dependencies in multivariate time578

series data. All the above models and code in this section are followed the publicly available code2579

provided in the literature [12].580

• AGCRN (Adaptive Graph Convolutional Recurrent Network): AGCRN is a sophisticated581

model for spatial-temporal forecasting, which leverages both spatial and temporal features of data.582

It uses graph convolution to capture spatial dependencies and RNNs to model temporal dynamics,583

making it capable of handling complex spatial-temporal sequences.584

• GWNet (Graph WaveNet): GWNet is designed for high-dimensional, structured sequence585

data. It incorporates a Graph Convolution Network (GCN) to model spatial correlations and a586

WaveNet-like architecture to model temporal dependencies. The combination allows for capturing587

both the spatial and temporal complexities present in high-dimensional data.588

• DCRNN (Diffusion Convolutional Recurrent Neural Network): DCRNN is a deep learning589

model designed for traffic forecasting, which handles the spatial and temporal dependencies in590

traffic flow data. It uses a diffusion convolution operation to model spatial dependencies and a591

sequence-to-sequence architecture with scheduled sampling and residual connections to model592

temporal dependencies.593

• MTGNN (Multivariate Time-series Graph Neural Network): MTGNN is a model that captures594

complex spatial-temporal relationships in multivariate time series data. The model leverages a graph595

neural network to model spatial dependencies and an auto-regressive process to capture temporal596

dependencies. It also uses a gating mechanism to adaptively select the relevant spatial-temporal597

components, thus improving the forecasting performance.598

For accuracy comparison, we use the mean square error (MSE), root mean square error (RMSE), and599

mean absolute error (MAE) as metrics to assess the prediction accuracy of all methods. These three600

metrics are defined as follows:601

MSE(X, X̂) =
1

N

NX

i

⇣
X(i) � X̂(i)

⌘2
, (11)

RMSE(X, X̂) =

vuut 1

N

NX

i

⇣
X(i) � X̂(i)

⌘2
, (12)

MAE(X, X̂) =
1

N

NX

i

���X(i) � X̂(i)
��� , (13)

where X(i) and X̂(i) are the ground truth and predicted inflow/outflow value at time i, respectively.602

2https://github.com/deepkashiwa20/DL-Traff-Graph
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C.2 Conditional Generation603

As we described in Sec. 4.2 and Sec. 4.3, the DiffTraj framework takes into account various external604

factors that influence real-world trajectories, such as road network structure and departure time.605

These factors are used to guide the generation process, ensuring the synthetic trajectories mimic606

real-world patterns and behaviors. The model employs a Wide & Deep network to effectively embed607

this conditional information, enhancing the capabilities of the Traj-UNet model.608

To evaluate the conditional generation capability of DiffTraj, we investigate the case of generated609

trajectories where the start and end regions of the trajectories were pre-defined. The model was610

tasked to generate 20 random trajectories adhering to these conditions. The results depicted in Fig. 7611

and Fig. 8 (The red and blue boxes indicate the starting and ending regions, respectively), effectively612

demonstrate proficiency in generating trajectories that align with the specified start and end regions of613

DiffTraj. This is observed consistently across both cities under study, reinforcing the model’s ability614

to accurately incorporate and adhere to conditional information. This robust capability underscores615

the versatility of DiffTraj in generating meaningful trajectories under specific conditions, and its616

applicability in real-world scenarios where such conditions often exist.617

C.3 Ensuring Generation Diversity618

In addition, DiffTraj is designed to generate high-quality trajectories and ensure a level of diversity619

that prevents overly deterministic behavior patterns, thereby upholding intended privacy protections.620

By integrating a classifier-free diffusion guidance method, DiffTraj can strike a calculated balance621

between sample quality and diversity. To validate the capacity for generating diverse trajectories622

of DiffTraj, we devised an experiment that manipulates the guiding parameter, !. This experiment623

aimed to examine the quality-diversity balance in trajectories generated by DiffTraj, and how this624

equilibrium responds to variations in !. In this experimental setup, we studied the trajectories yielded625

under different ! settings (specifically ! 2 0.1, 1, 10) while keeping the conditional information the626

same.627

The results, as illustrated in Fig. 7 and Fig. 8, reveal an unambiguous link between an increase in628

! and a rise in trajectory diversity. This finding affirms that DiffTraj adeptly manages the balance629

between diversity and quality. As ! increases, the model demonstrates a tendency to spawn more630

varied trajectories. This is because a higher ! prompts the model to place more emphasis on631

unconditional noise prediction and reduce the sway of the conditional information. Thus, the model632

grows more proficient at creating diverse trajectories, albeit potentially compromising some quality.633

This greater diversity is a consequence of the model having fewer constraints from specific conditions,634

providing more latitude to explore a wider range of possible trajectories. This experiment underscores635

the flexibility and control inherent in DiffTraj in balancing trajectory quality and diversity, vital636

characteristics for generating realistic and diverse trajectories. Therefore, ! serves as a control knob637

for modulating the trade-off between trajectory quality and diversity, providing a powerful tool for638

users to align the generated trajectories with specific application requirements.639
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Figure 7: Conditional trajectory generation on Chengdu. The guidance scales ! of the first, second
and third rows are 0.1, 1, 10, respectively. The rectangular box indicates the area of the assigned start
and end points.

Figure 8: Conditional trajectory generation on Xi’an. The guidance scales ! of the first, second and
third rows are 0.1, 1, 10, respectively. The rectangular box indicates the area of the assigned start and
end regions.
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D Visualization Results640

We append a series of experimental results in this section due to space constraints. As shown in641

Fig. 9, we visualize the heat map of the trajectory distribution with multiple resolutions. Specifically,642

we divide the whole city into 32⇥ 32, 16⇥ 16, and 8⇥ 8 grids, and then count the distribution of643

trajectories in each grid. The comparison clearly indicates that the distributions are highly consistent644

from all resolutions. The visualized results also verify the effectiveness of metrics in Table 1, revealing645

that the proposed model can generate high-quality trajectories with remarkable accuracy and retain646

the original distribution.647

(a) Chengdu. (b) Xi’an.

Figure 9: Comparison of the real and generated trajectory distributions with different resolutions.
The city is divided into different size grids (32⇥ 32, 16⇥ 16, and 8⇥ 8 grids).

In addition, we also show the geographic results of the trajectories generated by different generation648

methods for two cities, Chengdu and Xi’an. The visualization results are concluded in Fig. 10 and649

Fig. 11.650
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Figure 10: Geographic visualization of generated trajectory in Chengdu.

The rest visualize the forward trajectory addition noise process and reverse trajectory denoising651

process of Diff-Traj.652
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Figure 11: Geographic visualization of generated trajectory in Xi’an.

Figure 12: Forward trajectory noising process (Chengdu).

Figure 13: Reverse trajectory denoising process (Chengdu).

Figure 14: Forward trajectory noising process (Xi’an).

Figure 15: Reverse trajectory denoising process (Xi’an).
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