
Appendix378

Organization of the Appendix In Section A, we introduce additional notations that will be used379

throughout the Appendix, then proceed to prove useful technical lemmas. We proceed in Section B380

to prove the results presented in the main text. Section C contains details about our experimental381

settings as well as some additional simulations.382

A Additional notations and technical lemmas383

For a vector a, we denote ‖a‖ its `2-norm, ‖a‖1 its `1-norm and ‖a‖∞ its `∞-norm. For matrices H ,384

‖H‖ denotes the operator norm associated to the `2 norm and ‖H‖F denotes the Frobenius norm. For385

real-valued functions f , ‖f‖∞ denotes the supremum norm.386

In all of the Appendix, we denote u0 = −η/2 and um+1 = 1 + η/2. Note that ση(x− u0) = 1 for387

all x ∈ [0, 1], meaning that ση(· − u0) corresponds to the bias term. This notation allows to treat388

the bias term in a unified fashion with respect to the other terms of f(x; a, u). Since ui ∈ (0, 1) for389

i ∈ {1, . . . ,m}, we assume in the following w.l.o.g. that the (ui)06i6m+1 are ordered in increasing390

order. Note that we prove in the following that the (ui)16i6m do not cross during the dynamics, so391

they remain ordered throughout the dynamics.392

The proofs involve comparisons of some quantities when η > 0 and when η = 0. To avoid confusion,393

we make explicit the dependency of L on η > 0, i.e., we let Lη(a, u) in place of L(a, u) of the main394

paper, and similarly, when the arg min is well-defined and unique,395

a∗η(u) = arg min
a∈Rm+1

Lη(a, u) .

in place of a∗(u). Similarly, we now make explicit the dependence of f on η > 0, i.e., we denote396

fη(x; a, u) = a0 +

m∑
j=1

ajση(x− uj) =

m∑
j=0

ajση(x− uj) .

The Hessian of the quadratic function Lη(·, u) is denoted Hη(u) ∈ R(m+1)×(m+1) (in place of397

H(u)), and satisties that, for i, j ∈ {0, . . . ,m},398

Hη,ij(u) =

∫ 1

0

ση(x− ui)ση(x− uj)dx .

Also let, for η > 0 and u ∈ Rm, bη(u) ∈ Rm+1 such that, for j ∈ {0, . . . ,m},399

bη,j(u) =

∫ 1

0

f∗(x)ση(x− uj)dx .

Finally, we let Uη in place of U in the paper.400

With these notations, we have, for η > 0 and a, u ∈ Rm,401

∂Lη
∂uj

(a, u) =

∫ 1

0

∂fη(x; a, u)

∂uj
(fη(x; a, u)− f∗(x)) dx

= −aj
∫ 1

0

σ′η(x− uj)
( m∑
k=0

akση(x− uk)− f∗(x)
)

dx . (10)

and402

∂Lη
∂aj

(a, u) =

∫ 1

0

∂fη(x; a, u)

∂aj
(fη(x; a, u)− f∗(x)) dx

=

∫ 1

0

ση(x− uj)
( m∑
k=0

akση(x− uk)− f∗(x)
)

dx

= Hη,j(u)>a− bη,j(u) . (11)

We now move on to a series to lemmas that will be helpful in the proofs of Appendix B.403
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Lemma 1. For η > 0 and u ∈ Rm, we have404

‖bη(u)− b0(u)‖ 6Mη
√
m+ 1 and ‖bη(u)‖ 6M

√
m+ 1 .

Proof. For any j ∈ {0, . . . ,m},405

|bη,j(u)− b0,j(u)| =
∣∣∣ ∫ 1

0

f∗(x)(ση(x− uj)− σ0(x− uj))dx
∣∣∣

6 ‖f∗‖∞
∫ 1

0

|ση(x− uj)− σ0(x− uj)|dx

6Mη ,

where in the last step we use that ‖f∗‖∞ 6M and that ση(x) = 0 for x 6 −η/2, ση(x) ∈ [0, 1] for406

−η/2 < x < η/2 and ση(x) = 1 for x > η/2.407

Similarly,408

|bη,j(u)| =
∣∣∣ ∫ 1

0

f∗(x)ση(x− uj)dx
∣∣∣ 6 ‖f∗‖∞ 6M .

409

Lemma 2. For η > 0 and u ∈ Uη, Hη(u) = H0(u) + Dη, where Dη is a diagonal matrix whose410

elements are independent of u and bounded in absolute value by η/2.411

Proof. Let i, j ∈ {0, . . . ,m}, and denote c = max(ui, uj , 0). Then412

H0,ij(u) =

∫ 1

0

σ0(x− ui)σ0(x− uj)dx = 1− c .

If i = j = 0, max(ui, uj) = −η/2, and Hη,ij(u) = 1 = H0,ij(u). If i = j 6= 0,413

Hη,ij(u) =

∫ 1

0

ση(x− c)2dx

= 1− c− η

2
+

∫ c+η/2

c−η/2
ση(x− c)2dx

= H0,ij(u)− η

2
+ η

∫ 1/2

−1/2

σ2 .

Note that the last integral is non-negative and less than 1, hence |Hη,ij(u)−H0,ij(u)| 6 η/2. Finally,414

if i 6= j, since |ui − uj | > η,415

Hη,ij(u) =

∫ 1

0

ση(x− ui)ση(x− uj)dx =

∫ 1

0

ση(x−max(ui, uj))dx .

Furthermore, 0 < max(ui, uj) < 1− η
2 , thus416

Hη,ij(u) =

∫ 1

0

ση(x− c)dx = 1− c− η

2
+

∫ c+η/2

c−η/2
ση(x− c)dx = 1− c ,

where the last equality comes from the oddness of σ − 1/2.417

Lemma 3. For η > 0, let a∗η : u ∈ Uη 7→ a∗η(u). Then a∗η is differentiable and for any u ∈ Uη ,418 ∥∥∥∂a∗η(u)

∂u

∥∥∥ 6
8

∆(u)

(
2(m+ 1)‖a∗η(u)‖+M

)
.

Proof. By Proposition 1 (whose proof does not rely on this lemma), for u ∈ Uη, Lη(·, u) has a419

unique minimizer a∗η(u), which is equal to Hη(u)−1bη(u) by (11). Furthermore, Hη and bη are420

differentiable with respect to u, hence a∗η is also differentiable with respect to u, and we have421

∂a∗η(u)

∂uk
= −Hη(u)−1 ∂Hη

∂uk
(u)a∗η(u) +Hη(u)−1 ∂bη

∂uk
(u) .
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Denote wk(u) :=
∂Hη
∂uk

(u)a∗η(u) and W (u) the (m + 1) × (m + 1) matrix formed by stacking422

column-wise the vectors (wk(u))06k6m. Then423

∂a∗η(u)

∂u
= −Hη(u)−1W (u) +Hη(u)−1 ∂bη

∂u
(u) .

We now estimate the Frobenius norm of the matrix W (u). By Lemma 2, for u ∈ Uη, Hη(u) =424

H0(u) +Dη . Take i, j ∈ {0, . . . ,m}, then425

Hη,ij(u) = H0,ij(u)+Dη,ij =

∫ 1

0

σ0(x−ui)σ0(x−uj)dx+Dη,ij = 1−max(ui, uj , 0)+Dη,ij .

Hence ∂Hη,ij
∂uk

= 0 if i, j 6= k. Further, if i = k and j 6= k,426 ∣∣∣∂Hη,ij

∂uk
(u)
∣∣∣ =

∣∣∣ ∂
∂ui

(1−max(ui, uj))
∣∣∣ 6 1 .

