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Abstract

In these appendices, we give the detailed problem formulation and proof in the
problem analysis (Appendix A), present the proof of the proposed theoretical
results as well as their dependence structure (Figure 1 in Appendix B), provide
more details and results in the experiments (Appendix C), and discuss the potential
social impact and limitations of our work (Appendix D). Our main theoretical
results include:
• The instantaneous regret bound in full-information CBB Setting (see Ap-

pendix A.2).
• The instantaneous regret bound of our reward imputation approach (see Ap-

pendix B.1).
• The approximation properties of sketching which are necessary to achieve ap-

proximation error bound of the sketched ridge regression (See Appendix B.2).
• The approximation error bound of reward imputation using sketching (see

Appendix B.3).
• The regret bound of SPUIR (see Appendix B.4).
• The regret bounds of the extensions of SPUIR in Section “Extensions of

Our Approach”, including SPUIR-Exp, SPUIR-Poly, and SPUIR-Kernel (see
Appendix B.5).

A Detailed Problem Formulation and Proof in Problem Analysis

In this part, we give the detailed problem formulation and the detailed proof of Theorem 1 in problem
analysis in Section 2.

A.1 Detailed Problem Formulation of CBB

In this paper, we focus on the setting of contextual batched bandits (CBB), which can be formulated
as a 6-tuple 〈S,A, p, R,N,B〉:
Context space S ⊆ Rd means a vector space containing the context information received at each step,
e.g., context summarizes the information of both the user and items in recommendation scenarios.
∗Ninglu Shao and Zihua Si have made equal contributions to this paper.
†Corresponding author: Jun Xu.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Algorithm 1 Batch UCB Policy Updating in the (n+ 1)-th episode in Full-Information CBB Setting
INPUT: Policy pn, data buffer Dn+1, action space A = {Aj}j∈[M ], θ0Aj = 0, j ∈ [M ], batch size B
OUTPUT: Updated policy pn+1

1: Let L̃n ∈ R(n+1)B×d be the matrix that stores all the context vectors till the n-th episode as the row vectors

2: For ∀A ∈ A, let T̃ n
A ∈ R(n+1)B be the reward vector that stores all the rewards of action A ∈ A till the

n-th episode
3: // Policy Updating

4: Υn+1 ← L̃ᵀ
nL̃n

5: for all action A ∈ A do
6: θn+1

A ← (Id + Υn+1)
−1L̃ᵀ

nT̃
n
A

7: end for
8: For a new context s, pn+1(s) is to choose the action following: A← argmax

A∈A

〈
θn+1
A , s

〉
9: Return

{
θn+1
A

}
A∈A

Action space A = {Aj}j∈[M ] contains M candidate actions for execution. As an example, in
recommender systems, each action corresponds to a candidate item, and selecting an action means
that the corresponding item is recommended.
Policy p determines which action to take at each step, which is a function of the context s ∈ S and
outputs an action for execution (or a selection distribution over action space A).
Reward R in CBB is a partial-information feedback where rewards are unobserved for the non-
executed actions. Consider a stochastic bandit setting, where the expectation of the true reward is
assumed to be a function of the context s ∈ S. In particular, different from the shared expectation
function of true rewards in existing batch bandits (Han et al., 2020), we assume that the expectation
functions of true rewards are different for each action, where each expectation function corresponds
to an unknown parameter vector θ∗A ∈ Rd, A ∈ A. This setting for rewards matches many real-world
applications, e.g., each action corresponds to a different category of candidate coupons in coupon
recommendation.
Number of episodes N . The decision process in CBB is partitioned into N episodes. Within one
episode, the agent updates the policy using the collected data, and then interacts with the environment
for multiple steps using the updated and fixed policy.
Batch size B is the number of steps in each episode. That is, in each episode, the agent interacts with
the environment B times using a fixed policy, and stores the contexts, executed actions, and observed
rewards into a data buffer D at the end of each episode.

A.2 Detailed Description and Proof of Theorem 1 in Problem Analysis

We present some theoretical findings about the regret difference between the partial-information
feedback and the full-information feedback. Assuming that the agent in CBB setting can observe the
rewards of all the candidate actions from the environment at each step, we apply the batched UCB
policy (Han et al., 2020) to this setting (see Algorithm 1). We demonstrate an instantaneous regret
bound in Theorem A.1, where Theorem A.1 is a detailed version of Theorem 1 in Section 2.

Theorem A.1 (Instantaneous Regret Bound in Full-Information CBB Setting, Detailed Version of
Theorem 1). Let L̃n−1 ∈ RnB×d be the matrix that stores all the context vectors till the (n− 1)-th
episode as the row vectors, and T̃ n−1

A ∈ RnB be the reward vector that stores all the rewards of
action A ∈ A till the (n−1)-th episode. Given the action spaceA = {Aj}j∈[M ], in the n-th episode,
assume that the rewards are independent and bounded by CR. Then, with probability at least 1− δ,
for any b ∈ [B] and ∀A ∈ A, we have the following instantaneous regret bound in the n-th episode

|〈θnA, sn,b〉 − 〈θ∗A, sn,b〉| ≤
[
‖θ∗A‖2 +

√
2C2

R log(2MB/δ)

]√
sᵀn,b (Id + Υn)

−1
sn,b, (1)

where Υn = L̃ᵀ
n−1L̃n−1 and the parameter of reward model θnA in the batched UCB policy is

obtained by

θnA := arg min
θ∈Rd

∥∥∥L̃n−1θ − T̃ n−1
A

∥∥∥2

2
+ ‖θ‖22 = (Id + Υn)

−1
L̃ᵀ
n−1T̃

n−1
A .
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Further, the instantaneous regret bound (1) in FI-CBB setting is tighter than that in CBB setting (i.e.,

using the partial-information feedback). In particular, the variance term
√
sᵀn,b (Id + Υn)

−1
sn,b is

smaller than that in CBB setting.

Proof of Theorem A.1. By the formulation of θnA and the triangle inequality, we first obtain that

|〈θnA, sn,b〉 − 〈θ∗A, sn,b〉|

=
∣∣∣sᵀn,b (Id + Υn)

−1
L̃ᵀ
n−1T̃

n−1
A − sᵀn,bθ

∗
A

∣∣∣
=
∣∣∣sᵀn,b (Id + Υn)

−1
[
L̃ᵀ
n−1T̃

n−1
A − (Id + Υn)θ∗A

]∣∣∣
=
∣∣∣sᵀn,b (Id + Υn)

−1
[
L̃ᵀ
n−1T̃

n−1
A −

(
Id + L̃ᵀ

n−1L̃n−1

)
θ∗A

]∣∣∣
=
∣∣∣sᵀn,b (Id + Υn)

−1
L̃ᵀ
n−1

(
T̃ n−1
A − L̃n−1θ

∗
A

)
− sᵀn,b (Id + Υn)

−1
θ∗A

∣∣∣
≤
∣∣∣sᵀn,b (Id + Υn)

−1
L̃ᵀ
n−1

(
T̃ n−1
A − L̃n−1θ

∗
A

)∣∣∣+
∣∣∣sᵀn,b (Id + Υn)

−1
θ∗A

∣∣∣

(2)

Next, we bound the two terms in the last row of (2).

Bounding
∣∣∣sᵀn,b (Id + Υn)

−1
L̃ᵀ
n−1

(
T̃ n−1
A − L̃n−1θ

∗
A

)∣∣∣:
Since E

[
T̃ n−1
A

]
= L̃n−1θ

∗
A and the received rewards are independent, by the Azuma-Hoeffding

bound, we have

Pr

{∣∣∣sᵀn,b (Id + Υn)
−1
L̃ᵀ
n−1

(
T̃ n−1
A − L̃n−1θ

∗
A

)∣∣∣ ≥ ν√sᵀn,b (Id + Υn)
−1
sn,b

}
≤ 2 exp

{
−

ν2sᵀn,b (Id + Υn)
−1
sn,b

2C2
R‖L̃n−1 (Id + Υn)

−1
sn,b‖22

}
,

(3)

where ν > 0 is some constant. Since

‖L̃n−1 (Id + Υn)
−1
sn,b‖22 = sᵀn,b (Id + Υn)

−1
L̃ᵀ
n−1L̃n−1 (Id + Υn)

−1
sn,b

≤ sᵀn,b (Id + Υn)
−1
(
Id + L̃ᵀ

n−1L̃n−1

)
(Id + Υn)

−1
sn,b

≤ sᵀn,b (Id + Υn)
−1

(Id + Υn) (Id + Υn)
−1
sn,b

= sᵀn,b (Id + Υn)
−1
sn,b,

combing with (3) implies the following results

Pr

{∣∣∣sᵀn,b (Id + Υn)
−1
L̃ᵀ
n−1

(
T̃ n−1
A − L̃n−1θ

∗
A

)∣∣∣ ≥ ν√sᵀn,b (Id + Υn)
−1
sn,b

}
≤ 2 exp

{
− ν2

2C2
R

}
.

