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Abstract

Solving the quantum many-body Schrödinger equation is a fundamental and chal-
lenging problem in the fields of quantum physics, quantum chemistry, and material
sciences. One of the common computational approaches to this problem is Quan-
tum Variational Monte Carlo (QVMC), in which ground-state solutions are obtained
by minimizing the energy of the system within a restricted family of parameterized
wave functions. Deep learning methods partially address the limitations of tradi-
tional QVMC by representing a rich family of wave functions in terms of neural
networks. However, the optimization objective in QVMC remains notoriously hard
to minimize and requires second-order optimization methods such as natural gradi-
ent. In this paper, we first reformulate energy functional minimization in the space
of Born distributions corresponding to particle-permutation (anti-)symmetric wave
functions, rather than the space of wave functions. We then interpret QVMC as
the Fisher–Rao gradient flow in this distributional space, followed by a projection
step onto the variational manifold. This perspective provides us with a princi-
pled framework to derive new QMC algorithms, by endowing the distributional
space with better metrics, and following the projected gradient flow induced by
those metrics. More specifically, we propose “Wasserstein Quantum Monte Carlo”
(WQMC), which uses the gradient flow induced by the Wasserstein metric, rather
than the Fisher–Rao metric, and corresponds to transporting the probability mass,
rather than teleporting it. We demonstrate empirically that the dynamics of WQMC
results in faster convergence to the ground state of molecular systems.

1 Introduction

Access to the wave function of a quantum many-body system allows us to study strongly correlated
quantum matter, starting from the fundamental building blocks. For example, the solution of the time-
independent electronic Schrödinger equation provides all the chemical properties of a given atomic
state, which have numerous applications in chemistry and materials design. However, obtaining
the exact wave function is fundamentally challenging, with a complexity scaling exponentially with
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the number of degrees of freedom. Various computational techniques have been developed in the
past, including compression techniques based on Tensor Networks (White, 1992), and stochastic
approaches such as Quantum Monte Carlo (QMC) (Ceperley et al., 1977). Quantum Variational
Monte Carlo (QVMC) (McMillan, 1965; Ceperley et al., 1977) is a well-known subclass of the latter
that can, in principle, be used to estimate the lowest-energy state (i.e. ground state) of a quantum
many-body system. The method operates by parameterizing the trial wave function and minimizing
the energy of the many-body system w.r.t. the model parameters.

The choice of parametric family of the trial wave function is a crucial component of the QVMC
framework. Naturally, deep neural networks, being a family of universal approximators, have
demonstrated promising results for quantum systems with discrete (Carleo & Troyer, 2017; Choo
et al., 2020; Hibat-Allah et al., 2020), as well as continuous degrees of freedom (Pfau et al., 2020;
Hermann et al., 2020; Pescia et al., 2022; Gnech et al., 2022; von Glehn et al., 2022). However, the
optimization process is challenging, especially for rich parametric families of the trial wave functions.
This requires the use of advanced optimization techniques that take into account the geometry of
the parametric manifold. The most common technique used in QVMC is referred to as ‘Stochastic
Reconfiguration’ (SR) (Sorella, 1998), and can be seen as the quantum version of Natural Gradient
Descent (Stokes et al., 2020). While for large neural networks with up to millions of parameters,
efficient and scalable implementations of SR are available (Vicentini et al., 2022), it is also possible
to use approximate methods such as K-FAC (Martens & Grosse, 2015; Pfau et al., 2020). Higher
order optimization techniques are considered to be essential to obtain the necessary optimization
performance to accurately estimate ground states of quantum many-body Hamiltonians (see e.g.
(Pescia et al., 2023; Pfau et al., 2020)). Therefore, studies of the optimization procedure are an
important direction for further development of the QVMC approach.

In this paper, we consider the energy minimization dynamics as a gradient flow on the non-parametric
manifold of distributions. First, as an example of the proposed methodology, we demonstrate that the
imaginary-time Schrödinger equation can be described as the gradient flow under the Fisher–Rao
metric on the non-parametric manifold. Then, the QVMC algorithm can be seen as a projection of
this gradient flow onto a parametric manifold (see Section 3 for details). Second, the gradient flow
perspective gives us an additional degree of freedom in the algorithm. Namely, we can choose the
metric under which we define the gradient flow. Thus, we propose and study a different energy-
minimizing objective function, which we derive as a gradient flow under the Wasserstein metric (or
Wasserstein Fisher–Rao metric) (Chizat et al., 2018; Kondratyev et al., 2016).

In practice, we demonstrate that incorporating the Wasserstein metric into the optimization procedure
allows for faster convergence to the ground state. Namely, we demonstrate up to 10 times faster
convergence of the variance of the local energy for chemical systems. Intuitively, incorporating
the Wasserstein metric regularizes the density evolution by forbidding or regularizing non-local
probability mass “teleportation” (as done by Fisher–Rao metric). This might facilitate faster mixing
of the MCMC running along with the density updates.

2 Background
2.1 Quantum variational Monte Carlo

Consider a quantum many-body system subject to the Hamiltonian operator, which we will assume
to be of the following form,

H = −1

2
∇2

x + V. (1)

where x a given many-body configuration and V is the potential operator. The time-dependent
Schrödinger equation determines the wave function ψ(x, t) of the quantum system

i
d

dt
ψ(x, t) = Hψ(x, t) (2)

As is often the case, we will target the stationary solutions, for which we focus on solving the
time-independent Schrödinger equation

Hψ(x) = Eψ(x) (3)

where E is the energy of the state ψ. The ground state of a quantum system is obtained by solving
the time-independent Schrödinger equation, by targeting the eigenstate ψ of the above Hamiltonian
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with the lowest eigenvalue (energy) E. Hereby, we must restrict the Hilbert space to wave functions
that are antisymmetric under particle permutations in the case of fermionic particles, and symmetric
for bosons. The latter takes into account the indistinguishability of the particles. Given the Born
density q(x) = |ψ(x)|2, the energy of a given quantum state can be rewritten in a functional form,

E[ψ] = Eq(x)[Eloc(x)], Eloc(x) :=
[Hψ](x)

ψ(x)
(4)

We will focus on the case where the Hamiltonian operator is Hermitian and time-reversal symmetric.
In this case, its eigenfunctions and eigenvalues are real, and the energy can be recast into a functional
of the Born probability density (see also Pfau et al. (2020), where the expressions are given in terms
of log|ψ|)

E[q] = Eq(x)[Eloc(x)], Eloc(x) = V (x)− 1

4
∇2

x log q(x)−
1

8
∥∇x log q(x)∥2, (5)

under the strong condition that q(x) is the Born probability density derived from an (anti-)symmetric
wave function: q(x) = ψ2(x). The latter will always be tacitly assumed from hereon.