Of course, the bound |∂Hη,ij∂uk
(u)| 6 1 also holds when j = k and i 6= j. Finally, a similar bound427

shows that |∂Hη,ij∂uk
(u)| 6 2 when i = j = k.428

As a consequence, for k, i ∈ {0, . . . ,m},429

|wk,i(u)| 6
m∑
j=0

∣∣∣∂Hη,ij

∂uk
(u)
∣∣∣∣∣a∗η,j(u)

∣∣ 6 {|a∗η,k(u)| if i 6= k ,

|a∗η,k(u)|+ ‖a∗η(u)‖1 if i = k .

Thus430

‖W (u)‖F =
( m∑
i=0

m∑
k=0

|wk,i(u)|2
)1/2

6

( m∑
i=0

( m∑
k=0

|wk,i(u)|
)2
)1/2

6
( m∑
i=0

(
2‖a∗η(u)‖1

)2 )1/2

= 2
√
m+ 1‖a∗η(u)‖1 .

With a reasoning similar to the above, note that ∂bη∂u (u) is a diagonal matrix with diagonal entries431

in [−M,M ]. Finally, putting these elements together, using Proposition 1 and that ‖W (u)‖ 6432

‖W (u)‖F, we obtain433 ∥∥∥∂a∗η(u)

∂u

∥∥∥ 6 ‖Hη(u)−1‖‖W (u)‖F + ‖Hη(u)−1‖
∥∥∥∂bη(u)

∂u

∥∥∥ 6
8

∆(u)

(
2
√
m+ 1‖a∗η(u)‖1 +M

)
.

434

The following lemma gives exact formulae for the derivative of the loss Lη with respect to the435

positions of the neurons, evaluated for a = a∗0(u), that is the best piecewise constant approximation436

of f∗ with subdivision {u1, . . . , um}. Note that the formulae are the same as in Section 4.2, but the437

derivation is slightly more intricate since we consider here the loss Lη and not L0.438

Lemma 4. Take η > 0 and u ∈ Uη such that there are at least two neurons on each piece [vi, vi+1]439

of f∗. Then, if uj does not flank a discontinuity of f∗,440

∂Lη
∂uj

(a∗0(u), u) = 0.

Furthermore, for a discontinuity vi, denote uL
i is the closest neuron to its left and uR

i the closest441

neuron to its right. If vi − uL
i > η

2 and uR
i − vi >

η
2 , then442

∂Lη
∂uL

i

(a∗0(u), u) = −1

2

(uR
i − vi)2

(uR
i − uL

i )2
(f∗i − f∗i−1)2 ,

∂Lη
∂uR

i

(a∗0(u), u) =
1

2

(vi − uL
i )2

(uR
i − uL

i )2
(f∗i − f∗i−1)2 .
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Proof. In this proof, let us denote for simplicity a = a∗0(u). At the condition that there is at least two443

neurons on each piece of f∗, Section 4.2 gives the optimal approximation f0(x; a, u) of f∗ that is444

piecewise constant with respect to the subdivision {u1, . . . , um}. As a consequence, we easily get445

the value of a. Namely, if uj does not flank a discontinuity of f∗, the value of f0(x; a, u) is locally446

constant around uj , thus aj = 0. Plugging into (10), we obtain447

∂Lη
∂uj

(a, u) = 0 .

Further, for a discontinuity vi, denote respectively aL
i and aR

i the coefficients associated to uL
i and448

uR
i . At uL

i , the value of f0(x; a, u) jumps from f∗i−1 to vi−uL
i

uR
i −uL

i
f∗i−1 +

uR
i −vi

uR
i −uL

i
f∗i , thus449

aL
i =

vi − uL
i

uR
i − uL

i

f∗i−1 +
uR
i − vi

uR
i − uL

i

f∗i − f∗i−1 =
uR
i − vi

uR
i − uL

i

(f∗i − f∗i−1) .

Similarly, we have450

aR
i =

vi − uL
i

uR
i − uL

i

(f∗i − f∗i−1) .

We now compute, using (10),451

∂Lη
∂uL

i

(a, u) = −aL
i

∫ 1

0

σ′η(x− uL
i ) (fη(x; a, u)− f∗(x)) dx

= −aL
i

∫ uL
i +η/2

uL
i −η/2

σ′η(x− uL
i ) (fη(x; a, u)− f∗(x)) dx .

Using that ∆(u) > 2η and that there are at least two neurons on each piece of f∗, we have452

that uL
i − vi−1 > 2η. Since, in addition, by assumption, vi − uL

i > η
2 , we get that for x ∈453 [

uL
i −

η
2 , u

L
i + η

2

]
, f∗(x) = f∗i−1. Moreover, using again ∆(u) > 2η that ση is equal to σ0 on454

(−∞,−η/2] and [η/2,∞), we have for x ∈
[
uL
i −

η
2 , u

L
i + η

2

]
,455

fη(x; a, u) =

m∑
k=0

akση(x− uk) = f0

(
uL
i −

η

2
; a, u

)
+ aL

i ση(x− uL
i ) = f∗i−1 + aL

i ση(x− uL
i ) .

Thus we obtain456

∂Lη
∂uL

i

(a, u) = −aL
i

∫ uL
i +η/2

uL
i −η/2

σ′η(x− uL
i )aL

i ση(x− uL
i )dx

= − (aL
i )2

2

(
ση
(η

2

)2 − ση(− η

2

)2)
= − (aL

i )2

2

= −1

2

(uR
i − vi)2

(uR
i − uL

i )2
(f∗i − f∗i−1)2 .

The computation of ∂Lη
∂uR

i
(a, u) is similar.457

458

Lemma 5. Consider η > 0 and u ∈ Uη such that there are at least two neurons on each piece459

[vi, vi+1] of f∗. Then, for all x ∈ [0, 1], |fη(x; a∗0(u), u)| 6M .460

Proof. In the case where η = 0, the result easily follows from the expressions for f0(x; a∗0(u), u)461

provided in Section 4.2. We now assume η > 0.462
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Denote A∗k(u) =
∑k
j=0 a

∗
0,j(u) (with the convention A∗−1(u) = 0). Recall the convention u0 =463

−η/2. We compute464

fη(x; a∗0(u), u) =

m∑
k=0

a∗0,k(u)ση(x− uk)

=

m∑
k=0

(
A∗k(u)−A∗k−1(u)

)
ση(x− uk)

=

m−1∑
k=0

A∗k(u) (ση(x− uk)− ση(x− uk+1)) +A∗m(u)ση(x− um)

Note thatA∗k(u) = limx→uk+ f0(x; a∗0(u), u), and thus, from the case η = 0, we have |A∗k(u)| 6M .465

Moreover, ση is increasing and the uk are in increasing order. We thus get466

|fη(x; a∗0(u), u)| 6M
(m−1∑
k=0

(ση(x− uk)− ση(x− uk+1)) + ση(x− um)
)

= Mση(x− u0) 6M .

467

Lemma 6. Consider η > 0 and u ∈ Uη such that there are at least two neurons on each piece468

[vi, vi+1] of f∗. Then, for j ∈ {0, . . . ,m},469

|a∗0,j(u)| 6 2M

and, for any a ∈ Rm+1,470 ∣∣∣∂Lη
∂uj

(a, u)− ∂Lη
∂uj

(a∗0(u), u)
∣∣∣ 6 2M(

√
m+ 1 + 1)‖a− a∗0(u)‖+

√
m+ 1‖a− a∗0(u)‖2 .