(4)

Combing (4) with the union bound, yields that, with probability at least 1− δ, for any b ∈ [B] and
∀A ∈ A, ∣∣∣sᵀn,b (Id + Υn)

−1
L̃ᵀ
n−1

(
T̃ n−1
A − L̃n−1θ

∗
A

)∣∣∣ ≤ ν√sᵀn,b (Id + Υn)
−1
sn,b, (5)

where the failure probability is

δ = 2MB exp

{
− ν2

2C2
R

}
,

yielding that ν =
√

2C2
R log(2MB/δ).

Bounding
∣∣∣sᵀn,b (Id + Υn)

−1
θ∗A

∣∣∣:
3



Since Υn is positive semi-definite, combining with the Hölder inequality, we obtain∣∣∣sᵀn,b (Id + Υn)
−1
θ∗A

∣∣∣ ≤ ‖θ∗A‖2 ∥∥∥(Id + Υn)
−1
sn,b

∥∥∥
2

= ‖θ∗A‖2
√
sn,b (Id + Υn)

−1
(Id + Υn)

−1
sn,b

≤ ‖θ∗A‖2
√
sn,b (Id + Υn)

−1
(Id + Υn) (Id + Υn)

−1
sn,b

= ‖θ∗A‖2
√
sn,b (Id + Υn)

−1
sn,b.

(6)

Combing (5) and (6) concludes the proof.

Similarly to the proof of (19), we can obtain that the variance term in full-information setting is
smaller than that in partial-information setting.

B Detailed Proofs in Theoretical Analysis

In this section, we provide the instantaneous regret bound in each episode, prove the approximation
error of sketching, and analyze the regret for policy updating in CBB setting. Figure 1 describes the
dependence structure of our theoretical results.

Regret Bound 
of SPUIR

Approximation Properties 
of Sketching

Approximation Error Bound 
of Reward Imputation

Instantaneous Regret 
Bound

Regret Bounds of 
Extensions of SPUIR

Figure 1: The dependence structure of our theoretical results, where the proof of instantaneous regret
bound (Theorem 2 in the manuscript) is provided in Appendix B.1, the analysis of approximation
properties of sketching (Theorem B.1) is given in Appendix B.2, the approximation error bound of
reward imputation (Theorem 3 in the manuscript) is proven in Appendix B.3, the regret of SPUIR
(Theorem 4 in the manuscript) is analyzed in Appendix B.4, and the regret bounds of the extensions
of SPUIR (Corollary B.1) are provided in Appendix B.5

B.1 Proof of Theorem 2

Before we provide the detailed proof of Theorem 2 in the manuscript, we first demonstrate a lemma
about the convergence and monotonicity of the sum of functions, which is the main tool for analyzing
the additional bias of reward imputation.
Lemma B.1 (Convergence and Monotonicity). Let f(n) =

∑n
j=1 a

n−j · g(j), where a ∈ (0, 1) and
n is a positive integer. Then,

1) when g(j) is convergent, the limit limn→∞ f(n) exists. Moreover,

lim
n→∞

f(n) =
1

1− a
lim
n→∞

g(n). (7)
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2) f(n) is a monotonic decreasing function if and only if g(j) satisfies, for any positive integer j ≥ 2,

g(j) ≤

(j − 1)aj−1g(1) a = 1/2,
(1− a)

[
aj−1 − (1− a)j−1

]
2a− 1

g(1) a 6= 1/2.
(8)

Proof of Lemma B.1. Letting b(j) = a−j · g(j),∀j ∈ [n], and S(n) =
∑n
j=1 b(j), f(n) can be

rewritten as f(n) = anS(n).

1) Rewriting f(n) = S(n)/a−n, from the Stolz’s theorem, we have

lim
n→∞

f(n) = lim
n→∞

S(n)− S(n− 1)

a−n − a−(n−1)

= lim
n→∞

b(n)

a−n − a−(n−1)

= lim
n→∞

a−n · g(n)

a−n − a−(n−1)

=
1

1− a
lim
n→∞

g(n).

2) The condition that f(·) is a monotonic decreasing function is equivalent to the following condition:
for any positive integer n,

f(n+ 1) ≤ f(n)⇔ an+1S(n+ 1) ≤ anS(n)

⇔ a[S(n) + b(n+ 1)] ≤ S(n)

⇔ b(n+ 1) ≤ (1/a− 1)S(n). (9)

From the equivalent condition (9), we obtain the following recursion formula:

b(n+ 1) ≤ (1/a− 1)S(n)

b(n) ≤ (1/a− 1)

n−1∑
j=1

b(j)

...
b(3) ≤ (1/a− 1) [b(1) + b(2)]

b(2) ≤ (1/a− 1) b(1),

yielding that, for any positive integer j ≥ 2,

b(j) ≤
[
(1/a− 1) + (1/a− 1)2 + · · ·+ (1/a− 1)j−1

]
b(1). (10)

From (10) , for a 6= 1/2,

b(j) ≤
(1/a− 1)

[
1− (1/a− 1)j−1

]
1− (1/a− 1)

b(1) =
(1− a)

[
1− (1/a− 1)j−1

]
2a− 1

b(1), (11)

and substituting the definition of b(j) into (11) yields the equivalent condition

g(j) ≤
(1− a)

[
1− (1/a− 1)j−1

]
2a− 1

aj−1 g(1).

For a = 1/2, we have the condition b(j) ≤ (j − 1)b(1), which is equivalent to

a−j · g(j) ≤ (j − 1)a−1 · g(1) ⇔ g(j) ≤ (j − 1)aj−1g(1).

Next, we provide the detailed proof of Theorem 2 in the manuscript.
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Proof of Theorem 2. From the formulation of θ̄nA and the triangle inequality, we can obtain that, for
each action A ∈ A,∣∣〈θ̄nA, sn,b〉− 〈θ∗A, sn,b〉∣∣

=
∣∣∣sᵀn,b (Ψn

A)
−1
(
bnA + γb̂nA

)
− sᵀn,bθ

∗
A

∣∣∣
=
∣∣∣sᵀn,b (Ψn

A)
−1
[(
Ln−1
A

)ᵀ
T n−1
A + γ

(
L̂n−1
A

)ᵀ
T̂ n−1
A −Ψn

Aθ
∗
A

]∣∣∣
=
∣∣∣sᵀn,b (Ψn

A)
−1
[(
Ln−1
A

)ᵀ
T n−1
A + γ

(
L̂n−1
A

)ᵀ
T̂ n−1
A −

(
λId + Φn

A + γΦ̂n
A

)
θ∗A

]∣∣∣
=
∣∣∣sᵀn,b (Ψn

A)
−1
{(
Ln−1
A

)ᵀ
T n−1
A + γ

(
L̂n−1
A

)ᵀ
T̂ n−1
A −[

λId +
(
Ln−1
A

)ᵀ
Ln−1
A + γ

(
L̂n−1
A

)ᵀ
L̂n−1
A

]
θ∗A

}∣∣∣
=
∣∣∣sᵀn,b (Ψn

A)
−1 (

Ln−1
A

)ᵀ (
T n−1
A −Ln−1

A θ∗A
)
− λsᵀn,b (Ψn

A)
−1
θ∗A+

sᵀn,b (Ψn
A)
−1
γ
(
L̂n−1
A

)ᵀ (
T̂ n−1
A − L̂n−1

A θ∗A

)∣∣∣
≤
∣∣∣sᵀn,b (Ψn

A)
−1 (

Ln−1
A

)ᵀ (
T n−1
A −Ln−1

A θ∗A
)∣∣∣︸ ︷︷ ︸

X
(1)
A

+λ
∣∣∣sᵀn,b (Ψn

A)
−1
θ∗A

∣∣∣︸ ︷︷ ︸
X

(2)
A

+

∣∣∣sᵀn,b (Ψn
A)
−1
γ
(
L̂n−1
A

)ᵀ (
T̂ n−1
A − L̂n−1

A θ∗A

)∣∣∣︸ ︷︷ ︸
X

(3)
A

.