The Rayleigh–Ritz principle guarantees that the E[q] is lower-bounded by the true ground-state
energy of the system, i.e. E[q] ≥ E0, if the corresponding wave function ψ is a valid state of the
corresponding Hilbert space. Quantum Variational Monte Carlo (QVMC) targets ground states by
parametrizing the wavefunction ψ(x, θ) and by minimizing E[q(θ)]. The solution to the minimiza-
tion problem θ0 = arg minθ E[q(θ)] is obtained by gradient-based methods using the following
expression for the gradient w.r.t. parameters θ

∇θE[q(θ)] = Eq(x,θ)

[(
Eloc(x, θ)− Eq(x,θ)[Eloc(x, θ)]

)
∇θ log q(x, θ)

]
. (6)

In sum, the above leads to an iterative procedure in which Monte Carlo sampling is used to generate
configurations from the current trial state q(x, θ) = ψ2(x, θ), which allows computing the corre-
sponding energy and its parameter gradients, and to update the model accordingly. In practice, the
parametric model specifies the density q(x, θ) only up to a normalization constant, i.e., it outputs
q̃(x, θ) ∝ q(x, θ). However, the gradient w.r.t. θ does not depend on the normalization constant;
hence, throughout the paper, we refer to the model as the normalized density q(x, θ).

2.2 Gradient flows under the Wasserstein Fisher–Rao metric

In the previous section, we introduced QVMC in terms of Born probability functions and formulated
the problem as the minimization of a functional of probability functions constrained to a varia-
tional/parametric manifold. The latter is a more common problem often tackled in machine learning,
and by forging connections between both fields, we will be able to derive an alternative to QVMC.

Gradient Flows In Euclidean space, we can minimize a function f : Rd → R by following the
ODE d

dtxt = −∇xf(xt), which can be viewed as the continuous version of standard gradient descent.
Similarly, we can minimize a functional in the space of probability distributions (or in general any
Riemannian manifold), by following an ODE on this manifold. However the notion of a gradient on a
manifold is more complicated, and relies on the Riemannian metric that the manifold is endowed
with. Different Riemannian metrics result in different gradient flows, and consequently different
optimization dynamics. For a thorough analysis of gradient flows, we refer the reader to Ambrosio
et al. (2005).

Wasserstein Fisher–Rao gradient flows Consider the space of distributions P2 with finite second
moment. This space can be endowed with a Wasserstein Fisher–Rao metric with the corresponding
distance. In particular, the Wasserstein Fisher–Rao (WFR) distance (Chizat et al., 2018) is defined
by extending the Benamou & Brenier (2000) dynamical optimal transport formulation by a term
involving the norm of the growth rate gt, and by accounting for the growth term in the modified
continuity equation. Namely, the distance between probability densities p0 and p1 is defined as

WFRλ(p0, p1)
2 := inf

vt,gt,qt

∫ 1

0

Eqt(x)

[
∥vt(x)∥2 + λgt(x)

2
]
dt, subj. to (7)

∂qt(x)

∂t
= −∇x · (qt(x)vt(x)) + gt(x)qt(x) , and q0(x) = p0(x), q1(x) = p1(x) ,

3



where vt(x) is the vector field defining the probability flow, gt(x) is the growth term controlling the
creation and annihilation of the probability mass, and λ is the coefficient balancing the transportation
and teleportation costs. Note that by setting one of the terms to zero we get 2-Wasserstein distance
(gt(x) ≡ 0) and Fisher–Rao distance (vt(x) ≡ 0). In Section 3, we also consider the general case of
c-Wasserstein distance, where c is a convex cost function on the tangent space.

Given a functional on this manifold, F [q] : P2 → R, we can define the gradient flow of the function
F under any Riemannian metric including the Wasserstein metric, the Fisher–Rao metric, or the
Wasserstein Fisher–Rao metric. For example, the gradient flow that minimizes the functional F [q]
under the Wasserstein Fisher–Rao metric is given by the following PDE (which is shown with detailed
derivations in Appendix A)

∂qt
∂t

(x) = −∇x ·
(
qt(x)

(
−∇x

δF [qt]

δqt
(x)

))
︸ ︷︷ ︸

the continuity equation

− 1

λ

(
δF [qt]

δqt
(x)− Eqt(y)

[
δF [qt]

δqt
(y)

])
︸ ︷︷ ︸

growth term

qt(x),

(8)

where δF [q]/δq is the first-variation of of F with respect to the L2 metric. The physical explanation
of the terms in Eq. (8) is as follows. The continuity equation defines the change of the density
when the samples x ∼ qt(x) follow the vector field vt(x) = −∇xδF [qt]/δqt. The second term
of the PDE defines the creation and annihilation of probability mass, and is proportional to the
growth field gt(x) =

δF [qt]
δqt

(x)− Eqt(y)

[
δF [qt]
δqt

(y)
]
. Note that Eqt [gt] = 0, and so while mass can

be “teleported”, the total mass (or probability) will remain constant. The two mechanisms can be
considered independently by defining the evolution terms under the 2-Wasserstein and Fisher–Rao
metrics respectively, i.e.

∂qt
∂t

(x) = −∇x ·
(
qt(x)

(
−∇x

δF [qt]

δqt
(x)

))
, 2-Wasserstein Gradient Flow, (9)

∂qt
∂t

(x) = −
(
δF [qt]

δqt
(x)− Eqt(y)

[
δF [qt]

δqt
(y)

])
qt(x), Fisher–Rao Gradient Flow. (10)

It now becomes evident that the stationary condition for all the considered PDEs is∥∥∥∥∇x
δF [qt]

δqt
(x)

∥∥∥∥ = 0 ⇐⇒ δF [qt]

δqt
(x) ≡ constant . (11)

In Appendix A, we provide derivations illustrating that Eqs. (8) to (10) correspond to the gradient
flow under the Wasserstein Fisher–Rao, Wasserstein, and Fisher–Rao metrics, respectively, and hence
they all minimize F [q]. For detailed analysis, we refer the reader to Kondratyev et al. (2016); Liero
et al. (2016).

3 Methodology

In Section 3.1, we first demonstrate that the imaginary-time evolution of the Schrödinger equation
can be viewed as a gradient flow under the Fisher–Rao metric. Afterwards, in Section 3.2, we discuss
how a density evolution can be projected to the parametric variational family and show that doing so
for the Fisher–Rao gradient flow yields the QVMC algorithm. Taking this perspective, we propose
the Wasserstein Quantum Monte Carlo by considering Wasserstein (and Wasserstein Fisher–Rao)
gradient flows, followed by the projection onto the parametric manifold (see Section 3.3).

3.1 Imaginary-Time evolution as the gradient flow under the Fisher–Rao metric

The ground state of a quantum system can in theory be obtained by imaginary-time evolving any
valid quantum state ψ (with a non-vanishing overlap with the true ground state) to infinite times. The
state is evolved according to the imaginary-time Schrödinger equation, which defines the energy-
minimizing time evolution of the wavefunction ψt, and is expressed as the following PDE (which is
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Figure 1: W(FR)QMC: A graphical illustration of the gradient flow according to the Wasserstein and
Fisher–Rao metrics, and the corresponding projection onto the variational manifold q(x, θ).

the Wick-rotated version of Eq. (2), see e.g. (McArdle et al., 2019; Yuan et al., 2019)),
∂ψt(x)

∂t
= − (H − E[ψt])ψt(x), (12)

where again qt(x) = ψ2
t (x). The last term proportional to the energy E[ψt] comes from enforcing

normalization (contrary to real-time evolution, imaginary time evolution is non-unitary).
Theorem 3.1. Eq. (12) defines the gradient flow of the energy functional E[q] under the Fisher–Rao
metric.