Proof. The first statement of the Lemma comes from the explicit formulae for a∗0(u) given in the471

proof of Lemma 4, namely each a∗0,j(u) is either zero or less in magnitude than the gap between two472

pieces of f∗ that is less than 2M .473

By (10), we have474 ∣∣∣∂Lη
∂uj

(a, u)− ∂Lη
∂uj

(a∗0(u), u)
∣∣∣

=

∣∣∣∣∣aj
∫ 1

0

σ′η(x− uj)
(
fη(x; a, u)− f∗(x)

)
dx

− a∗0,j(u)

∫ 1

0

σ′η(x− uj)
(
fη(x; a∗0(u), u)− f∗(x)

)
dx

∣∣∣∣∣
6 |aj − a∗0,j(u)|

∫ 1

0

σ′η(x− uj) |fη(x; a∗0(u), u)− f∗(x)|dx

+ |aj |
∫ 1

0

σ′η(x− uj) |fη(x; a, u)− fη(x; a∗0(u), u)|dx .

We bound the two terms separately. For the first term, we use Lemma 5.475 ∫ 1

0

σ′η(x− uj) |fη(x; a∗0(u), u)− f∗(x)| 6
∫ 1

0

σ′η(x− uj) (|fη(x; a∗0(u), u)|+ |f∗(x)|)

6 2M

∫ 1

0

σ′η(x− uj)dx 6 2M .

We now continue with the second term.476

|fη(x; a, u)− fη(x; a∗0(u), u)| =
∣∣∣ m∑
k=0

(ak − a∗0,k(u))ση(x− uk)
∣∣∣ 6 ‖a− a∗0(u)‖1 ,
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and thus477 ∫ 1

0

σ′η(x− uj) |fη(x; a, u)− fη(x; a∗0(u), u)|dx 6 ‖a− a∗0(u)‖1
∫ 1

0

σ′η(x− uj)dx

6 ‖a− a∗0(u)‖1 .
Returning to our initial upper bound, we obtain, using the first statement of the Lemma,478 ∣∣∣∂Lη
∂uj

(a, u)− ∂Lη
∂uj

(a∗0(u), u)
∣∣∣ 6 2M‖a− a∗0(u)‖+ (|a∗0,j(u)|+ |aj − a∗0,j(u)|)‖a− a∗0(u)‖1

6 2M‖a− a∗0(u)‖+ (2M + ‖a− a∗0(u)‖)
√
m+ 1‖a− a∗0(u)‖

= 2M(
√
m+ 1 + 1)‖a− a∗0(u)‖+

√
m+ 1‖a− a∗0(u)‖2 .

479

Lemma 7. For η > 0 and u ∈ Uη ,480

‖a∗η(u)− a∗0(u)‖ 6 16M
√
m+ 1η

∆(u)
.

Proof. By (11),481

Hη(u)a∗η(u) = bη(u)

and by (11) and by Lemma 2,482

Hη(u)a∗0(u) = H0(u)a∗0(u) +Dηa
∗
0(u) = b0(u) +Dηa

∗
0(u).

According to Proposition 1 (whose proof does not rely on this lemma), Hη(u) is invertible with483

‖Hη(u)−1‖ 6 8/∆(u). We thus have484

‖a∗η(u)− a∗0(u)‖ = ‖Hη(u)−1(Hη(u)a∗η(u)−Hη(u)a∗0(u))‖

6
8

∆(u)
‖bη(u)− b0(u)−Dηa

∗
0(u)‖

6
8

∆(u)

(
‖bη(u)− b0(u)‖+ ‖Dηa

∗
0(u)‖

)
6

8

∆(u)

(
‖bη(u)− b0(u)‖+

η

2
‖a∗0(u)‖

)
.

The result then unfolds from Lemmas 1 and 6.485

Lemma 8. Let η > 0, u ∈ Rm and a, a′ ∈ Rm+1. Then486

‖∇uLη(a, u)‖ 6
√
m+ 1‖a‖2 +M‖a‖ ,

‖∇aLη(a, u)‖ 6
√
m+ 1(‖a‖

√
m+ 1 +M) .

As a consequence of the second inequality, by the fundamental theorem of calculus for line integrals,487

|Lη(a, u)− Lη(a′, u)| 6
√
m+ 1

(
max(‖a‖, ‖a′‖)

√
m+ 1 +M

)
‖a− a′‖ .

Proof. Recall that, for all j ∈ {1, . . . ,m}, and for all a, u ∈ Rm,488

∂Lη
∂uj

(a, u) = −aj
∫ 1

0

σ′η(x− uj)
( m∑
k=0

akση(x− uk)− f∗(x)
)

dx ,

∂Lη
∂aj

(a, u) =

∫ 1

0

ση(x− uj)
( m∑
k=0

akση(x− uk)− f∗(x)
)

dx .

From the first equality, we have489 ∣∣∣∂Lη
∂uj

(a, u)
∣∣∣ 6 |aj |∫ 1

0

|σ′η(x− uj)|
( m∑
k=1

|ak|ση(x− uk) + |f∗(x)|
)
dx

6 |aj |(‖a‖1 +M)

∫ 1

0

|σ′η(x− uj)|dx

6 |aj |(‖a‖1 +M) .
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As a consequence,490

‖∇uLη(a, u)‖ 6 ‖a‖(‖a‖1 +M) 6
√
m+ 1‖a‖2 +M‖a‖ .

Similarly, from the second equality, we have491 ∣∣∣∣∂Lη∂aj
(a, u)

∣∣∣∣ 6 ‖a‖1 +M .

As a consequence,492

‖∇aLη(a, u)‖ 6
√
m+ 1(‖a‖1 +M) =

√
m+ 1(‖a‖

√
m+ 1 +M) .

493

Lemma 9. Consider η > 0 and u ∈ Uη such that there is a neuron at distance less than η from each494

discontinuity of f∗ and 3η 6 ∆v. Then495 ∫ 1

0

|fη(x; a∗η(u), u)− f∗(x)|2dx 6 6M2ηn .

Proof. By definition of a∗η(u),496 ∫ 1

0

|fη(x; a∗η(u), u)− f∗(x)|2dx = min
a∈Rm+1

∫ 1

0

|fη(x; a, u)− f∗(x)|2dx .

Thus it is enough to exhibit some a for which the latter integral is smaller than 6M2ηn to conclude.497

We construct such an a as follows: set a0 = f∗(0), and for each discontinuity vi, set the coefficient498

of a neuron at distance less than η to the value f∗i − f∗i−1 and set all other neurons to zero. Note that499

the active neurons are distinct since 3η 6 ∆v.500

Then the neural network is equal to the target function everywhere except on an interval of size 3η/2501

around each discontinuity, where they disagree (in infinite norm) by at most 2M .502

503

Lemma 10. Let m be a positive integer and u1, . . . , um be i.i.d. uniform random variables in [0, 1].504

Assume that505

m >
6

∆v

(
4 + log n+ log

1

δ

)
.

Then, with probability at least 1− δ, the vector u is D-good with D = δ
6(m+1)2 .506

Proof. We define the following events:507

(a) A is the event “there are at least 6 positions uj in each interval [vi, vi+1] for i ∈ {0, . . . , n−508

1}”,509

(b) B is the event “∆(u) > D”,510

(c) for all i ∈ {1, . . . , n− 1}, Ei is the event “there are at least one neuron on the left and on511

the right of vi” and Ci is the event “Ei holds and |uR
i + uL

i − 2vi| > D”.512

Note that by Definition 2, u is D-good if and only if the event A ∩B ∩ (
⋂
i Ci) holds. To show that513

this holds with high probability, we bound the probability of the complement514 (
A ∩B ∩

(⋂
i

Ci

))c
= Ac ∪Bc ∪

(⋃
i

Cci

)
= Ac ∪Bc ∪

(⋃
i

(Cci ∩A)
)

⊂ Ac ∪Bc ∪
(⋃

i

(Cci ∩ Ei)
)

(as A ⊂ Ei) .

Thus515

P(u is not D-good) 6 P(Ac) + P(Bc) +

n−1∑
i=1

P(Cci ∩ Ei) .