Next, we bound X(1)
A , X(2)

A , and X(3)
A . For convenience, we drop all the superscripts and subscripts

about n and b. Similarly to the proof of Theorem 1, we bound X(1)
A + X

(2)
A as follows: with

probability at least 1− δ,

X
(1)
A +X

(2)
A ≤ (λ‖θ∗A‖2 + ν)

√
sᵀΨ−1

A s, (12)

where ν =
√

2C2
R log(2MB/δ). For X(3)

A , using the Cauchy-Schwarz inequality, we have

X
(3)
A ≤ γ

∥∥∥L̂AΨ−1
A s

∥∥∥
2

∥∥∥T̂A − L̂Aθ∗A∥∥∥
2

=
√
γ

√
sᵀΨ−1

A

(
γL̂ᵀ

AL̂A

)
Ψ−1
A s

∥∥∥T̂A − L̂Aθ∗A∥∥∥
2

≤ √γ
√
sᵀΨ−1

A s
∥∥∥T̂A − L̂Aθ∗A∥∥∥

2
.

(13)

Now we need to bound the term
∥∥∥T̂A − L̂Aθ∗A∥∥∥

2
. Since using the discount parameter η ∈ (0, 1) is

equivalent to multiplying both the imputed contexts and the imputed rewards by the parameter
√
η in

each episode, we have, in the n-th episode,∥∥∥T̂ n−1
A − L̂n−1

A θ∗A

∥∥∥
2

=
∥∥∆η

n−1

∥∥
2
, (14)

where ∆η
n−1 = {η(n−i−1)/2 IRi,b}i∈[n−1],b∈[B] denotes an exponential-decay vector of the in-

stantaneous regrets, and IRi,b denotes the instantaneous regret at step b in the i-th episode, i.e,
IRi,b =

∣∣〈θ̄iA, si,b〉− 〈θ∗A, si,b〉∣∣. From (14), letting

CIRi =
∑
b∈[B]

IRi,b (15)
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be the cumulative instantaneous regret in the i-th episode, we can obtain the upper bound of (14) as
follows: ∥∥∥T̂ n−1

A − L̂n−1
A θ∗A

∥∥∥
2

=
∥∥∆η

n−1

∥∥
2

≤
∥∥∆η

n−1

∥∥
1

=
∑

i∈[n−1],b∈[B]

∣∣∣η(n−i−1)/2 IRi,b

∣∣∣
=

∑
i∈[n−1]

η(n−i−1)/2 CIRi

= η−
1
2 fImp(n),

(16)

where
fImp(n) :=

∑
i∈[n−1]

(
√
η)
n−i

CIRi. (17)

From monotone bounded theorem, we have that the limit of CIRi exists. From (7) in Lemma B.1, we
get that fImp(n) is convergent and then has an upper bound. We denotes the upper bound of fImp(n)
by CImp > 0, and then from (16) we have∥∥∥T̂ n−1

A − L̂n−1
A θ∗A

∥∥∥
2
≤ η− 1

2CImp. (18)

Substituting (18) into (13) yields the upper bound of X(3)
A .

Then, we prove that √
sᵀ (Ψn

A)
−1
s ≤

√
sᵀ (λId + Φn

A)
−1
s. (19)

holds, which is equivalent to

sᵀ
(
λId + Φ + γΦ̂

)−1

s ≤ sᵀ (λId + Φ)
−1
s. (20)

Letting Θ = λId + Φ, by Sherman-Morrison-Woodbury formula, we have(
Θ + γΦ̂

)−1

=
(
Θ + γŜᵀŜ

)−1

= Θ−1 − γΘ−1Ŝᵀ
(
Id + γŜΘ−1Ŝᵀ

)−1

ŜΘ−1

= Θ−1 −Θ−1Ŝᵀ

(
Id
γ

+ ŜΘ−1Ŝᵀ

)−1

ŜΘ−1,

(21)

yielding that (20) is equivalent to
sᵀΓs ≥ 0, (22)

where
Γ = Θ−1Ŝᵀ

(
Id/γ + ŜΘ−1Ŝᵀ

)−1

ŜΘ−1.

Let S = UdΣ
1/2
d V ᵀ

d , Ŝ = ÛdΣ̂
1/2
d V̂ ᵀ

d be the Singular Value Decomposition (SVD) of S and Ŝ,
respectively. Note that Φ = VdΣdV

ᵀ
d , Φ̂ = V̂dΣ̂dV̂

ᵀ
d . We can obtain that Γ is a square symmetric

positive semi-definite matrix, since Γ can be decomposed into

Γ = QᵀQ,

where PγΛγP
ᵀ
γ is the SVD of Id/γ + ŜΘ−1Ŝᵀ and

Q = Λ−1/2
γ P ᵀ

γ ŜΘ−1.

Thus, (22) holds, yielding that (20) also holds.

Finally, we prove that a larger imputation rate γ leads to a smaller variance term
√
sᵀ (Ψ)

−1
s. From

(21), the variance term can be represented as follows:√
sᵀ (Ψ)

−1
s =

[
sᵀΘ−1s− sᵀΘ−1ŜᵀM−1

γ ŜΘ−1s
]1/2

, (23)

7



where Mγ = Id/γ + ŜΘ−1Ŝᵀ. Letting Mγ = UMγΛMγU
ᵀ
Mγ

be the SVD of Mγ , and z =

Uᵀ
Mγ
ŜΘ−1s, from (23) we can written the variance term as follows:√

sᵀ (Ψ)
−1
s =

[
sᵀΘ−1s− zᵀΛ−1

Mγ
z
]1/2

. (24)

In (24), we can observed that

zᵀΛMγ
z = ‖(ΛMγ

)−1/2z‖22 ∈
[

1

σmax(M) + 1/γ
‖z‖22,

1

σmin(M) + 1/γ
‖z‖22

]
,

where M = ŜΘ−1Ŝᵀ, which indicates that a larger imputation rate γ leads to a smaller variance
term.

Finally, we provide a deeper understanding of the additional bias in Theorem 2 in the manuscript.

Remark B.1 (Controllable Bias). Our reward imputation approach incurs a bias term γ
1
2 η−

1
2CImp

in addition to the two bias terms λ‖θ∗A‖2 and ν that exist in every UCB-based policy. But this
additional bias term is controllable due to the presence of imputation rate γ that can help controlling
the additional bias. Moreover, from the proof of (16), we can obtain that, the term CImp in the
additional bias can be replaced by a function fImp(n) (defined in (17)), and the additional bias term
turns out to be γ

1
2 η−

1
2 fImp(n). Since fImp(n) has the same functional form as the function f(n)

in Lemma B.1, we can find the conditions that fImp(n) is monotonic decreasing following (8) in
Lemma B.1. Specifically, letting CIRi be the cumulative instantaneous regret in the i-th episode
defined in (15),

1) when
√
η 6= 1/2, the condition of a monotonic decreasing function fImp(·) is equivalent to, for

any positive integer i ≥ 2,

CIRi ≤
(1−√η)

[√
ηi−1 − (1−√η)i−1

]
2
√
η − 1

CIR1,

indicating that the regret after N episodes satisfies

∑
2≤i≤N

CIRi ≤ CIR1

∑
2≤i≤N

(1−√η)
[√

ηi−1 − (1−√η)i−1
]

2
√
η − 1

= CIR1

1−√η
2
√
η − 1

∑
2≤i≤N

[√
η
i−1 − (1−√η)i−1

]
= CIR1

1
√
η(2
√
η − 1)

[
2
√
η − 1 + (1−√η)N+1 − (

√
η)N+1

]
= CIR1

1
√
η

[
1 +

(1−√η)N+1 − (
√
η)N+1

2
√
η − 1

]
. (25)

2) for the case
√
η = 1/2, the condition of a monotonic decreasing function fImp(·) is equivalent to