Proof Sketch. The energy functional E[q] has the following derivative
δE[q]

δq
(x) = V (x)− 1

4
∇2

x log q(x)−
1

8
∥∇x log q(x)∥2 = Eloc(x). (13)

Thus, the gradient flow under the Fisher–Rao metric is (see Eq. (10))
∂qt(x)

∂t
= −

(
Eloc(x)− Eqt(x)[Eloc(x)]

)
qt(x), (14)

which is equivalent (up to a multiplicative constant) to the imaginary-time Schrödinger Equation in
Eq. (12) as shown in the complete proof in Appendix B.

We believe that this result can be derived following the derivations from Stokes et al. (2020), but
not introducing the manifold of parametric distributions. However, considering the evolution of the
density on the non-parametric manifold first helps us to derive our method and relating it to QVMC.
In the following subsection, we discuss how to project this non-parametric evolution to a parametric
manifold.

3.2 Following the gradient flow by a parametric model

By choosing a metric in the distributional space and following the energy-minimizing gradient flows,
we can design various algorithms for estimating the ground state wave function. Indeed, in principle,
by propagating the samples or the density according to any gradient flow (e.g., Eqs. (8) to (10)), we
can eventually reach the ground state. However, these dynamics are defined on the non-parametric
and infinite-dimensional manifold of distributions, which do not allow tractable computation of log
densities, and thus tractable evolution. Therefore, we project these dynamics onto the parametric
manifold of our variational family, and follow the projected gradient flows instead, which is tractable.

Suppose the current density on the parametric manifold is qt(x) = q(x, θ) (see Figure 1). We first
evolve this density using a (non-parametric) gradient flow method (e.g., Eqs. (8) to (10)) for time ∆t,
which will take qt(x) off the parametric manifold to qt+∆t(x). We then have to update current trial
model q(x, θ) to match qt+∆t(x) enabling us to propagate the density further. In order to do so, we
define the optimal update of parameters ∆θ∗ as the minimizer of the Kullback-Leibler divergence
between qt+∆t(x) and the distributions on the parametric manifold, i.e.

∆θ∗ = arg min
∆θ

∥∆θ∥2=1

DKL(qt+∆t(x)∥q(x, θ +∆θ)) . (15)
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In practice, we evaluate the parameters update using the following proposition.
Proposition 3.2. For qt(x) = q(x, θ), the gradient of reverse KL-divergence can be approximated as

−∇θEqt+∆t [log q(x, θ)] = −
∫
qt+∆t∇θ log q(x, θ) dx ≈ −

∫ [
qt +∆t

∂

∂t
qt

]
∇θ log q(x, θ) dx

= −
����������:0∫

qt∇θ log q(x, θ) dx−∆t

∫
∂

∂t
qt∇θ log q(x, θ) dx (16)

Using this approximation, the optimal update from Eq. (15) of parameters becomes

∆θ∗ = arg min
∆θ

∥∆θ∥2=1

〈
∆θ,−

∫
∂

∂t
qt(x)∇θ log q(x, θ) dx

〉
∝

∫
∂

∂t
qt(x)∇θ log q(x, θ) dx . (17)

where ⟨·, ·⟩ denotes the inner product, and should not be confused with the bra-ket notation.

The following Corollary states that QVMC can be viewed as the projected gradient flow of the energy
functional with respect to the Fisher–Rao metric.
Corollary 3.3. Consider the Fisher–Rao gradient flow (or imaginary time evolution, which is
equivalent, as shown in Theorem 3.1). Then, the parameters update (Eq. (17)) matches the gradient
of the conventional QVMC loss, i.e.

∆θ∗ ∝ −Eqt(x)

[(
Eloc(x, θ)− Eqt(x)[Eloc(x, θ)]

)
∇θ log q(x, θ)

]
. (18)

This perspective lays the foundation for deriving our WQMC method in Section 3.3, by following the
Wasserstein or WFR gradient flows rather than Fisher–Rao gradient flows.

Natural Gradient Preconditioning In order to update the parametric model q(x, θ), instead of
following the update in Eq. (17), we can exploit the information geometry of the statistical manifold
of q(x, θ), and define the update using the Fisher information matrix Fθ

∆θ∗ = arg min
∆θ

∥∆θ∥F=1

〈
∆θ,−

∫
∂

∂t
qt(x)∇θ log q(x, θ) dx

〉
∝ F−1

θ

∫
∂

∂t
qt(x)∇θ log q(x, θ) dx ,

Fθ = Eq(x,θ)

[
∂

∂θ
log q(x, θ)

∂

∂θ
log q(x, θ)

⊤
]
. (19)

This update is analogous to the natural gradient update (Amari, 1998). Note that the choice of Fisher
information as the metric on the statistical manifold for preconditioning the gradient and updating θ is
independent of the choice of metric on the non-parametric Wasserstein manifold (e.g., Wasserstein or
Fisher–Rao) for evolving qt(x). In practice, we use Kronecker-factored approximation of the natural
gradient (K-FAC) (Martens & Grosse, 2015).

3.3 Wasserstein quantum Monte Carlo

In the previous sections, we formulated imaginary-time evolution governed by the Schrödinger
equation as the energy-minimizing gradient flow under the Fisher–Rao metric. Furthermore, we
demonstrated that projecting the evolved density to the parametric manifold at every iteration
corresponds to the QVMC algorithm.

Naturally, we can consider another metric on the (non-parametric) space of distributions, which
results in a different gradient flow and corresponds to a different algorithm. Namely, we propose to
consider the gradient descent in 2-Wasserstein space as the energy-minimizing density evolution, as
introduced in Section 2.2.
Theorem 3.4. The energy-minimizing 2-Wasserstein gradient flow is defined by the continuity
equation

∂qt(x)

∂t
= −∇x · (qt(x)(−∇xEloc(x))) (20)

Proof. In Theorem 3.1, we show that δE[q]/δq = Eloc(x). Plugging this into the 2-Wasserstein
gradient flow defined in Eq. (9), yields the result in Eq. (20).
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c-Wasserstein Metric This result can be further generalized to the c-Wasserstein metric with any
convex cost function c : Rd → R on the tangent space. The c-Wasserstein distance between p0 and
p1 is defined as follows

Wc(p0, p1) := inf
vt,qt

∫ 1

0

Eqt(x)[c(vt(x))] dt, subj. to (21)

∂qt(x)

∂t
= −∇x · (qt(x)vt(x)) , and q0 = p0, q1 = p1 . (22)

Proposition 3.5. The energy-minimizing c-Wasserstein gradient flow is defined by the following
equation

∂qt(x)

∂t
= −∇x · (qt(x)∇c∗(−∇xEloc(x))) , (23)

where c∗(·) is the convex conjugate function of c(·), and ∇c∗(y) is its gradient at y.

Proof. See Appendix D.

Theorem 3.4 can be viewed as a special case of Proposition 3.5 where c(·) = 1
2∥·∥

2. Introducing
a different c than L2 norm translates to a non-linear transformation of the gradient −∇xEloc(x).
In Appendix D, we demonstrate how to choose c such that it corresponds to the coordinate-wise
application of tanh to the gradient, which we use in practice.

Finally, using Proposition 3.5 in Eq. (17), we get the expression for the parameter update, i.e.