Below, we bound separately the three terms of the right hand side.516
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(a) Denote m′ = bm/6c. For any i ∈ {0, . . . , n − 1}, the set Ai = {j ∈ {1, . . . ,m′} |uj ∈517

[vi, vi+1]} is empty with probability (1 − (vi+1 − vi))m
′
6 (1 − ∆v)m

′
. Thus by the518

union bound, the probability that at least one of A1, . . . ,An is empty is upper bounded by519

n(1−∆v)m
′
.520

We now check that n(1−∆v)m
′
6 δ/18. Indeed,521

m′ =
⌊m

6

⌋
>
m

6
− 1 >

3 + log n+ log 1
δ

∆v
>

log n+ log 18
δ

∆v
> −

log n+ log 18
δ

log(1−∆v)
,

where we use ∆v 6 1, 3 > log(18), and log(1−∆v) 6 −∆v < 0. This gives the desired522

inequality.523

In other words, the probability that at least one of the intervals [vi, vi+1] contains none of524

the u1, . . . , um′ is bounded by δ/18. As a consequence, by the union bound, the probability525

that at least one of the intervals [vi, vi+1] contains strictly less than 6 of the u1, . . . , um is526

bounded by δ/3, i.e., P(Ac) 6 δ/3.527

(b) Recall that by convention, u0 = −η2 and um+1 = 1 + η
2 . For all i ∈ {0, . . . ,m+ 1}, denote528

Ii = (ui −D,ui +D). Denote Fj the event “uj ∈ Ii for some i ∈ {0, . . . ,m+ 1}, i 6= j”.529

Note that Bc = ∪mj=1Fj .530

Fix j = 1, . . . ,m. By conditioning on ui for all i ∈ {0, . . . ,m + 1}, i 6= j, we see that531

P(Fj) 6 2(m+ 1)D. By the union bound,532

P(Bc) 6 2m(m+ 1)D 6
δ

3
.

(c) Take i ∈ {1, . . . , n− 1}. For convenience, we define the random variable uL
i (resp. uR

i ) on533

the full probability space by setting uL
i = 0 (resp. uR

i = 1) when there is no neuron on the534

left (resp. the right) of vi. We compute the joint cumulative distribution function of (uL
i , u

R
i )535

(with a convenient change of inequality): for all 0 6 y 6 vi 6 z 6 1,536

P(uL
i 6 y, uR

i > z) = P(∀j ∈ {1, . . . ,m}, uj /∈ [y, z]) = (1− (z − y))
m
.

We observe that the joint cumulative distribution function of (uL
i , u

R
i ) is a smooth function537

of (y, z) when (y, z) ∈ (0, vi)× (vi, 1). Note that the events Ei and {(uL
i , u

R
i ) ∈ (0, vi)×538

(vi, 1)} are equal up to a null set. Therefore, on this event, (uL
i , u

R
i ) is an absolutely539

continuous random variable with density g : (0, vi)× (vi, 1)→ R,540

g(y, z) = − ∂2

∂y∂z
P(uL

i 6 y, uR
i > z) = m(m− 1) (1− (z − y))

m−2
.

We compute541

P(Cci ∩ Ei) = P({|uR
i + uL

i − 2vi| 6 D} ∩ Ei)

=

∫
{0<y<vi<z<1}

m(m− 1) (1− (z − y))
m−2

1{|y+z−2vi|6D}dydz .

We make the change of variables θ = z − y, ν = z + y.542

P(Cci ∩ Ei) =
m(m− 1)

2

∫
{0< ν−θ

2 <vi<
ν+θ
2 <1}

(1− θ)m−21|ν−2vi|6Ddθdν

6
m(m− 1)

2

(∫ 1

0

(1− θ)m−2dθ
)(∫ ∞

−∞
1|ν−2vi|6Ddν

)
= Dm.

Using m > 24/∆v > 24n, we have543

n−1∑
i=1

P(Cci ∩ Ei) 6 (n− 1)Dm 6
δ

24× 6
6
δ

3
.

This concludes the proof.544

545
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B Proofs of the results of the main text546

B.1 Proof of Proposition 1547

Let us lower-bound the smallest eigenvalue of Hη(u) which is equal to548

min
‖a‖=1

a>Hη(u)a .

Now for a ∈ Rm+1 such that ‖a‖ = 1,549

a>Hη(u)a =

m∑
i,j=0

aiaj

∫ 1

0

ση(x− ui)ση(x− uj)dx =

∫ 1

0

(
m∑
i=0

aiση(x− ui)

)2

dx .

Since ∆u > 2η (because u ∈ U ) and u0 = −η/2, um+1 = 1+η/2, the intervals [ui+η/2, ui+1−η/2]550

for i ∈ {0, . . . ,m} are disjoint and included in [0, 1]. Thus551

a>Hη(u)a >
m∑
i=0

∫ ui+1−η/2

ui+η/2

(
m∑
i=0

aiση(x− ui)

)2

dx .

Since σ(x) = 0 if x < −1/2 and σ(x) = 1 if x > 1/2, we have that ση(x) = 0 if x < −η/2 and552

ση(x) = 1 if x > η/2. Further recall that the ui are ordered in increasing order. As a consequence,553

a>Hη(u)a >
m∑
i=0

∫ ui+1−η/2

ui+η/2

(
i∑

k=0

ak

)2

dx

=

m∑
i=0

(ui+1 − ui − η)

(
i∑

k=0

ak

)2

>
∆(u)

2

m∑
i=0

(
i∑

k=0

ak

)2

, (12)

where in the last step, we used that ∆(u) > 2η and thus ui+1 − ui − η > ∆(u) − η > ∆(u) −554

∆(u)/2 = ∆(u)/2. Now, denote c0 = 0 and ci =
∑i−1
k=0 ak. Then ‖a‖ = 1 writes555

m∑
i=0

(ci+1 − ci)2 = 1.

Furthermore,556

m∑
i=0

(ci+1 − ci)2 =

m∑
i=0

c2i+1 +

m∑
i=0

c2i − 2

m∑
i=0

ci+1ci 6 4

m+1∑
i=0

c2i .

Hence557
m+1∑
i=0

c2i >
1

4
,

which shows in conjunction with (12) that the smallest eigenvalue of Hη(u) is lower-bounded by ∆u
8 .558

B.2 Proof of Proposition 2559

To show that G(u) = (∇uLη)(a∗η(u), u) is Lipschitz-continuous on Uη, we show that it is differen-560

tiable on Uη and that its derivatives are uniformly bounded. The chain rule gives561

∂Gj
∂uk

=

m∑
l=0

∂a∗η,l
∂uk

(u)
∂2Lη
∂uj∂al

(a∗η(u), u) +
∂2Lη
∂uj∂uk

(a∗η(u), u) .
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From (10), using that σ is twice continuously differentiable, it can be checked that ∂Lη∂uj
is differ-562

entiable in both its arguments and its derivatives are uniformly upper-bounded when a is bounded.563

Furthermore, for u ∈ Uη ,564

‖a∗η(u)‖ 6 ‖Hη(u)−1‖ ‖bη(u)‖ 6 8M
√
m+ 1

∆(u)
,

by Lemma 1 and Proposition 1. Finally, according to Lemma 3, a∗η is differentiable with derivatives565

uniformly upper-bounded on Uη . This concludes the proof.566

B.3 Proof of Proposition 3567

In this proof, we denote uL
i (τ) (resp. uR

i (τ)) the position at time τ of the neuron that is at initialization568

closest to vi to the left (resp. the right). Note that because of the movement of the neurons, it could569

be that uL
i (resp. uR

i ) does not remain the neuron closest to the left (resp. the right) throughout the570

dynamics. Our proof discusses when this phenomenon occurs. Similarly, denote uLL
i (resp. uRR

i ) the571

neuron second closest to the left (resp. the right) of vi. Since the initialization is D-good, note that all572

these neurons are distinct.573

Denote T the minimal time τ ∈ [0, Tmax) such that ∆(u(τ)) 6 D/2 or there are less than two neurons574

in some piece [vi, vi+1] of f∗. Note that by assumption, ∆(u(0)) > D > D/2 and there are at least575