CIRi ≤ (i− 1)(
√
η)i−1CIR1 for any positive integer i ≥ 2, indicating that the regret after N

episodes satisfies∑
2≤i≤N

CIRi ≤ CIR1

∑
2≤i≤N

(i− 1)(
√
η)i−1

=

√
η

(1−√η)2
CIR1 −

[
1

(1−√η)2
+

N − 1

1−√η

]
(
√
η)NCIR1

=

(
2− 1 +N

2N−1

)
CIR1

=

[
1
√
η
− (1 +N)

√
η
N−1

]
CIR1. (26)
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From (25) and (26), we can conclude that a monotonic decreasing function fImp(·) indicates the
upper bound of regret after N episodes is of order O(CIR1/

√
η). The conclusion also indicates that

setting the discount parameter as
√
η = Θ(CIR1/N) achieves a O(N) regret bound (i.e., a Õ(

√
dT )

regret bound following Remark 3). Note that setting the discount parameter as
√
η = Θ(CIR1/N)

is a mild condition, since the cumulative instantaneous regret CIR1 is typically of order O(B)

(B = O(
√
T/d) in Remark 3) yielding that

√
η = Θ(d−1). Overall, since a larger imputation

rate γ leads to a smaller variance while increasing the bias (variance analysis can be found in
Remark 2), γ controls a trade-off between the bias term and the variance term. When fImp is a
monotonic decreasing function w.r.t. number of episodes n, the additional bias term γ

1
2 η−

1
2 fImp(n)

can be easily controlled, e.g., gradually increasing γ with the number of episodes, avoiding the large
bias from fImp(n) at the beginning of reward imputation. We design a rate-scheduled approach for
choosing the imputation rate γ in Section 5.
Remark B.2 (Relationship to Exploration and Exploitation Trade-off). Exploration-exploitation
dilemma is the key challenge in online learning under bandit settings. In the full-information setting,
agent (e.g., UCB policy) can observe the rewards from all the actions, and thus does not need to
consider the problem of exploring the feedback mechanisms, and achieves a lower variance part in
the regret upper bound (Theorem A.1). Along this line, our reward computation approach is proposed
to approximate the setting of full-information feedback, which somewhat relaxes the explore/exploit
dilemma and also brings a lower variance part and a controllable additional bias part in the regret.
Extra information that pushes the policy towards exploitation and away from exploration comes
from the estimated reward structures of the non-executed actions maintained in each episode, and
the proposed reward imputation can be seen as an effective and efficient tool to capture this extra
information.

B.2 Approximation Properties of Sketching

Although some error bounds of approximation using SJLT have been proposed (Nelson and Nguyên,
2013; Kane and Nelson, 2014; Bourgain et al., 2015), it is still unknown what is the lower bound
of the sketch size while applying SJLT to the sketched ridge regression problem in our SPUIR. To
address this issue, we first prove two approximation properties of SJLT which are necessary to achieve
approximation error bound of the sketched ridge regression using SJLT. For convenience, we drop all
the superscripts and subscripts in these theoretical results.
Lemma B.2 ((Nelson and Nguyên, 2013)). Let U ∈ RL×d be a matrix with orthonormal columns,
Π ∈ Rc×L the SJLT. Assuming that D = Θ(ε−1

σ log3(dδ−1
0 )) for Π, εσ ∈ (0, 1) and d ≤ c, with

probability at least 1− δ0 all singular values of ΠU

σi(ΠU) = 1± εσ, i ∈ [d],

as long as

c ≥
d log8

(
dδ−1

0

)
ε2
σ

.

Further, this holds if the hash function h and σ defining the Π is Ω
(
log(dδ−1

0 )
)
-wise independent.

Theorem B.1 (Approximation Properties of SJLT). Let U ∈ RL×d be a matrix with orthonormal
columns, andA be a matrix of any proper size. If Π ∈ Rc×L is the SJLT satisfying the assumptions
in Lemma B.2, and d ≤ c ≤ L, then Π has the following two properties:

1) Subspace embedding property: set c = Ω
(
d polylog

(
dδ−1

s

)
/ε2

s

)
, for εs ∈ (0, 1), with probabili-

ty at least 1− δs,
‖UᵀΠᵀΠU − Id‖2 ≤ εs;

2) Matrix multiplication property: set c = Ω(d/(εmδm)), for εm ∈ (0, 1), with probability at least
1− δm,

‖UᵀΠᵀΠA−UᵀA‖2F ≤ εm‖A‖2F.

Proof of Theorem B.1. 1) From Lemma B.2, by setting c = Ω
(
d polylog

(
dδ−1

s

)
/ε2

0

)
, we can

obtain the upper bounds of eigenvalues: with probability at least 1− δs,
λi (UᵀΠᵀΠU) = σ2

i (ΠU) ∈ [(1− εσ)2, (1 + εσ)2] ⊆ [1− 2εσ, 1 + 3εσ], (27)
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which yields that
|λi (UᵀΠᵀΠU − Id)| ≤ 3εσ. (28)

(29) is equivalent to
‖UᵀΠᵀΠU − Id‖2 ≤ 3εσ.

Letting εs = 3εσ and εσ ∈ (0, 1/3) yields the subspace embedding property.

2) From Lemma 1 in (Zhang and Liao, 2019), we have

E
[
‖UᵀΠᵀΠA−UᵀA‖2F

]
≤ 2

c
‖U‖2F‖A‖2F =

2d

c
‖A‖2F. (29)

Combining (29) with the Markov’s inequality, we obtain that, with probability at least 1− δm,

‖UᵀΠᵀΠA−UᵀA‖2F ≤
2d

δmc
‖A‖2F.

Letting εm =
2d

δmc
yields the matrix multiplication property.

B.3 Proof of Theorem 3

Next, using the approximation properties of SJLT in Theorem B.1, we prove that the objective
function value of the imputation regularized ridge regression problem for reward imputation can be
approximated well with a relative-error bound. Moreover, we prove that the solution solving the
sketched ridge regression problem for reward imputation is also a good approximation of the solution
solving the imputation regularized ridge regression. The following theorem is a detailed version of
Theorem 3.
Theorem B.2 (Approximation Error Bound of Imputation using Sketching, Detailed Version of
Theorem 3). Let γ ∈ [0, 1] be the imputation rate, λ > 0 the regularization parameter, Π ∈ Rc×L

and Π̂ ∈ Rc×L̂ be the SJLT, and L ∈ RL×d, L̂ ∈ RL̂×d,T ∈ RL, T̂ ∈ RL̂,θ ∈ Rd. Denote the
imputation regularized ridge regression function F and sketched ridge regression function F S for
reward imputation by

F (θ) = ‖Lθ − T ‖22 + γ
∥∥∥L̂θ − T̂∥∥∥2

2
+ λ‖θ‖22,

F S(θ) = ‖Π (Lθ − T )‖22 + γ
∥∥∥Π̂(L̂θ − T̂)∥∥∥2

2
+ λ‖θ‖22,

and the solutions of these regression problems by

θ̄ = arg min
θ∈Rd

F (θ) and θ̃ = arg min
θ∈Rd

F S(θ).

Let δ ∈ (0, 0.1], ε ∈ (0, 1), ρλ = ‖Lall‖22/(‖Lall‖22 + λ). For Π and Π̂, assuming that D =
Θ(ε−1 log3(dδ−1)) and

c = Ω
(
d polylog

(
dδ−1

)
/ε2
)
,

with probability at least 1− δ,
F (θ̃) ≤ (1 + ρλε)F (θ̄), (30)

‖θ̃ − θ̄‖2 ≤

√
ρλεF

(
θ̄
)

σmin

(
Lλall

) , (31)

where Lλall =
[
L;
√
γL̂;
√
λId

]
∈ R(L+L̂+d)×d. Furthermore, if there is a constant fraction of the

norm of T 0
all lies in the column space of Lλall, then (31) can be strengthened. Formally, assuming

that a mild structural assumption on the context matrix and the reward vector is satisfied, i.e.,
‖UallU

ᵀ
allT

0
all‖2 ≥ ξ‖T 0

all‖2 with a constant ξ ∈ (0, 1], then with probability at least 1− δ,

‖θ̃ − θ̄‖2 ≤
(
κ(Lλall)

√
ξ−2 − 1

)√
ρλε‖θ̄‖2, (32)

where κ(A) denotes the condition number of A, T 0
all = [T ; T̂ ; 0d] ∈ R(L+L̂+d), and Lλall =

UallΣallV
ᵀ

all is the SVD of Lλall.
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Proof of Theorem B.2. We first introduce some more notation of block matrices that will simplify
the proof of the theorem:

Πall =

(
Π O

O Π̂

)
, Lall =

(
L
√
γL̂

)
, Tall =

(
T

T̂

)
. (33)

Then the regression functions can be rewritten as follows:

F (θ) = ‖Lallθ − Tall‖22 + λ‖θ‖22, F S(θ) = ‖Πall (Lallθ − Tall)‖22 + λ‖θ‖22.