∆θ∗ ∝
∫
qt(x)∇θ

〈
∇c∗(−∇xEloc(x)),∇x log q(x, θ)

〉
dx. (24)

Similar to the discussion of the previous section for QVMC, we can precondition the gradient with
the Fisher Information Matrix, exploiting the geometry of the parametric manifold.

In Algorithm 1, we provide a pseudocode for the proposed algorithms. The procedure follows closely
QVMC but introduces a different objective. When using gradients both from Eqs. (18) and (24),
we follow the gradient flow under the Wasserstein Fisher-Rao metric with the coefficient λ. For
λ→ ∞, the cost of mass teleportation becomes infinite and we use only the gradient from Eq. (24),
which corresponds to the gradient flow under the c-Wasserstein metric (we refer to this algorithm as
WQMC). For λ→ 0, the cost of mass teleportation becomes negligible compared to the transportation
cost and the resulting algorithm becomes QVMC, which uses the gradient from Eq. (18). In practice,
we consider the extreme cases (λ→ 0,∞) and the mixed case λ = 1.

Algorithm 1 W(FR)QMC

Require: samples {x(i)}Ni=1 ∼ qt=0(x)
Require: potential function V (x)

while not converged do
Eloc(x

(i)) = V (x(i))− 1
4∇

2
x log q(x

(i), θ)− 1
8

∥∥∇x log q(x
(i), θ)

∥∥2 (see Eq. 5)
∇xEloc(x

(i)) = stop_gradient(∇xEloc(x
(i)))

∆θ∗ = 1
N

∑N
i ∇θ

〈
∇c∗

(
−∇xEloc(x

(i))
)
,∇x log q(x

(i), θ)

〉
(see Eq. 24)

Eloc(x
(i)) = stop_gradient(Eloc(x

(i)))

∆θ∗ += − 1
λ

1
N

∑N
i

[
Eloc(x

(i))− 1
N

∑N
j Eloc(x

(j))
]
∇θ log q(x

(i), θ) (see Eq. 18)

θ′ = optimizer(θ,F−1
θ ∆θ∗) (see Eq. 19)

update x(i) by sampling from q(x, θ′) via MCMC
end while
return model q(x, θ∗), samples {x(i)}Ni=1 ∼ q(x, θ∗)
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Figure 2: Optimization results for different chemical systems (every column corresponds to a given
molecule). The number of electrons is given in the brackets next to systems’ names. Throughout
the optimization, we monitor three values: the mean value of the local energy (lower is better), the
variance of the local energy, and the median value of the gradient norm of the local energy. In the first
row of plots, we average (removing 5% of outliers from both sides) the energy over 1000 iterations
and report the relative error to the actual ground-state energy: (E − E0)/E0. In the second row, we
report standard deviation averaged over 1000 iterations (removing 5% of outliers from both sides). In
the third row, we report the median gradient norm averaged over 1000 iterations (removing 5% of
outliers from both sides). See the descriptions of methods in the text.

4 Experiments 1

For the empirical study of the proposed method, we consider Born–Oppenheimer approximation of
chemical systems. Within this approximation, the wave function of the electrons in a molecule can be
studied separately from the wave function of the atomic nuclei. Namely, we consider the following
Hamiltonian

H = −1

2
∇2

x +
∑
i<j

1

∥xi − xj∥
−
∑
i,I

ZI

∥xi −XI∥
+

∑
I<J

ZIZJ

∥XI −XJ∥
, (25)

where xi are the coordinates of electrons, XI , ZI are the coordinates and charges of nuclei. The first
kinetic term contains derivatives with respect to the electron positions x. Indeed, the positions of the
nuclei are given and fixed, and we target the ground state of the electronic wave function ψ(x), which
is an explicit function of the electron positions only. Solving the electronic Schrödinger equation
is a notoriously difficult task, and is a topic of intense research in quantum chemistry and material
sciences.

1Code reproducing experiments is available at github.com/necludov/wqmc. The method is also implemented
in the FermiNet library: github.com/google-deepmind/ferminet.
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Method name QVMC WQMC W(FR)QMC QVMC WQMC W(FR)QMC

Molecule Be (4) B (5)

Relative energy error 1.50e-5 3.79e-6 1.04e-6 9.01e-6 9.58e-6 2.69e-6
Energy variance (Ha2) 5.53e-3 1.08e-3 1.07e-3 1.96e-2 1.84e-2 1.19e-2

Molecule Li2 (6) H10 (10)

Relative energy error 4.43e-5 3.71e-5 3.66e-5 4.24e-4 3.90e-4 3.88e-4
Energy variance (Ha2) 7.21e-3 5.76e-4 5.59e-4 1.89e-3 2.30e-4 2.45e-4

Table 1: Energy and variances estimates for all systems after 10k iterations (20k for H10).

Since electrons are indistinguishable fermions, we restrict the Hilbert space to states ψ that are
antisymmetric under electron permutations (see Section 2.1). This can be achieved by incorporating
Slater determinants into the deep neural network, which parametrizes the wave function ψ(x, θ),
as proposed in various recent works (Luo & Clark, 2019; Hermann et al., 2020; Pfau et al., 2020;
Hermann et al., 2022). The density is then given by the Born rule q(x, θ) = |ψ(x, θ)|2. For all our
experiments, we follow (von Glehn et al., 2022) and use the “psiformer” architecture together with
preconditioning the gradients via K-FAC (Martens & Grosse, 2015).

In our method, we apply several tricks which stabilize the optimization and improve convergence
speed. Firstly, we have observed that applying a tanh non-linearity coordinate-wise to the gradient
∇xEloc(x) significantly improves convergence speed. This corresponds to a different cost function in
the Wasserstein metric, as we discuss in Proposition 3.5 and Appendix D. Also, we remove samples
from the batch whose norm ∥∇x log q(x, θ)∥ significantly exceeds the median value. Namely, we
estimate the deviation from the norm as Eq(x,θ)[|∥∇x log q(x, θ)∥ − median(∥∇x log q(x, θ)∥)|] and
remove samples whose norm exceeds five deviations from the median. When including the gradient
from Eq. (18), we clip the local energy values as proposed in (von Glehn et al., 2022), i.e. by
estimating the median value and clipping to five deviations from the median, where the deviation is
estimated in the same way as for the norm of the gradient.

We consider different chemical systems and compare against QVMC as a baseline. We run our novel
method with the same architecture and hyperparameters as the baseline QVMC-based approach in
(von Glehn et al., 2022). For the chemical systems, we consider Be, and B atoms, the Li2 molecule
and the hydrogen chain H10 from (Hermann et al., 2020). The exact values of energies for Be, B,
Li2 are taken from (Pfau et al., 2020), the exact value of the energy for H10 is from (Hermann et al.,
2020). All the hyperparameters and architectural details are provided in the supplementary material.

In Figure 2, we demonstrate the convergence plots for the baseline (QVMC) and the proposed
methods (WQMC and W(FR)QM, see Algorithm 1). For all the considered systems, both WQMC
and W(FR)QMC yield more precise estimations of the ground state energy (the first row of Figure 2).
To assess convergence, we also monitor the variance of the local energy and the gradient norm
of the local energy. As we discuss in Eq. (11), both metrics must vanish at the ground state.
More fundamentally, the variance of the local energy can be shown to vanish for eigenstates of
the Hamiltonian (Wu et al., 2023), referred to as the zero-variance property. First, we point out
that obtaining the ground states of the considered molecules with QVMC is challenging, and even
with powerful deep-learning architecture, discrepancies remain with the ground state. Since we use
existing state-of-the-art architectures as a backbone, our results are also limited by the limitations of
the latter (Gao & Günnemann, 2023). Developing novel architectures is out of the scope of this work.