6 neurons in each interval at initialization, thus T > 0. Furthermore, using the trivial inequalities576

M > ∆f/2, m + 1 > 1 and η1/2 > η, we have D
2 =

211/2M
√
m+1

√
η

∆f > 8η > 2η. Recall that577

2η is the quantity defining the set Uη supporting the maximal solution of the equation (8). As a578

consequence, we do have T < Tmax. At the end of the proof, we check that T < T , by controlling579

carefully the movement of each neuron.580

Let us first bound the difference between the dynamics of u and the dynamics that we would have if581

at each time τ , the weights a were given by a∗0(u(τ)), the best approximation of f∗ by a piecewise582

constant function with subdivision u(τ). For any τ < T and j ∈ {1, . . . ,m}, by Lemma 6, we have583 ∣∣∣duj
dτ

(τ) +
∂Lη
∂uj

(a∗0(u(τ)), u(τ))
∣∣∣

=
∣∣∣∂Lη
∂uj

(a∗η(u(τ)), u(τ))− ∂Lη
∂uj

(a∗0(u(τ)), u(τ))
∣∣∣

6 2M(
√
m+ 1 + 1)‖a∗η(u(τ))− a∗0(u(τ))‖+

√
m+ 1‖a∗η(u(τ))− a∗0(u(τ))‖2 . (13)

We are therefore led to bounding ‖a∗η(u(τ))− a∗0(u(τ))‖, as follows:584

‖a∗η(u(τ))− a∗0(u(τ))‖ 6 24M
√
m+ 1η

∆(u(τ))
(by Lemma 7)

6
25M

√
m+ 1η

D
(since ∆(u(τ)) > D/2)

=
D(∆f)2

28M
√
m+ 1

(by definition of D).

Then the first term in (13) is less than585

(
√
m+ 1 + 1)D(∆f)2

27
√
m+ 1

6
D(∆f)2

26
,

and the second term in (13) is less than586

D2(∆f)4

216M2
√
m+ 1

6
D(∆f)2

214
, using D 6 ∆(u(0)) 6 1, ∆f 6 2M and m+ 1 > 1.

Hence we obtain, for any τ < T and j ∈ {1, . . . ,m},587 ∣∣∣duj
dτ

(τ) +
∂Lη
∂uj

(a∗0(u(τ)), u(τ))
∣∣∣ 6 D(∆f)2

60
=: ∆g (14)
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Now, let us examine how the neurons move, by leveraging Lemma 4 that gives exact formulae for588
∂Lη
∂uj

(a∗0(u(τ)), u(τ)). First, if uj is not next to a discontinuity, ∂Lη∂uj
(a∗0(u(τ)), u(τ)) = 0, hence589

|uj(τ)− uj(0)| 6 (∆g)τ .

Let us now study what happens next to a discontinuity vi. Denote (δf)i = f∗i − f∗i−1. W.l.o.g.,590

assume that591

uR
i (0)− vi > vi − uL

i (0) .

In the reverse case, the proof is the same by swapping the roles of uL
i and uR

i , and of uLL
i and uRR

i .592

We are going to show that the dynamics of uL
i are divided into two phases. Define Ti as the minimal593

τ ∈ [0, T ] such that uL
i (τ) = vi − η/2. In the first phase [0, Ti], we have uL

i (τ) < vi − η
2 and uL

i594

moves towards vi. In the second phase [Ti, T ], we show below that uL
i (τ) ∈ [vi − η, vi + η]. Note595

that we can have Ti = 0 if uL
i (0) > vi − η

2 . It is also possible that Ti =∞ a priori; this means that596

the second phase does not exist. We show below that this case does not happen. Figure 6 depicts the597

two phases.598

(a) Phase 1 (b) Phase 2

Figure 6: Dynamics of the neurons next to a discontinuity vi. In the first phase, uL
i and uR

i move
towards vi, until the closest neuron (in this case uL

i ) reaches the interval of size η centered in vi.
In the second phase, uL

i remains in an interval of size 2η around vi, and none of the neurons move
significantly.

Beginning by the first phase, we have, while uL
i (τ) < vi − η

2 and uR
i (τ) > vi + η

2 , according to599

Lemma 4,600

∂Lη
∂uL

i

(a∗0(u(τ)), u(τ)) = −1

2

(uR
i (τ)− vi)2(δf)2

i

(uR
i (τ)− uL

i (τ))2
,

∂Lη
∂uR

i

(a∗0(u(τ)), u(τ)) =
1

2

(vi − uL
i (τ))2(δf)2

i

(uR
i (τ)− uL

i (τ))2
.

For ease of computation, let dL
i (τ) = vi − uL

i (τ) and dR
i (τ) = uR

i (τ)− vi be the distances between601

the neurons and vi. Then, by (14),602

ddR
i

dτ
(τ) +

ddL
i

dτ
(τ) 6 −1

2

((dR
i (τ))2 + (dL

i (τ))2)(δf)2
i

(dL
i (τ) + dR

i (τ))2
+ 2∆g

6 − (∆f)2

4
+ 2

D(∆f)2

60
6 − (∆f)2

5

since D 6 ∆(u(0)) 6 1. Thus, in some time less than T = 6
(∆f)2 , dR

i (τ) + dL
i (τ) 6 η, that is,603

either uL
i reaches vi − η

2 or uR
i reaches vi + η

2 . Let us check that the second event cannot actually604
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happen: while uL
i (τ) < vi − η

2 and uR
i (τ) > vi + η

2 , we also have605

ddR
i

dτ
(τ)− ddL

i

dτ
(τ) >

((dR
i (τ))2 − (dL

i (τ))2)(δf)2
i

(dL
i (τ) + dR

i (τ))2
− 2∆g

=
(dR
i (τ)− dL

i (τ))(δf)2
i

dL
i (τ) + dR

i (τ)
− 2∆g .

By condition (c) of Definition 2 and by (14), we have dR
i (0) − dL

i (0) > D = 60∆g
(∆f)2 > 60∆g

(δf)2i
, and606

furthermore dL
i (τ) +dR

i (τ) 6 1. An easy reasoning then shows that dR
i −dL

i is increasing. Therefore607

uR
i must remain further away from vi than uL

i .608

In summary, we showed that there exists some time Ti 6 T when uL
i (Ti) = vi − η

2 , which marks the609

end of the first phase, and we also have610

dR
i (Ti)− dL

i (Ti) > dR
i (0)− dL

i (0) > D .

Moving on to the study of the second phase, let us show that uL
i (τ) stays in the interval [vi−η, vi+η]611

for τ ∈ [Ti, T ). Consider any τ 6 T such that uL
i (τ) = vi− η. Then we have by (14) and Lemma 4612

duL
i

dτ
(τ) >

(uR
i (τ)− vi)2(δf)2

i

(uR
i (τ)− vi + η)2

−∆g > ∆g , (15)

where the second upper bound comes from the fact that we have uR
i (τ) − vi > D

2 − η since613

∆(u(τ)) > D/2, and furthermore, x 7→ x2

(x+η)2 is increasing, hence614

(uR
i − vi)2(δf)2

i

(uR
i − vi + η)2

>
( D

2 − η
D
2

)2

∆f2 >
(D/2>2η)

(∆f)2

4
> 2∆g .