Obviously, Πall is still an SJLT. Combining Theorem B.1 with theorem 19 in (Wang et al., 2017), we
can obtain, setting

c = Ω
(
max{d polylog

(
dδ−1

s

)
/ε2

s , d/(εmδm)}
)
,

with probability at least 1− (δs + δm),

F (θ̃)− F (θ̄) ≤ ρλτF (θ̄), (34)

where ρλ =
‖Lall‖22
‖Lall‖22+λ

and τ =
2 max{ε2s ,εm}

1−εs . Letting εs = εm := ε0, (34) can be rewritten as

F (θ̃)− F (θ̄) ≤ 2ρλε0

1− ε0
F (θ̄), (35)

Assuming that δs = δm := δ/2 ∈ (0, 0.1] and ε0 ∈ (0, 1/3), setting ε = 2ε0
1−ε0 ∈ (0, 1), from (35)

we obtain the upper bound (30).

Next, we bound the difference between the solutions solving the sketched ridge regression problem
and the original regression problem. Since σ2

min(A)‖x‖22 ≤ ‖Ax‖22 for any A and x with proper
sizes, we have

σ2
min(Lall)‖θ̃ − θ̄‖22 ≤

∥∥∥Lall(θ̃ − θ̄)
∥∥∥2

2
. (36)

The key ingredient of bounding ‖θ̃−θ̄‖2 is to bound ‖Lall(θ̃−θ̄)‖2. LetLλall =
[
L;
√
γL̂;
√
λId

]
∈

R(L+L̂+d)×d, T 0
all = [T ; T̂ ; 0d] ∈ R(L+L̂+d), Lλall = UallΣallV

ᵀ
all be the SVD of Lλall, and denote a

matrix with orthonormal columns by U⊥all ∈ R(L+L̂+d)×(L+L̂) which satisfies

UallU
ᵀ
all +U⊥all(U

⊥
all)

ᵀ = IL+L̂+d and Uᵀ
allU

⊥
all = O.

Then, we can rewrite the solution θ̄ as follows:

θ̄ = arg min
θ∈Rd

F (θ) = arg min
θ∈Rd

∥∥Lλallθ − T 0
all

∥∥2

2

= (Lλall)
†T 0

all = VallΣ
−1
allU

ᵀ
allT

0
all,

which yields that
T 0

all −Lλallθ̄ = T 0
all −LλallVallΣ

−1
allU

ᵀ
allT

0
all

= T 0
all −UallΣallV

ᵀ
allVallΣ

−1
allU

ᵀ
allT

0
all

= T 0
all −UallU

ᵀ
allT

0
all

= U⊥all(U
⊥
all)

ᵀ
T 0

all.

(37)

Thus, T 0
all − Lλallθ̄ is orthogonal to Uall, and consequently to Lλall(θ̃ − θ̄), and we can obtain the

following equality by Pythagoras’s theorem:∥∥∥Lλall(θ̃ − θ̄)
∥∥∥2

2
=
∥∥∥Lλallθ̃ − T 0

all

∥∥∥2

2
−
∥∥Lλallθ̄ − T 0

all

∥∥2

2
. (38)

Combining (38) with (30) yields that∥∥∥Lλall(θ̃ − θ̄)
∥∥∥2

2
= F (θ̃)− F (θ̄) ≤ ρλεF (θ̄). (39)

Substituting (39) into (36) concludes the proof of (31).
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If we make a mild structural assumption on the context matrix and the reward vector, we can provide a
stronger bound of ‖θ̃ − θ̄‖2. Specifically, assuming that ‖UallU

ᵀ
allT

0
all‖2 ≥ ξ‖T 0

all‖2 with a constant
ξ ∈ (0, 1], from (37) and Pythagoras’s theorem we have

F (θ̄) = ‖Lλallθ̄ − T 0
all‖22

= ‖T 0
all‖22 − ‖UallU

ᵀ
allT

0
all‖22

≤ (ξ−2 − 1)‖UallU
ᵀ
allT

0
all‖22

= (ξ−2 − 1)‖Lλallθ̄‖22
≤ (ξ−2 − 1)‖Lλall‖22 ‖θ̄‖22
≤ (ξ−2 − 1)σ2

max(Lλall)‖θ̄‖22.

(40)

Combining (40) with (31) yields (32).

B.4 Proof of Theorem 4

Proof of Theorem 4. In our sketched policy, letting Cmax
θ∗ = maxA∈A ‖θ∗A‖2, CImp > 0, ν =√

2C2
R log(2MB/δ), and

ω = λCmax
θ∗ + ν + γ

1
2 η−

1
2CImp,

from Theorem 2 we obtain that∣∣〈θ̄nA, sn,b〉− 〈θ∗A, sn,b〉∣∣ ≤ ω√sᵀn,b (Ψn
A)
−1
sn,b. (41)

Before proving the upper bound of
∣∣∣〈θ̃nA, sn,b〉− 〈θ∗A, sn,b〉∣∣∣, we need to provide a technical tool

as follows. For convenience, we also drop all the superscripts and subscripts. The goal is to find a
constant Cα such that √

sᵀΨ−1s ≤ Cα
√
sᵀW−1s, (42)

which is equivalent to the condition that the matrix C2
αW

−1−Ψ−1 is positive semidefinite. Let Lall

and Πall be the matrices defined in (33), Lall = ŨallΣ̃allṼ
ᵀ

all be the SVD of Lall, and σ̃1 ≥ σ̃2 · · · ≥
σ̃d be the singular values of Lall. Then the i-th eigenvalue of Ψ−1 = (λId +Lᵀ

allLall)
−1 can be rep-

resented as λi(Ψ−1) = 1/(σ̃2
i +λ), and the i-th eigenvalue ofW−1 = (λId +Lᵀ

allΠ
ᵀ
allΠallLall)

−1

is λi(W−1) = 1/(λ̂i + λ), where λ̂i is the i-th eigenvalue of Σ̃allŨ
ᵀ
allΠ

ᵀ
allΠallŨallΣ̃all.

From the Lidskii’s theorem and (27), we have

λ̂i ∈ [σ̃2
d(1− 2εσ), σ̃2

1(1 + 3εσ)]. (43)

Assuming that the positive semi-definiteness of C2
αW

−1 − Ψ−1 is satisfied, we obtain that
C2
αλi(W

−1)− λi(Ψ−1) ≥ 0 for i ∈ [d], and combining this inequality with (43) yields that

Cα =
√

[σ̃2
1(1 + 3εσ) + λ]/(σ̃2

d + λ).

From the proof of Theorem B.1 and Theorem 3, we can obtain that εσ = ε/(6 + 3ε), yielding that

Cα =

√
σ̃2

1 [1 + ε/(2 + ε)] + λ

σ̃2
d + λ

,

which decreases with increase of 1/ε. Similarly to the proof of Cα satisfying (42), we can obtain that
√
sᵀW−1s ≤ Creg

√
sᵀΨ−1s, (44)

provided that

Creg =

√
σ̃2

1 + λ

σ̃2
d[1− 2ε/(6 + 3ε)] + λ

.