However, in Figure 2, we clearly observe that both WQMC and W(FR)QMC yield significantly
faster convergence of the aforementioned metrics compared to QVMC. In particular, for the larger
molecules Li2 and H10, we observe that we consistently obtain lower energies within 10k steps (20k
for H10) with a more stable convergence. For the smaller molecules we observe that QVMC obtains
lower energies in the first few iterations, but its convergence slows down significantly, after which our
approach steadily yields improved energies below QVMC. Overall, our experiments demonstrates that
taking into account the Wasserstein metric allows for faster convergence to accurate approximations
of the ground state. See the final metrics in Table 1.
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5 Limitations

Since our method requires an extra gradient evaluation compared to QVMC, we include the runtime
of all the algorithms in Figure 3, Appendix E. Namely, for a proper comparison, instead of reporting
the metrics per iteration, we report them per wall time in seconds. Note that all the claims of the
experimental section still hold in terms of wall time. All the models were benchmarked on four A40
GPUs. Third-order derivatives can be efficiently computed using modern deep learning frameworks
such as JAX (Bradbury et al., 2018), which we used to implement our method.

Potentially, one can alleviate the extra cost of the iteration by coming up with more efficient Monte
Carlo schemes or other updates of the samples. Indeed, in our experiments, we observed that the
proposed method requires fewer MCMC steps (not included in the paper). Moreover, one can use
the evaluated gradient of the local energy as the proposal vector field for updating the samples. This
would allow to decrease the number of MCMC steps at the low cost of additional hyperparameter
tuning.

6 Discussion and conclusion

Conclusion In the current paper, we propose a novel approach to solving the quantum many-body
Schrödinger equation, by incorporating the Wasserstein metric on the space of Born distributions.
Compared to the Fisher–Rao metric, which allows for probability mass “teleportation”, the Wasser-
stein metric constrains the evolution of the density to local changes under the locally-optimal
transportation plan, i.e., following fluid dynamics. This property is favorable when the evolution
of the parametric model is accompanied by the evolution of samples (performed by an MCMC
algorithm). Indeed, by forbidding or regularizing non-local mass “teleportation” in the density
change, one prevents the appearance of distant modes in the density model, which would require
longer MCMC runs for proper mixing of the samples.

In practice, we demonstrate that following the gradient flow under the Wasserstein (or Wasserstein
Fisher–Rao) metric results in better convergence to the ground state wave function. This is expected
to be due to our proposed loss, which takes into account the gradient of the local energy and achieves
its minimum when the norm of the gradient vanishes, therefore explicitly minimizing the norm of the
local energy gradient.

We believe that our new theoretical framework for solving the time-independent Schrödinger equation
for time-reversal symmetric Hamiltonians based on optimal transport will open new avenues to
develop improved numerical methods for quantum chemistry and physics.

Connection to Energy-Based and Score-Based Generative Models The developed ideas of this
paper, i.e., projecting gradient flows under different metrics onto a parametric family, can be extended
to generative modeling by swapping the energy functional with the KL-divergence. More precisely,
as we show in Appendix C, using the KL-divergence as our objective functional, the Fisher–Rao
gradient flow yields energy-based training scheme, while the 2-Wasserstein gradient flow corresponds
to the score-matching, which is used for training diffusion generative models.
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A Gradient flows under Wasserstein Fisher–Rao metric

We, first, remind the concept of the functional derivative. The change of the functional F [q] : P2 → R
along the direction h can be expressed as

F [q + h] = F [q] + dF [h] + o(∥h∥), dF [h] =

∫
dx h(x)

δF [q]

δq
(x)︸ ︷︷ ︸

derivative

. (26)

Consider a change of the density in time, the change of the functional can be defined through the
differential as

F

[
qt +∆t

∂qt
∂t

]
= F [qt] + ∆t · dF

[
∂qt
∂t

]
+ o(∥h∥), dF

[
∂qt
∂t

]
=

∫
dx

∂qt(x)

∂t

δF [qt]

δqt
(x).

(27)

In particular, we have

d

dt
F [qt] = dF

[
∂qt
∂t

]
=

∫
dx

∂qt(x)

∂t

δF [qt]

δqt
(x). (28)

A.1 Minimizing movement scheme for 2-Wasserstein distance and Kullback-Leibler
divergence

Gradient flow under W2 Consider the following minimizing movement scheme (MMS)

inf
q′
F [q′]− F [q] +

1

∆t

1

2
W 2

2 (q, q
′), (29)

where the change of the density is restricted to the continuity equation, i.e.,
∂qt
∂t

= −∇x · (qt(x)vt(x)), and q′(x) = qt(x)−∆t∇x · (qt(x)vt(x)) + o(∆t). (30)

Using the static formulation of W2 distance, we have

W 2
2 (q, q

′) =

∫
dx q(x)∥x− T ∗(x)∥2 = ∆t2

∫
dx q(x)∥v∗(x)∥2, (31)

where T ∗(x) is the optimal transportation plan, and v∗(x) is the corresponding optimal gradient field.
Thus, we can rewrite the MMS problem as

inf
v
F [q]−∆t

∫
dx ∇x · (q(x)v(x))δF [qt]

δqt
(x)− F [q] +

∆t

2

∫
dx q(x)∥v(x)∥2, (32)

inf
v

∫
dx q(x)

〈
v(x),∇x

δF [qt]

δqt
(x)

〉
+

1

2

∫
dx q(x)∥v(x)∥2, (33)

inf
v

∫
dx q(x)

∥∥∥∥v(x) +∇x
δF [qt]

δqt
(x)

∥∥∥∥2. (34)

From the last optimization problem, we have

v(x) = −∇x
δF [qt]

δqt
(x). (35)

Gradient flow under KL Consider the following minimizing movement scheme (MMS)

inf
q′
F [q′]− F [q] +

1

∆t
DKL(q

′∥q), (36)

where the change of the density is restricted to the following weighting scheme
∂qt
∂t

= gt(x)qt(x), hence , (37)

q′(x) = qt(x) + ∆t qt(x)gt(x) + o(∆t), and (38)

log q′(x) = log qt(x) + ∆t gt(x)−
∆t2

2
g2t (x) + o(∆t2). (39)
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The KL-divergence is then

DKL(q
′∥qt) =

∫
dx q′(x)

(
∆t gt(x)−

∆t2

2
g2t (x)

)
+ o(∆t2) (40)

= ∆t

∫
dx qt(x)gt(x)−

∆t2

2

∫
dx qt(x)g

2
t (x) (41)

+∆t2
∫

dx qt(x)g
2
t (x) + o(∆t2) (42)

=
∆t2

2

∫
dx qt(x)g

2
t (x) + o(∆t2) . (43)

In the last equation we are using ∫
qtgt dx = 0 . (44)

Thus, we can rewrite the MMS problem as

inf
g
F [qt] + ∆t

∫
dx gt(x)qt(x)

δF [qt]

δqt
(x)− F [qt] +

∆t

2

∫
dx qt(x)gt(x)

2, (45)

inf
g

∫
dx qt(x)gt(x)

(
δF [qt]

δqt
(x)− Eqt(y)

[
δF [qt]

δqt
(y)

])
+

1

2

∫
dx qt(x)gt(x)

2, (46)

inf
g

∫
dx qt(x)

[
gt(x) +

(
δF [qt]

δqt
(x)− Eqt(y)

[
δF [qt]

δqt
(y)

])]2
. (47)

From the last optimization problem, we have

gt(x) = −
(
δF [qt]

δqt
(x)− Eq(y)

[
δF [qt]

δqt
(y)

])
. (48)

Note, however, that DKL(·∥·) is not the same as the Fisher–Rao metric. The derivations here
demonstrate that the Fisher–Rao gradient flow can be derived as the MMS scheme with the KL-
divergence.