Equation (15) implies that uL
i (τ) > vi − η for all τ ∈ [Ti, T ). Similarly, consider any τ 6 T such615

that uL
i (τ) = vi+η. Note that, for such a τ , uL

i (τ) is now on the right of vi, and the neurons flanking616

vi are uLL
i and uL

i . Thus we have by (14) and Lemma 4617

duL
i

dτ
(τ) 6 − (vi − uLL

i (τ))2(δf)2
i

(vi + η − uLL
i (τ))2

+ ∆g 6 −∆g ,

where the second lower bound unfolds similarly as previously. This shows that uL
i (τ) 6 vi + η for618

all τ ∈ [Ti, T ).619

We now check that T < T , that is, for all τ 6 T , ∆(u(τ)) > D/2 and there are at least two neurons620

in each interval [vi, vi+1]. Starting with the first condition, we say that neurons uj and uk collide if621

|uj(τ)− uk(τ)| = D/2 for some τ 6 T . Let us show that no pair of neurons collide.622

We start by showing that there is no collision between uLL
i and uL

i . In the first phase [0, Ti], we have623

duLL
i

dτ (τ) 6 ∆g. Recall that we also have duL
i

dτ (τ) > −∆g and thus for τ 6 Ti,624

uL
i (τ)− uLL

i (τ) > uL
i (0)− uLL

i (0)− 2T ∆g >
4D

5

since uL
i (0) − uLL

i (0) > D and T ∆g = D/10 by definition of T and ∆g. As a consequence, uLL
i625

and uL
i do not collide during the first phase, and we have626

uLL
i (Ti) 6 uL

i (Ti)−
4D

5
= vi −

η

2
− 4D

5
. (16)

In the second phase, we can have uL
i ∈ [vi, vi + η] in which case uLL

i becomes the neuron flanking627

vi to the left and uL
i the neuron flanking to the right. Then (14) and Lemma 4 give628

duLL
i

dτ
6

(uL
i (τ)− vi)2(δf)2

i

(uL
i (τ)− uLL

i (τ))2
+ ∆g 6

16η2M2

D2
+ ∆g .
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Of course, this bound also holds when uL
i ∈ [vi − η, vi], because then duLL

i

dτ 6 ∆g. Thus, in the629

second phase τ ∈ [Ti, T ], by the previous upperbound and the fact that uL
i (τ) > vi − η

2 ,630

uL
i (τ)− uLL

i (τ) > vi −
η

2
−
(
uLL
i (Ti) + (τ − Ti)

(16η2M2

D2
+ ∆g

))
>

4D

5
− T

(16η2M2

D2
+ ∆g

)
,

by (16). Let us now upper-bound each of the last two terms by D/10 to conclude. By definition of D,631

η =
(∆f)2D2

213(m+ 1)M2
.

Thus632
16η2M2T

D2
=

3(∆f)2D2

221(m+ 1)2M2
6
D

10

using the definition of T , D 6 ∆(u(0)) 6 1, ∆f 6 2M and m + 1 > 1. Finally, T ∆g = D/10.633

Thus uLL
i and uL

i do not collide.634

We now show that uL
i and uR

i do not collide. In the first phase τ ∈ [0, Ti], we have635

uR
i (τ)− uL

i (τ) > uR
i (τ)− vi = dR

i (τ) > dR
i (τ)− dL

i (τ) > D .

As a consequence, uL
i and uR

i do not collide during the first phase, and we have636

uR
i (Ti) > D + uL

i (Ti) = D + vi −
η

2
. (17)

In the second phase, uR
i plays a role symmetric to uLL

i : it can be, or not, the neuron closest to the637

right of vi, depending on whether uL
i ∈ [vi − η, vi] or uL

i ∈ [vi, vi + η]. As for uLL
i , we can show638

that in any case, for τ ∈ [Ti, T ],639

duR
i

dτ
> −16η2M2

D2
−∆g .

Thus one concludes as before: for τ ∈ [Ti, T ], by the previous lowerbound and the fact that640

uL
i (τ) 6 vi + η

2 ,641

uR
i (τ)− uL

i (τ) > uR
i (Ti)− (τ − Ti)

(16η2M2

D2
+ ∆g

)
−
(
vi +

η

2

)
.

Then, by (17),642

uR
i (τ)− uL

i (τ) > D − η − T
(16η2M2

D2
+ ∆g

)
>
D

2
,

where the last lower-bound unfolds similarly as for uLL
i and uL

i . Thus there is no collision between643

uL
i and uR

i .644

The reader can check that all other pairs of neurons do not collide, including those involving645

u0 = −η/2 and um+1 = 1 + η/2. In fact, the proof is easier than for uLL
i , uL

i and uL
i , u

R
i because646

the discontinuity at vi attracts these neurons together.647

Furthermore, we proved that before time T at most one neuron can escape on each side of a piece648

[vi, vi+1] of f . Since we start with at least four (and even six) neurons per piece, there is always649

before T at least two neurons per piece.650

This shows that T < T , and we also proved that at time T , all discontinuities have finished their first651

phase, hence there is a neuron at distance less than η from each discontinuity of the target function.652

B.4 Proof of Theorem 2653

Take C = 2−19. Then by assumption of Theorem 2,654

η 6
δ2(∆f)2

219M2(m+ 1)5
.
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Moreover, by the definition of D from Proposition 3,655

η =
(∆f)2D2

213M2(m+ 1)
.

This implies that656

D2 6
δ2

26(m+ 1)4
,

and in consequence657

D 6
δ

6(m+ 1)2
.

Then Lemma 10 shows that the initialization is D-good with probability at least 1 − δ (since the658

D-good property is monotonous in D).659

Hence, with probability at least 1−δ, according to Proposition 3, the maximal solution to (8) is defined660

at least until T and at that time, there is a neuron at distance less than η from each discontinuity of661

the target function. Furthermore, 3η 6 1
m+1 6 1

n 6 ∆v, hence Lemma 9 applies. This implies that662 ∫ 1

0

|f∗(x)− f(x; a∗(u(T )), u(T ))|2dx 6 6M2ηn .

The assumption on η allow to conclude that the upper-bound is less than ξ.663

Remark 2. We did not try to optimize the value of C since our goal was to show convergence to a664

global optimum and the dependency of the dynamics on the parameters (for instance, it is remarkable665

that T does not depend on ξ).666

B.5 Proof of Proposition 4667

For s 6 t, Proposition 1 holds since for ∆(u(s)) > 16η > 2η. Thus a∗η(u(s)) is well-defined and668

verifies669

∇aLη(a∗η(u(s)), u(s)) = 0 .

Let, for s 6 t, V (s) = ‖a(s)− a∗η(u(s))‖. Recall that, by (11),670

∇aLη(a, u) = Hη(u)a− bη(u) .

Hence, for s 6 t,671

〈a(s)− a∗η(u(s)),∇aLη(a(s), u(s))〉
= 〈a(s)− a∗η(u(s)),∇aLη(a(s), u(s))−∇aLη(a∗η(u(s)), u(s))〉
= 〈a(s)− a∗η(u(s)), Hη(u(s))(a(s)− a∗η(u(s)))〉

>
∆(u(s))

8
V (s)2

>
D

16
V (s)2 ,

where the first lower bound is a consequence of Proposition 1. Then we have, for any s 6 t,672

d

ds

(1

2
V (s)2

)
=
〈
a(s)− a∗η(u(s)),

da

ds
(s)− d

ds
a∗η(u(s))

〉
=
〈
a(s)− a∗η(u(s)),−∇aLη(a(s), u(s))− d

ds
a∗η(u(s))

〉
6 −D

16
V (s)2 +

∥∥∥ d

ds
a∗η(u(s))

∥∥∥V (s) .