Obviously, Creg also decreases with increase of 1/ε.
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Then, letting α = ωCα, from (41) and (42) we have∣∣∣〈θ̃nA, sn,b〉− 〈θ∗A, sn,b〉∣∣∣ ≤ ∣∣∣〈θ̃nA, sn,b〉− 〈θ̄nA, sn,b〉∣∣∣+
∣∣〈θ̄nA, sn,b〉− 〈θ∗A, sn,b〉∣∣

≤
∣∣∣〈θ̃nA − θ̄nA, sn,b〉∣∣∣+ ω

√
sᵀn,b (Ψn

A)
−1
sn,b

≤ Yn,b + α
√
sᵀn,b (W n

A)
−1
sn,b,

(45)

where Yn,b denotes the upper bound of
∣∣∣〈θ̃nA − θ̄nA, sn,b〉∣∣∣ for any A ∈ A.

Next, using the compatibility of norm, we give a specific representation of the sum of Yn,b as follows:

∑
b∈[B]

Yn,b = max
A∈A
‖SnA(θ̃nA − θ̄nA)‖1 ≤ max

A∈A
‖SnA‖1‖θ̃nA − θ̄nA‖1 ≤ max

A∈A
‖SnA‖1

√
d‖θ̃nA − θ̄nA‖2.

(46)
Further, we give a more specific upper bound in (46) under mild structural assumption in Theorem 3.
Let κmax

all denote the maximum of the condition numbers of Lλall(A,n) for A ∈ A, n ∈ [N ], and

Lλall(A,n) =
[
LnA;
√
γL̂nA;

√
λId

]
, and Uall(A,n) be the left singular matrix of Lλall(A,n). Letting

T 0
all(A,n) = [T nA ; T̂ nA ; 0d], assuming that ‖Uall(A,n)Uall(A,n)ᵀT 0

all(A,n)‖2 ≥ ξ‖T 0
all(A,n)‖2

with a constant ξ ∈ (0, 1], substituting the upper bound (32) in Theorem 3 into (46) yields that∑
b∈[B]

Yn,b ≤
(
κmax

all

√
ξ−2 − 1

)
CSC

max
θ̄

√
ρλεd, (47)

where CS = maxn∈[N ],A∈A ‖SnA‖1, Cmax
θ̄

= maxA∈A,n∈[N ] ‖θ̄nA‖2.

From (44), (45), (47) and the definition of our sketched policy, letting CY =(
κmax

all

√
ξ−2 − 1

)
CSC

max
θ̄

, we obtain that

Reg(N,B) =
∑

n∈[N ],b∈[B]

[
max
A∈A
〈θ∗A, sn,b〉 −

〈
θ∗AIn,b

, sn,b

〉]

≤
∑

n∈[N ],b∈[B]

[
max
A∈A

(〈
θ̃nA, sn,b

〉
+ α

√
sᵀn,b (W n

A)
−1
sn,b

)
+ Yn,b −

〈
θ∗AIn,b

, sn,b

〉]

=
∑

n∈[N ],b∈[B]

[〈
θ̃nAIn,b

, sn,b

〉
+ α

√
sᵀn,b

(
W n

AIn,b

)−1

sn,b + Yn,b −
〈
θ∗AIn,b

, sn,b

〉]

≤ 2α
∑

n∈[N ],b∈[B]

√
sᵀn,b

(
W n

AIn,b

)−1

sn,b + 2
∑

n∈[N ],b∈[B]

Yn,b

≤ 2αCreg

√
B
∑
n∈[N ]

√√√√∑
b∈[B]

sᵀn,b

(
Ψn
AIn,b

)−1

sn,b + 2NCY
√
ρλεd

= 2αCreg

√
B
∑
n∈[N ]

√√√√∑
b∈[B]

〈
sn,b s

ᵀ
n,b,
(
Ψn
AIn,b

)−1
〉

+ 2NCY
√
ρλεd

= 2αCreg

√
B
∑
n∈[N ]

√∑
A∈A

〈
SnᵀA S

n
A, (Ψ

n
A)
−1
〉

+ 2NCY
√
ρλεd

= 2αCreg

√
B
∑
n∈[N ]

√∑
A∈A

tr
(
SnᵀA S

n
A (Ψn

A)
−1
)

+O(N
√
ρλεd),

≤ 2αCreg

√
BM

∑
n∈[N ]

√
max
A∈A

{
tr
(
SnᵀA S

n
A (Ψn

A)
−1
)}

+O(N
√
ρλεd). (48)
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When the structural assumption in Theorem 3 is not satisfied, from (31), we can obtain that the second
term in (48) is also of order O(

√
ρλεd), which does not influence the order of the final regret bound.

Finally, combining (48) with lemma 3 in (Han et al., 2020) gives the final regret bound.

Remark B.3 (Lower Bound of Regret). Han et al. (2020) demonstrated a lower bound of regret for
contextual batched bandit, which is of order Ω(

√
dT ). But this lower bound assumes that there are

only two actions and both the actions share the same true reward model, it can not be directly applied
to our CBB setting where each action corresponds to a different reward model. Despite the lack of
the lower bound in CBB setting, if all M actions share the same true reward model, our regret upper
bound of order O(

√
MdT ) could reduce to a bound of order O(

√
dT ) of magnitude, indicating the

optimality of our regret upper bound. We leave the lower bound in CBB setting for further work.

B.5 Regret Analyses of Our Extensions

In this section, we proof the regret bounds of the extensions of SPUIR in Section “Extensions of Our
Approach”.

Corollary B.1 (Regret Bounds of SPUIR-Exp, SPUIR-Poly, SPUIR-Kernel). Assuming that the
conditions in Theorem 4 holds and δ1, δ2 are the probabilities defined in Theorem 4, then:

1) With probability at least 1−N(δ1 + δ2), SPUIR-Exp (for an exponential expected reward) and
SPUIR-Poly (for a polynomial expected reward) enjoy the regret upper bound of the same order
as that of SPUIR (shown in Theorem 4).

2) Comparing with the regret upper bound of SPUIR in Theorem 4, with probability at least 1−N(δ1+

δ2 + δ3), SPUIR-Kernel enjoys a regret bound with an additional error of order O(
√
N/δ3drB)

against the optimal policy in Gaussian RKHS, where dr is the dimension of the random features
and δ3 ∈ (0, 1). Setting B = O(

√
T/d) and dr = O(N) yields an additional error of order

O(
√
T/(dδ3)), and SPUIR-Kernel also enjoys the regret upper bound of the same order as that

of SPUIR (shown in Theorem 4).

Proof of Corollary B.1. 1) For an exponential expected reward, the regret of SPUIR-Exp can be
written as follows:

RegE(N,B) =
∑

n∈[N ],b∈[B]

[
max
A∈A

GE (θ∗A, sn,b)−GE

(
θ∗AIn,b

, sn,b

)]
,

where GE(θ, s) = exp (θᵀs) . Using the linearization trick of convex functions (Shalev-Shwartz,
2011), the regret upper bound of SPUIR-Exp can be expressed using the inner products

RegE(N,B)

≤
∑

n∈[N ],b∈[B]

[
max
A∈A

〈
θ∗A,∇θ∗

A
GE(θ∗A, sn,b)

〉
−
〈
θ∗AIn,b

,∇θ∗
A
GE(θ∗A, sn,b)

〉]
,

where∇θGE(θ, s) = exp (θᵀs) s. Then, the gradient∇θGE(θ, s) can be treated as the example
received at each step and applying Theorem 4 we obtain that SPUIR-Exp enjoys the regret bound
of the same order. Similarly, for a polynomial expected reward, the regret upper bound of SPUIR-
Poly can be expressed using the gradient ∇θGP(θ, s) = 2 (θᵀs) s, and applying Theorem 4 also
yields the regret bound of the same order.

2) For SPUIR-Kernel, instead of the linear reward 〈θ, sn,b〉 in Euclidean space, we assume that the
expected reward lies in a reproducing kernel Hilbert space (RKHS). More specifically, for action
A ∈ A, the expected reward can be formulated as GK(α∗A, s) =

∑
n∈[N ],b∈[B] α

∗
n,b,Aκ(s, sn,b),

where κ denotes a Gaussian kernel function with a kernel width σR. For fast implementation, we
use Tn,b(θ, A) = 〈θ, φ(sn,b)〉 in random feature space as an approximation of GK, where the
random feature mapping φ can be explicitly defined as in (Rahimi and Recht, 2007).