A.2 Minimizing movement scheme for the Wasserstein Fisher–Rao metric

Consider the Wasserstein Fisher–Rao distance

WFRλ(p0, p1)
2 := inf

vt,gt,qt

∫ 1

0

Eqt(x)

[
∥vt(x)∥2 + λgt(x)

2
]
dt, subj. to (49)

∂qt(x)

∂t
= −∇x · (qt(x)vt(x)) + gt(x)qt(x) , q0(x) = p0(x), q1(x) = p1(x) . (50)

The minimizing movement scheme (MMS) for this distance is

inf
q′
F [q′]− F [q] +

1

∆t

1

2
WFRλ(q, q

′)
2
, (51)

where the change of the density is given by the continuity equation with the growth term

∂qt
∂t

= −∇x · (qt(x)vt(x)) + gt(x)qt(x). (52)

For close enough q and q′, WFRλ(q, q
′)
2 can be estimated via the metric derivative |µ′

t|
2 that is

defined as

|µ′
t|
2
=

(
lim

∆t→0

WFRλ(qt, qt+∆t)

∆t

)2

, (53)

hence,

WFRλ(q, q
′)
2
= ∆t2|µ′

t|
2
= ∆t2

∫
dx q(x)

[
∥v∗(x)∥2 + λg∗(x)2

]
. (54)
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Thus, the MMS problem can be written as

inf
gt,vt

F [qt]−∆t

∫
dx ∇x · (qt(x)vt(x))

δF [qt]

δqt
(x) +

∫
dx qt(x)gt(x)

δF [qt]

δqt
(x)− F [qt]

+
∆t

2

∫
dx qt(x)

[
∥vt(x)∥2 + λgt(x)

2

]
, (55)

inf
gt,vt

∫
dx qt(x)

〈
vt(x),∇x

δF [qt]

δqt
(x)

〉
+

∫
dx qt(x)gt(x)

(
δF [qt]

δqt
(x)− Eqt(y)

[
δF [qt]

δqt
(y)

])
+

1

2

∫
dx qt(x)

[
∥vt(x)∥2 + λgt(x)

2

]
, (56)

inf
gt,vt

∫
dx qt(x)

∥∥∥∥vt(x) +∇x
δF [qt]

δqt
(x)

∥∥∥∥2
+ λ

∫
dx qt(x)

(
gt(x) +

1

λ

(
δF [qt]

δqt
(x)− Eqt(y)

[
δF [qt]

δqt
(y)

]))2

. (57)

From the last optimization problem, we have

vt(x) = −∇x
δF [qt]

δqt
(x), gt(x) = − 1

λ

(
δF [qt]

δqt
(x)− Eqt(y)

[
δF [qt]

δqt
(y)

])
. (58)

Note that different values of λ result in different gradient flows. For instance, considering the limit
λ → ∞ we have g(x) → 0 and Eq. (52) just becomes W2 gradient flow, which is natural since
we have an infinite penalty for the mass teleportation in our metric. Setting λ → 0 requires some
additional consideration, since then the growth term explodes, and all the mass will be teleported
without any cost. Indeed, for λ→ 0, our metric does not penalize for the mass teleportation at all,
but our change of density (Eq. (52)) is still able to teleport mass, hence, it will be doing so “for free”.

A.3 PDEs demonstrating the convergence

Consider the change of the density qt under the continuity equation with the vector field vt(x) and
the growth term gt(x)

∂qt
∂t

(x) = −∇x · (qt(x)vt(x)) + gt(x)qt(x). (59)

Thus, the change of the functional F [q] is

d

dt
F [qt] = −

∫
dx ∇x · (qt(x)vt(x))

δF [qt]

δqt
(x) +

∫
dx qt(x)gt(x)

δF [qt]

δqt
(x) (60)

=

∫
dx qt(x)

〈
vt(x),∇x

δF [qt]

δqt
(x)

〉
+

∫
dx qt(x)gt(x)

δF [qt]

δqt
(x). (61)

From this equation, we can clearly see that vt(x) and gt(x) derived in the previous section minimize
F [q]. Indeed, taking

vt(x) = −∇x
δF [qt]

δqt
(x), gt(x) = − 1

λ

(
δF [qt]

δqt
(x)− Eqt(y)

[
δF [qt]

δqt
(y)

])
, (62)

we get

d

dt
F [qt] = −

∫
dx qt(x)

∥∥∥∥∇x
δF [qt]

δqt
(x)

∥∥∥∥2 − 1

λ

∫
dx qt(x)

(
δF [qt]

δqt
(x)− Eqt(y)

δF [qt]

δqt
(y)

)2

(63)

− 1

λ

∫
dx qt(x)

(
δF [qt]

δqt
(x)− Eqt(y)

[
δF [qt]

δqt
(y)

])
︸ ︷︷ ︸

=0

Eqt(z)

[
δF [qt]

δqt
(z)

]
≤ 0. (64)
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Note that the considered growth term preserves the normalization of the density, i.e.,∫
dx

∂qt
∂t

(x) =

∫
dx gt(x)qt(x) = −

∫
dx qt(x)

(
δF [qt]

δqt
(x)− Eqt(y)

[
δF [qt]

δqt
(y)

])
= 0.

(65)

Thus, our functional F [q] decreases when the density qt evolves according to the PDE

∂qt
∂t

(x) = −∇x ·
(
qt(x)

(
−∇x

δF [qt]

δqt
(x)

))
︸ ︷︷ ︸

the continuity equation

− 1

λ

(
δF [qt]

δqt
(x)− Eqt(y)

[
δF [qt]

δqt
(y)

])
︸ ︷︷ ︸

growth term

qt(x),

(66)

and reaches its stationary point when
∥∥∥∇x

δF [qt]
δqt

(x)
∥∥∥2 = 0, i.e., δF [qt]

δqt
(x) ≡ constant.

Note, that in the same way, we can consider the continuity equation and the growth term separately,
which defines the gradient flows under 2-Wasserstein and Fisher–Rao metrics respectively. The
corresponding PDEs are

∂qt
∂t

(x) = −∇x ·
(
qt(x)

(
−∇x

δF [qt]

δqt
(x)

))
, (67)

∂qt
∂t

(x) = −
(
δF [qt]

δqt
(x)− Eqt(y)

[
δF [qt]

δqt
(y)

])
qt(x). (68)

B Imaginary-time Schrödinger equation as the gradient flow under
Fisher–Rao Metric

Theorem. Eq. (12) defines the gradient flow of the energy functional E[q] under the Fisher–Rao
metric.