Let us now upper bound the norm appearing in the second term. We first have by the chain rule673

d

ds
a∗η(u(s)) =

∂a∗η
∂u

(u(s))
du

ds
(s) .
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By Lemma 3 (which holds since for ∆(u(s)) > 16η > 2η),674 ∥∥∥∂a∗η
∂u

(u(s))
∥∥∥ 6

8

∆(u(s))

(
2(m+ 1)‖a∗η(u(s))‖+M

)
.

Besides,675 ∥∥∥du

ds
(s)
∥∥∥ 6 ε‖∇uLη(a(s), u(s))‖ .

By Lemma 8,676

‖∇uLη(a(s), u(s))‖ 6
√
m+ 1‖a(s)‖2 +M‖a(s)‖ . (18)

Furthermore,677

‖a(s)‖ 6 ‖a∗η(u(s))‖+ ‖a(s)− a∗η(u(s))‖ = ‖a∗η(u(s))‖+ V (s) .

By Lemmas 6 and 7, which apply since ∆(u(s)) > 2η and since there are at least two positions uj(s)678

in each interval [vi, vi+1] for s 6 t,679

‖a∗η(u(s))‖ 6 ‖a∗0(u(s))‖+ ‖a∗0(u(s))− a∗η(u(s))‖

6 2M
√
m+ 1 +

16M
√
m+ 1η

∆(u(s))

6 2M
√
m+ 1 +

32M
√
m+ 1η

D

6 3M
√
m+ 1 ,

where the last upper bound is implied by the assumption D > 32η.680

Now define Tmax = inf
{
s > 0, V (s) > 3M

√
m+ 1

}
and assume s 6 min(t, Tmax) so that681

V (s) 6 3M
√
m+ 1. Then we proved that ‖a(s)‖ 6 6M

√
m+ 1. Going back to (18), we deduce682

that683

‖∇uLη(a(s), u(s))‖ 6 36M2(m+ 1)3/2 + 6M2
√
m+ 1 6 26M2(m+ 1)3/2 . (19)

Putting everything together, we obtain684 ∥∥∥ d

ds
a∗η(u(s))

∥∥∥ 6
29M2(m+ 1)3/2

∆(u(s))

(
6M(m+ 1)3/2 +M

)
ε 6

213M3(m+ 1)3

D
ε .

All in all,685

d

ds

(1

2
V (s)2

)
6 −D

16
V (s)2 +

213M3(m+ 1)3

D
εV (s) .

Hence686

d

ds
(V (s)) =

1

V (s)

d

ds

(1

2
V (s)2

)
6 −D

16
V (s) +

213M3(m+ 1)3

D
ε .

By Grönwall’s inequality, for all s 6 min(t, Tmax),687

V (s) 6 exp−
D
16 s V (0) +

217M3(m+ 1)3

D2
ε(1− exp−

D
16 s) (20)

6 exp−
D
16 s V (0) +

217M3(m+ 1)3

D2
ε . (21)

Finally note that V (0) = ‖a∗η(0)‖ 6 2M
√
m+ 1 and 217M3(m+1)3ε

D2 6 2M
√
m+ 1 by the as-688

sumption of the Proposition on ε. Hence (20) implies that for all s 6 min(t, Tmax), V (s) is a689

(weighted) average of two terms less than 2M
√
m+ 1 hence it is less than 2M

√
m+ 1. This shows690

that Tmax > t, which concludes the proof since (21) is then valid for s = t.691
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B.6 Proof of Theorem 1692

In the proof, we take C1 = 2−21 and C2 = 2−36. Denote693

D =
δ

6(m+ 1)2
.

Lemma 10 shows that the initialization is D-good with probability at least 1− δ. In the following,694

we study the case where this event happens.695

Denote T the minimal time t > 0 such that ∆(u(t)) 6 D/2 or there are less than two neurons in some696

piece [vi, vi+1] of f∗ or ‖a(t)‖ > 7M
√
m+ 1. Note that T > 0 since the initialization is D-good.697

By Lemma 8, ∇uLη and ∇aLη are Lipschitz-continuous on compacts, hence the solution of the698

gradient flow is well defined for t < T since T defines a compact set of parameters.699

Then all the assumptions of Proposition 4 are satisfied on the time interval [0, t] for any t < T . More700

precisely, the assumptions that do not come directly from the definition of T are the lower bound for701

D and the upper bound for ε. The lower bound for D come from702

D =
δ

6(m+ 1)2
> 32η (22)

by (3) and the simple bounds δ 6 1, ∆f 6 2M , m+ 1 > 1. The upper bound for ε comes from (3)703

since704

ε 6
δ3(∆f)2

236M4(m+ 1)19/2
6

δ2

36 · 216M2(m+ 1)13/2
=

D2

216M2(m+ 1)5/2
,

where the second upper bound uses m > 0, δ 6 1 and ∆f 6 2M . Therefore, according to705

Proposition 4,706

‖a(t)− a∗η(u(t))‖ 6 3M
√
m+ 1 exp−

D
16 t +

217M3(m+ 1)3

D2
ε , (23)

Furthermore, the proof of Proposition 4 actually implies that707

‖a∗η(u(t))‖ 6 3M
√
m+ 1 and ‖a(t)‖ 6 6M

√
m+ 1. (24)

The second bound implies that the condition ‖a(t)‖ > 7M
√
m+ 1 in the definition of T is actually708

never active. Let us distinguish between two phases: letting709

T0 =
16

D
log
(216M2(m+ 1)3

δ(∆f)2

)
=

96(m+ 1)2

δ
log
(216M2(m+ 1)3

δ(∆f)2

)
,

then the first phase corresponds to t 6 T0 and the second phase for t > T0.710

Analysis of the first phase. In the first phase, each neuron moves at most by711

εT0 max
j

∣∣∣∂Lη
∂uj

(a(t), u(t))
∣∣∣ 6 εT0‖∇uLη(a(s), u(s))‖ 6 26εT0M

2(m+ 1)3/2 ,

where the second upper bound comes from (19) in the proof of Proposition 4. This quantity is less712

than D
8 if713

6144(m+ 1)7/2M2

δ
log
(216M2(m+ 1)3

δ(∆f)2

)
ε 6

δ

48(m+ 1)2
.

Let us check this condition: we have714

6144(m+ 1)7/2M2

δ
log
(216M2(m+ 1)3

δ(∆f)2

)
ε

=
16 · 6144(m+ 1)7/2M2

δ
log
(2M1/8(m+ 1)3/16

δ1/16(∆f)1/8

)
ε

6
16 · 6144(m+ 1)7/2M2

δ
log
(4M(m+ 1)

δ∆f

)
ε ,
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since m+ 1 > 1, δ 6 1, and 2M/∆f > 1, hence (2M/∆f)1/8 6 2M/∆f . Next, upper-bounding715

log(x) by x, we have, by (3),716

768(m+ 1)7/2M2

δ
log
(216M2(m+ 1)3

δ(∆f)2

)
ε 6

64 · 6144(m+ 1)9/2M3

δ2∆f
ε

6
6144δ(∆f)

229M(m+ 1)5

6
δ

48(m+ 1)2

using ∆f 6 2M and m > 0. Note that the upper bound 26εT0M
2(m+ 1)3/2 6 D/8 also implies717

that718

T0 6
D

29εM2(m+ 1)3/2
6

1

2ε(∆f)2
=

T

12
(25)

since m > 0, D 6 1 and ∆f 6 2M . Since each neuron moves by at most D/8 in the time interval719

[0, T0] and since ∆(u(0)) > D, we deduce that720

∆(u(T0)) >
3

4
D. (26)

Similarly, by condition (c) of the definition of a D-good vector, for all discontinuities vi,721

|uR
i (0) + uL

i (0)− 2vi| > D,

thus722

|uR
i (T0) + uL

i (T0)− 2vi| >
3

4
D . (27)

Furthermore, there at least four neurons on each piece of f at T0, because at most one neuron can723

move out of each piece by either side between 0 and T0.724

Analysis of the second phase. Let725

∆a =
D(∆f)2

29M
√
m+ 1

=
δ(∆f)2

6 · 29M(m+ 1)5/2
.