φ(s) =
1√
dr

[
cos(uᵀ

1s), cos(uᵀ
2s), . . . , cos(uᵀ

dr
s), sin(uᵀ

1s), sin(uᵀ
2s), . . . , sin(uᵀ

dr
s)
]ᵀ
,

14



ui ∈ Rd, i ∈ [dr], are random parameter vectors sampled independently according to the Gaussian
distribution N (0, σ−2

R Id). Then, the regret of SPUIR-Kernel can be defined as follows:

RegK(N,B) =
∑

n∈[N ],b∈[B]

[
max
A∈A

GK (α∗A, sn,b)−GK

(
α∗AIn,b

, sn,b

)]
.

Letting

RegRF(N,B) =
∑

n∈[N ],b∈[B]

[
max
A∈A
〈θ∗A, φ(sn,b)〉 −

〈
θ∗AIn,b

, φ(sn,b)
〉]

,

Diff1 =
∑

n∈[N ],b∈[B]

max
A∈A
|GK (α∗A, sn,b)− 〈θ∗A, φ(sn,b)〉| ,

Diff2 =
∑

n∈[N ],b∈[B]

∣∣∣GK

(
α∗AIn,b

, sn,b

)
−
〈
θ∗AIn,b

, φ(sn,b)
〉∣∣∣ ,

we can obtain the regret upper bound of SPUIR-Kernel as follows:

RegK(N,B) ≤ RegRF(N,B) + Diff1 + Diff2,

where the upper bound of RegRF(N,B) can be obtained by applying Theorem 4 to the random
feature space which is of the same order as that of SPUIR. Furthermore, the key of the proof is
bounding Diff1 and Diff2. Next, we bound the term |GK (α∗A, s)− 〈θ∗A, φ(s)〉| that is the key
part of Diff1 and Diff2. According to the representer theorem, the reward parameter vector in the
random feature space can be expressed by θ∗A =

∑
n∈[N ],b∈[B] α

∗
n,b,Aφ(sn,b), yielding that

|GK (α∗A, s)− 〈θ∗A, φ(s)〉|

=

∣∣∣∣∣∣
∑

n∈[N ],b∈[B]

α∗n,b,Aκ(s, sn,b)− 〈θ∗A, φ(s)〉

∣∣∣∣∣∣
≤

∑
n∈[N ],b∈[B]

∣∣α∗n,b,A∣∣ |κ(s, sn,b)− 〈φ(sn,b), φ(s)〉|

≤ εRF‖GK‖1,

where ‖GK‖1 =
∑
n∈[N ],b∈[B] |α∗n,b,A| denotes the `1-norm of GK, and εRF denotes the approx-

imation error bound of random features, i.e., |κ(s, sn,b)− 〈φ(sn,b), φ(s)〉| ≤ εRF. According to
the probabilistic error bound in (Rahimi and Recht, 2007, 2008; Feng et al., 2015), we have that,
with probability at least 1−Nδ3,

εRF =
1√

2Nδ3dr

,

yielding that

Diff1 + Diff2 ≤
√

2N

δ3dr
‖GK‖1B.

Finally, comparing with the regret upper bound of SPUIR in Theorem 4, SPUIR-Kernel enjoys
a regret bound with an additional error term

√
2N/δ3dr‖GK‖1B against the optimal policy in

Gaussian RKHS.

C Detailed Experimental Settings and More Experimental Results

In this section, we provide more details and results in the experiments.
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Table 1: Description of datasets in the experiments (T : number of instances;B: batch size;N : number
of episodes; d: dimensionality of context; M : number of actions; CB satisfying B = C2

BN/d)

Dataset T B N d M CB

synthetic data 126,000 1,400 90 40 5 25.00
Criteo-recent 75,000 1,000 75 50 5 25.82
Criteo-all 1,276,000 4,000 319 50 15 25.04
commercial product 216,568 1,700 128 50 5 25.83

C.1 Description of Datasets

Table 1 summarizes the description of datasets used in the experiments.

Next, we provide more details about the three datasets.

Synthetic Data. Inspired by the experiments in (Saito et al., 2020), the synthetic data generation
procedure was formulated as follows, which simulates the streaming recommendation environment.

• Context si ∈ Rd: we drew elements of si independently from a Gaussian distribution
N (0.1, 0.22), where d = 40;

• Click-Through-Rate (CTR): the CTRs for the 5 actions were respectively set as
{10%, 15%, 25%, 20%, 30%};

• The indicator variables of click events:

Ci =

{
1 a click occurs in context si,
0 otherwise.

We sampled the click index set according to the uniform distribution.

• Conversion rate (CVR) in context si: when Ci = 1,

CVR(si) := sigmoid(〈wc, si〉),=
1

1 + exp(−〈wc, si〉)
,

where the coefficient vector wc ∈ Rd is sampled according to a Gaussian distribution as
wc ∼ N (κc1d, σ

2
cId), and we set different means and standard deviations for different

action with κc ∈ [0 : −0.2 : −0.8] and σc ∈ [0.01 : +0.01 : 0.05];

Criteo Data. We used the publicly available Criteo dataset3, consisting of Criteo’s traffic on display
ads over a period of two months (Chapelle, 2014), where each context consists of 8 integer features
and 9 categorical features. Following the experiments in (Yoshikawa and Imai, 2018), the categorical
features were represented as one-hot vectors and then concatenated to the integer features. We
reduced the dimensionality of the feature vectors to 50 using principal component analysis (PCA).
All of the algorithms were tested in a simulated online environment that was trained on users’ logs
in the Criteo dataset. Specifically, we chose several campaigns from the Criteo dataset, where each
campaign represents a category of items and corresponds to an action. This online environment
contains a prediction model for the CVR, which was well trained by applying DFM (Chapelle, 2014)
using the true user feedbacks. This environment model was trained for each chosen campaign, whose
AUCs are ranging from 70% to 90%, assuring that the online environment can provide nearly realistic
feedbacks. To simulate the uncertainty of user behaviors, Gaussian noises with zero-mean were
added to the model parameters. At each step, the online environment randomly selected a campaign
and samples one context from this campaign, and revealed the context to the agent with a preset
CTR. To generate a reasonable sequence of instances, the environment kept the order of timestamps
of the contexts in each campaign. We tested our algorithms and the baselines with the following
two online environments on the Criteo dataset: Criteo-recent contains 5 campaigns (75, 000
instances) chosen from the recent campaigns, corresponding to 5 actions; Criteo-all contains 15
campaigns (1, 276, 000 instances) chosen from all the campaigns, corresponding to 15 actions.

3https://labs.criteo.com/2013/12/conversion-logs-dataset/
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Data Collected from a Real Commercial App for Coupon Recommendation. To verify the
effectiveness and efficiency of our algorithms on real products, we conducted experiments on a
real dataset collected from a Tencent’s WeChat app. We call this dataset commercial product,
where the data were collected after the users gave consent, and did not contain any personally
identifiable information or offensive content. Since this dataset from a commercial app is proprietary,
we did not provide a URL. We will release this dataset after the publication of this paper. In this
commercial app, after clicking a recommended coupon, a user may convert the coupon after some
time, or just leave it there. The dataset was collected during a 1-month period with a subsampling, and
consists of 216, 568 instances from 5 categories of coupons (including food, drink, clothing, travel,
and electronics), where each context is described by 86 numerical features and 16 categorical features,
including user profiles and item features in users’ browsing history. Each context vector s can be
seen as a user embedding summarizing her preferences in different aspects. We make each action
correspond to one coupon category, representing by a reward parameter vector θA for action A. The
reason for this setup is that, the effects of every component in user embedding on user feedback differ
for different coupon categories (food, drink, travel, clothing, electronics). Then, reward parameter
vector θA can be seen as an embedding representation of coupons from category A, which is online
learnt using feedbacks on category A from different users. Technically, through the inner product
between θA and the user embedding (context) s, the bandit algorithm will set larger weights for
components in user embedding that are more important to category A. Overall, bandit algorithms in
CBB setting are suitable choices for streaming recommendation with multiple feedback mechanisms.

The timestamps of clicks and conversions were also recorded. Following the settings on the Criteo
data, we also represented the categorical features as a one-hot vector, reduced the dimensionality of
the feature vectors to 50 by PCA. The action space contains 5 actions, where each corresponding to
one coupon category. Due to the limitation of real online experiments, in this experiment, we still
trained DFM using the true user feedbacks as the online environment, where AUCs range from 75%
to 90%.