Proof. First, we derive the functional derivative of the energy functional E[q]. We denote the
differential of the functional F (q) along the direction h as

dF (q)[h] =

∫
dx h · δF [q]

δq
, (69)

where δF [q]/δq is the functional derivative.

Consider the energy functional

E[q] =

∫
dx q

[
V − 1

4
∇2

x log q −
1

8
∥∇x log q∥2

]
. (70)

The functional derivative of this functional is as follows

dE(q)[h] =
∂E(q + ε · h)

∂ε

∣∣∣∣
ε=0

=

∫
dx h

[
V − 1

4
∇2

x log q −
1

8
∥∇x log q∥2

]
−

∫
dx q

[
1

4
∇2

x

h

q
+

1

4
⟨∇x log q,∇x

h

q
⟩
]
.

For the last term, we do integration by parts and get∫
dx q

[
1

4
∇2

x

h

q
+

1

4
⟨∇x log q,∇x

h

q
⟩
]
= −1

4

∫
dx

〈
∇xq,∇x

h

q

〉
+

1

4

∫
dx

〈
∇xq,∇x

h

q

〉
= 0.

(71)

Thus, we have

dE(q)[h] =

∫
dx h

[
V − 1

4
∇2

x log q −
1

8
∥∇x log q∥2

]
︸ ︷︷ ︸

δE[q]/δq

, (72)
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and we see that the derivative coincides with the local energy, i.e.,

δE[q]

δq
(x) = Eloc(x) = V (x)− 1

4
∇2

x log q(x)−
1

8
∥∇x log q(x)∥2. (73)

Using the results from Section 2.2, the energy-minimizing gradient flow under Fisher–Rao metric is

∂qt(x)

∂t
= −

[
Eloc(x)− E[qt]

]
qt(x). (74)

Second, we derive the PDE for the time-evolution of the density qt under the imaginary-time
Schrödinger equation.

∂ψt

∂t
=

1

2
∇2

xψt − (V − E[qt])ψt (75)

2ψt
∂ψt

∂t
= ψt∇2

xψt − 2(V − E[qt])ψ
2
t (76)

∂qt
∂t

= ψt∇2
xψt − 2(V − E[qt])qt (77)

(78)

Using the identity

ψ∇2
xψ = ψ∇x · (ψ∇x log |ψ|) = ⟨ψ∇xψ,∇x log |ψ|⟩+ ψ2∇2

x log |ψ| (79)

=
1

4
⟨∇xq,∇x log q⟩+

1

2
q∇2

x log q =
1

4
q∥∇x log q∥2 +

1

2
q∇2

x log q, (80)

we have
∂qt
∂t

= − 2

[
V − 1

4
∇2

x log q −
1

8
∥∇x log qt∥2 − E[qt]

]
qt (81)

∂qt(x)

∂t
= − 2

[
Eloc(x)− E[qt]

]
qt(x), (82)

which is equivalent to Eq. (74).

C Analogies to generative modeling and variational inference literature

To draw a connection to generative models and variational inference literature, we consider the
reverse and forward KL-divergences as an objective to minimize (instead of the energy) and derive
projected gradient flows for them.

C.1 Generative modeling: reverse KL divergence functional

Consider the reverse KL divergence objective, and its first variation

F [qt] = DKL(p ∥ qt) (83)

=⇒ δF
δqt

= − p

qt
, (84)

where p(x) is the data distribution given empirically.

Fisher–Rao Gradient Flow Using equations Eq. (10), the PDE that defines the Fisher–Rao gradient
flow is

∂qt
∂t

(x) =

(
p(x)

qt(x)
− Eqt(y)

[
p(y)

qt(y)

])
qt(x) = p(x)− qt(x) . (85)

Thus we have

qt = exp(−t)q0 + (1− exp(−t))p , (86)

where q0 is the initial distribution. This results in a distributional path constructed by the linear average
(mixture) of the end-point distributions. Note that changing the mixture parameter corresponds to
teleporting the particles.
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Projected Fisher–Rao Gradient Flow Having the functional minimizing PDEs, we can find the
update corresponding to the projected Fisher–Rao gradient flow using Proposition 3.2 and Eq. (17),

∆θ∗ ∝ −
∫
qt

(
δF
δqt

)
∇θ log q(x, θ) dx (87)

= −
∫
qt

(
− p

qt

)
∇θ log q(x, θ) dx (88)

= ∇θEp(x)

[
log q(x, θ)

]
. (89)

This corresponds to the standard maximum likelihood objective that is used for training of energy-
based models (Xie et al., 2016; Du & Mordatch, 2019).

Wasserstein Gradient Flow Using the equation Eq. (9), the PDE that defines the Wasserstein
gradient flow is

∂qt
∂t

(x) = −∇x ·
(
qt(x)∇x

p(x)

qt(x)

)
. (90)

Projected Wasserstein Gradient Flow Having the functional minimizing PDEs, we can find the
update corresponding to the projected Wasserstein gradient flow using Proposition 3.2 and Eq. (17).

∆θ∗ ∝ −∇θ

∫
qt

〈
∇x

δF
δqt

,∇x log q(x, θ)

〉
dx (91)

= ∇θ

∫
qt

〈
∇x

p

qt
,∇x log q(x, θ)

〉
dx (92)

= ∇θ

∫
qt

〈
1

qt
∇xp,∇x log q(x, θ)

〉
dx+∇θ

∫
qt

〈
p
−1

q2t
∇qt,∇x log q(x, θ)

〉
dx (93)

= ∇θ

∫
p
〈
∇x log p,∇x log q(x, θ)

〉
dx−∇θ

∫
p
〈
∇x log qt,∇x log q(x, θ)

〉
dx (94)

= −1

2
∇θEp(x)

[∥∥∥∇x log p(x)−∇x log q(x, θ)
∥∥∥2] . (95)

Note that similar to Proposition 3.2, we use qt(x) = q(x, θ) as the density equal to the model density
but detached from the parameters θ. This objective corresponds to the score-matching objective
(Hyvärinen & Dayan, 2005), which is widely used in the diffusion-based generative models (Song
et al., 2020).

C.2 Variational inference: forward KL divergence functional

Consider the forward KL divergence objective, and its first variation
F [qt] = DKL(qt ∥ p) (96)

=⇒ δF
δqt

= 1 + log
qt
p
. (97)

where p(x) is the target distribution for variational inference.

Fisher–Rao Gradient Flow Using equations Eq. (10), the PDE that defines the Fisher–Rao gradient
flow is

∂

∂t
qt = −gradFRF (98)

= qt

(
−δF
δqt

− Eqt

[
−δF
δqt

])
(99)

= qt

(
−1− log

qt
p
+ Eqt

[
1 + log

qt
p

])
(100)

= qt

(
− log

qt
p
+DKL(qt ∥ p)

)
. (101)
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Thus we have

∂

∂t
log qt = log p− log qt +DKL(qt ∥ p) (102)

=⇒ log qt = exp(−t) log q0 + (1− exp(−t)) log p− logZt (103)

=⇒ qt =
1

Zt
q
exp(−t)
0 p(1−exp(−t)) Zt =

∫
dx q

exp(−t)
0 p(1−exp(−t)) ,

(104)

where q0 is the initial distribution, and Zt is the partition function. This results in a distributional
path constructed by the geometric average of the end-point distributions. Note that changing the
geometric parameter corresponds to teleporting particles. These distributional paths are commonly
used in Annealed Importance Sampling (Neal, 2001).