In the second phase t > T0, we are able to control by ∆a the distance between a(t) and the726

weights a∗0(u(t)) that are the best approximation of f∗ by a piecewise affine function with subdivi-727

sion u(t). To show this, first note that the first term in (23) is smaller than ∆a
4 when728

3M
√
m+ 1 exp−

D
16 t 6

∆a

4
.

which is equivalent to729

t > log
(12M

√
m+ 1

∆a

)16

D
.

which is implied by t > T0. Furthermore, the second term in (23) is smaller than ∆a
4 because, by730

definition of D and by (3),731

217M3(m+ 1)3

D2
ε =

36 · 217M3(m+ 1)7

δ2
ε 6

62δ(∆f)2

219M(m+ 1)5/2
=

63∆a

210
6

∆a

4
.

Hence, for all T0 6 t < T ,732

‖a(t)− a∗η(u(t))‖ 6 ∆a

2
.
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Furthermore, note that the assumption of Lemma 7 applies for t < T since ∆(u(t)) > D
2 > 2η733

by (22). Therefore, by Lemma 7 and by (3),734

‖a∗η(u(t))− a∗0(u(t))‖ 6 24M
√
m+ 1

∆(u(t))
η

6
25M

√
m+ 1

D
η

=
25 · 6M(m+ 1)5/2

δ
η

6
6δ(∆f)2

216M(m+ 1)5/2

=
62∆a

27
6

∆a

2
.

By the triangular inequality, we deduce the upper bound that we were after, that is735

‖a(t)− a∗0(u(t))‖ 6 ∆a .

As in the proof of Proposition 3, we can now control the distance between the true dynamics and736

the one that we would have if the weights were equal to a∗0(u). Namely, for any T0 6 t 6 T and737

j ∈ {1, . . . ,m}, by Lemma 6 (which applies since ∆(u(t)) > 2η by (22)), we have738 ∣∣∣duj
dt

(t) +
∂Lη
∂uj

(a∗0(u(t)), u(t))
∣∣∣

=
∣∣∣∂Lη
∂uj

(a(t), u(t))− ∂Lη
∂uj

(a∗0(u(t)), u(t))
∣∣∣

6 2M(
√
m+ 1 + 1)‖a(t)− a∗0(u(t))‖+

√
m+ 1‖a(t)− a∗0(u(t))‖2 .

The first term is less than739

2M(
√
m+ 1 + 1)∆a =

(
√
m+ 1 + 1)D(∆f)2

28
√
m+ 1

6
D(∆f)2

27
,

and the second term is less than740

√
m+ 1(∆a)2 =

D2(∆f)4

218M2
√
m+ 1

6
D(∆f)2

216
,

using D 6 ∆(u(0)) 6 1, ∆f 6 2M and m + 1 > 1. Hence we obtain, for any T0 6 t 6 T and741

j ∈ {1, . . . ,m},742 ∣∣∣duj
dt

(t) +
∂Lη
∂uj

(a∗0(u(t)), u(t))
∣∣∣ 6 D(∆f)2

120
.

We are therefore in a situation very similar to the proof of Proposition 3, starting from (14). One743

can check that all the arguments used in the proof also apply here. On top of the estimate above that744

resembles (14), the crucial facts that make the argument of Proposition 3 work here are the bounds745

(26) and (27) as well as the fact that there are at least four neurons on each piece f at T0, which746

together are very similar to the conditions ensuring that u(0) is D-good in the proof of Proposition 3.747

Another key point is (25), ensuring that a time at least equal to 11T/12 remains after the first phase748

of this proof, which is enough time for the dynamics described in the proof of Proposition 3 to unfold.749

This yields that T < T , and that at time T , there is a neuron at distance less than η from each750

discontinuity of f∗. Furthermore, 3η 6 1
m+1 6 1

n 6 ∆v, hence Lemma 9 applies. Thus751 ∫ 1

0

(fη(x; a∗η(u(T )), u(T ))− f∗(x))2dx 6 6M2ηn 6
ξ

2
,

where the second upper bound comes from n 6 m+ 1 and from (3). Furthermore, by (24) and by752

Lemma 8,753

|Lη(a(T ), u(T ))− Lη(a∗η(u(T )), u(T ))| 6
√
m+ 1(6M(m+ 1) +M)‖a(T )− a∗η(u(T ))‖

6 16M(m+ 1)3/2‖a(T )− a∗η(u(T ))‖ .
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Let us show that this term is less than ξ/4. Recall that, by (23),754

‖a(T )− a∗η(u(T ))‖ 6 3M
√
m+ 1 exp−

D
16T +

217M3(m+ 1)3

D2
ε .

By definition of D and T , by using exp(−x) 6 1/x for x > 1 and by (3),755

16M(m+ 1)3/2 · 3M
√
m+ 1 exp−

D
16T = 48M2(m+ 1)2 exp

(
− δ

16(m+ 1)2(∆f)2ε

)
6

48 · 16M2(m+ 1)4(∆f)2

δ
ε

6
48(∆f)2δ

231M2(m+ 1)9/2
ξ

6
ξ

8

using ∆f 6 2M , δ 6 1, and m+ 1 > 1. Furthermore, by (3), we get that756

16M(m+ 1)3/2 · 217M3(m+ 1)3

D2
ε =

36 · 221M4(m+ 1)17/2

δ2
ε 6

ξ

8
.

We therefore obtain the sought ξ/4 upper-bound and can conclude that757 ∫ 1

0

(fη(x; a(T ), u(T ))− f∗(x))2dx 6
∫ 1

0

(fη(x; a∗η(u(T )), u(T ))− f∗(x))2dx

+ 2|Lη(a(T ), u(T ))− Lη(a∗η(u(T )), u(T ))|
6 ξ .

C Experimental details758

Setting Our code is available at [XXX]. To obtain Figures 3 and 4, we use the parameters of Table759

1. For Figure 5, we use the parameters of Table 2.760

Name Value
m 20
ε 2 · 10−5

η 4 · 10−3

P 1.8 · 108

h 10−5

Additive noise Uniform on [−1, 1]

Table 1: Parameters of Figures 3 and 4.

Name Value
m 20
ε 1
η 4 · 10−3

P 106

h 10−5

Additive noise Uniform on [−1, 1]

Table 2: Parameters of Figure 5.

The number of iterations in Table 1 is much larger than the one in Table 2, due to the fact that the761

positions u evolve at a speed εh, which is much smaller in Table 1. However, note that it is possible762
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to increase h in Table 1 while keeping the same behavior (in our experiment, h is kept to the same763

value as in Table 2 in order to facilitate the comparison). More precisely, taking h = 10−3 in Table 1764

yields similar results while dividing the computational cost by 100.765

Our target function is defined by f∗ = 1 on [0., 0.2], [0.35, 0.5], [0.65, 0.8], f∗ = 2 on [0.5, 0.65]766

and f∗ = 4 elsewhere.767

Additional plot We re-run the same SGD experiment as above twenty times, and plot the average768

L2 distance to the target as a function of ε, averaging over the initialization randomness and SGD769

randomness. This confirms that, in our setting, the SGD is able to recover the target function in the770

two-timescale regime (ε� 1), but fails outside of the two-timescale regime (ε = 1). The transition771

between the two regimes seems to occur for ε ≈ 0.1.772

Figure 7: L2 distance with the target as a function of ε, with 20 repeats
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