To simulate the real environment under partial-information feedback, The experiments were con-
ducted in environments where the distribution of the initialization data is atypical. Specifically,
in the experiments, we set different numbers of the initialization instances for each action. In
the synthetic environment, we set the number of the initial instances as 140, 210, 350, 280, 420 for
the 5 actions, respectively. In Criteo-recent, we set the proportion of the initial instances as
0.1, 0.15, 0.25, 0.2, 0.3 for the 5 actions, and set the number of the initial instances as [100 : 23 : 423]
for the 15 actions in Criteo-all.

C.2 Detailed Specification of Hyperparameters

The average reward was used to evaluate the accuracy of algorithms, which is computed by
1
nB

∑n
k=1

∑B
b=1R

true
k,b,A for the first n episodes, where Rtrue

k,b,A is the true reward of action A

at step b in the k-th episode. In these experiments, the true reward is defined by Rtrue
k,b,A =

λcCk,b,A+(1−λc)Vk,b,A (Ck,b,A and Vk,b,A denote true binary variables of user click and conversion
when executing action A given context sk,b), where λc = 0.01 on the synthetic data, Criteo Data, and
commercial product data, respectively. As in most contextual bandit literature (Li et al., 2010; Chu
et al., 2011), we set the regularization parameter λ = 1 in the Euclidean regularization. According to
theoretical analysis in Remark 3, we set the batch size as B = C2

BN/d, set the constant CB ≈ 25 and
the sketch size c = 150 on all the datasets (B = 1400, 1000, 4000, 1700 for synthetic data,
Criteo-recent, Criteo-all, and commercial product). The regularization parameters
ω, α in our policy and that in the batch UCB policy were tuned in [0.2 : +0.2 : 1.2]. For the SJLT
in SPUIR and its variants, sketch size was set as c = 150 and the number of block D was selected
in {1, 2, 4, 6}. Except for the rate-scheduled variants of our approaches, the imputation rate γ was
selected in [0.1 : +0.2 : 0.9]. Besides, the discount parameter η was tuned in [0.1 : +0.2 : 0.9]. In the
nonlinear variant of our approach SPUIR-Kernel, we selected the dimension of the random features
dr in {50, 100, 200} and the kernel width of Gaussian kernel in {2−(i+1)/2, i = [−12 : 2 : 12]}.
We provide the detailed specification of experimental setups in different datasets, as shown in Table 2.

Rate-Scheduled Approach. We equip PUIR and SPUIR with a rate-scheduled approach, called
PUIR-RS and SPUIR-RS, respectively. We design a rate-scheduled approach following the theoretical
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Table 2: The detailed specification of experimental setups in our SPUIR and its extensions

Item Notation synthetic Criteo commercial

weight in reward λc 0.01 0.01 0.01
sketch size c 150 150 150
batch size B 1400 1000 (recent), 4000 (all) 1700
regularization parameters ω 0.2 0.6 (recent), 0.8 (all) 0.6
regularization parameters α 0.6 0.2 (recent), 0.8 (all) 0.8
imputation rate γ 0.7 0.1 (recent), 0.3 (all) 0.5
discount parameter η 0.9 0.9 (recent), 0.1 (all) 0.3
number of block D 1 1 1
dimension of random features dr – 50 –
kernel width σR – 2−(i+1)/2, i = −4 –

results about the imputation rate γ. From Remark 1&2, we can obtain that a larger imputation rate
γ leads to a smaller variance while increasing the bias. From Remark B.1, we conclude that the
additional bias term includes a monotonic decreasing function w.r.t. number of episodes under mild
conditions. Therefore, instead of using a fixed imputation rate, we can gradually increase γ with the
number of episodes, avoiding the large bias at the beginning of the reward imputation while achieving
a small variance. Specifically, we set γ = X% for episodes from (X − 10)% × N to X% × N ,
where X ∈ [10, 100].

C.3 More Experimental Results

For better illustration, in Figure 3 of the manuscript, we omitted the curves of algorithms whose
average rewards are 5% lower than the highest reward. Now we provide the curves of all the
algorithms in Figure 2. In Table 3, we present the average reward results (mean ± std) on synthetic
data and Criteo dataset. From the results in Table 3, we have the following observations: (1) The
proposed PUIR, SPUIR and their rate-scheduled versions persistently achieved higher average rewards
than other baselines; (2) The proposed imputation approaches achieved lower variances than the
baselines (SBUCB, BLTS-B) that have comparable accuracies.

Table 4 presents the running time of all algorithms on both synthetic and Criteo datasets. The results
in the table further validate that our reward imputation approaches outperformed DFM-S and BLTS-
B in terms of efficiency. The variants of our algorithms utilizing sketching (SPUIR, SPUIR-RS)
significantly reduced the time costs of reward imputation, taking less than twice as long to execute
compared to the baselines without reward imputation (SBUCB, BEXP3, BEXP3-IPW).

Figure 3 and Figure 4 present experimental curves showcasing bias, variance, and regret. Based on
the experimental results, the following conclusions can be drawn:

(1) The additional bias introduced by our approaches gradually diminishes with increasing episodes,
as depicted in Figure 3(a). Moreover, the additional bias in comparison to the inherent bias (bias
of SBUCB without reward imputation) is only a marginal fraction, approximately , as illustrated in
Figure 3(b).

(2) The proposed reward imputation plays a pivotal role in significantly reducing variance. This
achievement is evidenced by a nearly reduction in variance when compared to the variance of SBUCB,
as shown in Figure 4(b).

(3) The regret associated with PUIR and SPUIR is notably smaller compared to the baseline SBUCB
without reward imputation. This distinction is illustrated in Figure 4(a).

D Potential Social Impact and Limitations

This is a technical work proposing provable algorithms with low variances and controllable biases,
which do not learn any private information of input data. We do not foresee any potential negative
societal impacts due to our work. Researchers working on online learning theory and application
could benefit from this paper. In the long run, we expect that the proposed reward imputation approach
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Figure 2: Average rewards of the compared algorithms, the proposed SPUIR and its variants on
synthetic dataset, Criteo dataset, and the real commercial product data

Table 3: Average rewards (mean ± std) on synthetic dataset and Criteo dataset

Algorithm synthetic data Criteo-recent Criteo-all

DFM-S 0.1503 ± 0.0092 0.1913 ± 0.0135 0.1955 ± 0.0074
SBUCB 0.2461 ± 0.0143 0.2587 ± 0.0156 0.2546 ± 0.0085
BEXP3 0.1131 ± 0.0075 0.2530 ± 0.0129 0.2518 ± 0.0078
BEXP3-IPW 0.1151 ± 0.0076 0.2530 ± 0.0167 0.2516 ± 0.0087
BLTS-B 0.2483 ± 0.0266 0.2547 ± 0.0169 0.2549 ± 0.0093
PUIR 0.2517 ± 0.0139 0.2605 ± 0.0148 0.2577 ± 0.0076
SPUIR 0.2514 ± 0.0134 0.2596 ± 0.0147 0.2565 ± 0.0076
PUIR-RS 0.2519 ± 0.0137 0.2600 ± 0.0147 0.2572 ± 0.0079
SPUIR-RS 0.2507 ± 0.0127 0.2595 ± 0.0148 0.2565 ± 0.0075

has the potential to contribute to the fair decision-making that may eliminate the decision bias due to
the existence of unobserved reward feedbacks. Besides, we must emphasize that the CBB setting we
consider is based on the premise that the agent is purely reward-driven. Thus, for different decision
tasks, a suitable linear/nonlinear reward model needs to be selected for better performances.
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Figure 3: The curves of biases introduced by our proposed SPUIR and PUIR on the synthetic dataset.
The bias introduced by SBUCB can be estimated as λ‖θ∗A‖2 + ν as in Theorem 2. The absolute
additional bias introduced by PUIR and SPUIR, as depicted in Figure (a), can be estimeted by
γ

1
2 η−

1
2 fImp(n) as in Theorem 2, where fImp(n) is upper bounded by CImp in Eq. (9) and is a refined

upper bound of bias defined in Equation (17) within the Appendix B.1. Figure (b) depicts the relative
proportion of the additional bias introduced by our proposed approaches compared to the bias of the
SBUCB, called relative additional bias.
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