Projected Fisher–Rao Gradient Flow Having the functional minimizing PDEs, we can find the
update corresponding to the projected Fisher–Rao gradient flow using Proposition 3.2 and Eq. (17),

∆θ∗ ∝ −
∫
qt

(
δF
δqt

)
∇θ log q(x, θ) dx (105)

= −
∫
qt

(
1 + log

qt
p

)
∇θ log q(x, θ) dx (106)

= −
∫

log
qt
p
∇θq(x, θ) dx (107)

= −
∫

log qt∇θq(x, θ) dx+∇θ

∫
q(x, θ) log p dx (108)

= −∇θ

∫
q(x, θ) log q(x, θ) dx+∇θ

∫
q(x, θ) log p dx (109)

= −∇θ

∫
q(x, θ) log

q(x, θ)

p
dx (110)

= −∇θDKL

(
q(x, θ)

∥∥∥ p) . (111)

This corresponds to the standard variational inference objective.

Wasserstein Gradient Flow Using the equation Eq. (9), the PDE that defines the Wasserstein
gradient flow is

∂

∂t
qt = −gradWF (112)

= ∇x ·
(
qt∇x

(
δF
δqt

))
(113)

= ∇x ·
(
qt∇x

(
1 + log

qt
p

))
(114)

= ∇x · (qt∇x(log qt − log p)) (115)
= −∇x · (qt∇x log p) +∇ · (qt∇x log qt) (116)

= −∇x · (qt∇x log p) +∇2
xqt (117)

This is the Fokker–Planck equation, which characterize the movement of the particles according to
Langevin dynamics:

dXt = ∇x log p dt+
√
2dWt .

This is a common approach for sampling from the unnormalized density p(x) via Markov Chain
Monte Carlo algorithms.
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Projected Wasserstein Gradient Flow Having the functional minimizing PDEs, we can find the
update corresponding to the projected Wasserstein gradient flow using Proposition 3.2 and Eq. (17),

=⇒ ∆θ∗ ∝ −∇θ

∫
qt

〈
∇x

δF
δqt

,∇x log q(x, θ)

〉
dx (118)

= −∇θ

∫
qt

〈
∇x

(
1 + log

qt
p

)
,∇x log q(x, θ)

〉
dx (119)

= −∇θ

∫
qt

〈
∇x

(
log

qt
p

)
,∇x log q(x, θ)

〉
dx (120)

= −1

2
Eq(x, θ)

[
∇θ

∥∥∥∇x log q(x, θ)−∇x log p
∥∥∥2] , (121)

which resembles the score-matching objective (Hyvärinen & Dayan, 2005) for variational inference.

D c-Wasserstein gradient flow

c-Wasserstein distance with the convex cost function c : Rd → R is defined

Wc(p0, p1) = inf
π∈Γ(p0,p1)

∫
π(x, y)c(x− y) dxdy, (122)

where Γ(p0, p1) is the set of all possible couplings of p0 and p1. The dynamic formulation of this
distance is the following

Wc(p0, p1) := inf
vt,qt

∫ 1

0

Eqt(x)[c(vt(x))] dt, subj. to (123)

∂qt(x)

∂t
= −∇x · (qt(x)vt(x)) , and q0 = p0, q1 = p1 . (124)

Proposition. The energy-minimizing c-Wasserstein gradient flow is defined by the following PDE

∂qt(x)

∂t
= −∇x · (qt(x)∇c∗(−∇xEloc(x))) , (125)

where c∗(·) is the convex conjugate function of c(·).

Proof. The movement minimizing scheme for Wc(·, ·) is the following optimization problem

inf
q′
F [q′]− F [q] +

1

∆t
Wc(q, q

′). (126)

Assuming that the density changes according to the continuity equation q′(x) = qt(x) −∆t∇x ·
(qt(x)vt(x)) + o(∆t), and ∆t is small enough so that vt(x) defines the optimal transportation plan,
we have

inf
vt
F [qt]−∆t

∫
∇x · (qt(x)vt(x))

δF [qt]

δqt
(x) dx− F [qt] +

1

∆t
∆t2Eqt(x)c(vt(x)) (127)

= ∆t inf
vt

∫
qt(x)

〈
vt(x),∇x

δF [qt]

δqt
(x)

〉
dx+ Eqt(x)c(vt(x)) (128)

= ∆t inf
vt

∫
qt(x)

[
c(vt(x))−

〈
vt(x),−∇x

δF [qt]

δqt
(x)

〉]
dx (129)

= −∆t

∫
qt(x)c

∗
(
−∇x

δF [qt]

δqt
(x)

)
dx (130)

and the infimum is achieved at

vt(x) = ∇c∗
(
−∇x

δF [qt]

δqt
(x)

)
, (131)

which gives the formula for the vector field. Using the energy gradient from Theorem 3.1 δE[qt]
δqt

(x) =

Eloc, we get the result.
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Proposition. Coordinate-wise application of tanh to the vector field, i.e.

∂qt(x)

∂t
= −∇x · (qt(x) tanh(−∇xEloc(x))) , (132)

corresponds to gradient descent with c-Wasserstein distance, where c : Rd → R is the following cost
function

c(x) =

d∑
i

1

2

(
(xi + 1) log(xi + 1) + (1− xi) log(1− xi)

)
− d log 2. (133)

Proof. Consider c∗(x) =
∑

i log(exp(xi) + exp(−xi)). It corresponds to applying hyperbolic
tangent non-linearity coordinate-wise to the vector field field, i.e.,

∂ic
∗(x) =

exp(xi)− exp(−xi)
exp(xi) + exp(−xi)

= tanh(xi). (134)

The corresponding cost function c(x) is the following

c(x) = sup
y
⟨x, y⟩ − c∗(y) (135)

= sup
y

d∑
i

(
xiyi − log(exp(yi) + exp(−yi))

)
(136)

= sup
y

d∑
i

(
(xi + 1)yi − log(exp(2yi) + 1)

)
//yi =

1

2
log

1 + x

1− x
(137)

=

d∑
i

(
(xi + 1)

1

2
log

(
1 + xi
1− xi

)
− log

(
1 + xi
1− xi

+ 1

))
(138)

=

d∑
i

1

2

(
(xi + 1) log(xi + 1) + (1− xi) log(1− xi)

)
− d log 2. (139)
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E Additional experimental results
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Figure 3: Optimization results for different chemical systems (every column corresponds to a given
molecule). The number of electrons is given in the brackets next to systems’ names. Throughout
the optimization, we monitor three values: the mean value of the local energy (lower is better), the
variance of the local energy, and the median value of the gradient norm of the local energy. In the first
row of plots, we average (removing 5% of outliers from both sides) the energy over 1000 iterations
and report the relative error to the actual ground-state energy: (E − E0)/E0. In the second row, we
report standard deviation averaged over 1000 iterations (removing 5% of outliers from both sides). In
the third row, we report the median gradient norm averaged over 1000 iterations (removing 5% of
outliers from both sides). All the metrics are plotted versus the wall time of computations performed
on four Nvidia A40 GPUs.
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