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Abstract

Non-contrastive self-supervised learning (SSL) methods like BYOL and SimSiam
rely on asymmetric predictor networks to avoid representational collapse without
negative samples. Yet, how predictor networks facilitate stable learning is not fully
understood. While previous theoretical analyses assumed Euclidean losses, most
practical implementations rely on cosine similarity. To gain further theoretical
insight into non-contrastive SSL, we analytically study learning dynamics in con-
junction with Euclidean and cosine similarity in the eigenspace of closed-form
linear predictor networks. We show that both avoid collapse through implicit
variance regularization albeit through different dynamical mechanisms. Moreover,
we find that the eigenvalues act as effective learning rate multipliers and propose a
family of isotropic loss functions (IsoLoss) that equalize convergence rates across
eigenmodes. Empirically, IsoLoss speeds up the initial learning dynamics and
increases robustness, thereby allowing us to dispense with the exponential moving
average (EMA) target network typically used with non-contrastive methods. Our
analysis sheds light on the variance regularization mechanisms of non-contrastive
SSL and lays the theoretical grounds for crafting novel loss functions that shape
the learning dynamics of the predictor’s spectrum.

1 Introduction

SSL has emerged as a powerful method to learn useful representations from vast quantities of
unlabeled data [1–8]. In SSL, the network’s objective is to “pull” together its outputs for two
differently augmented versions of the same input, so that they learn representations that are predictive
across randomized transformations [9]. To avoid the trivial solution whereby the network output
becomes constant, also called representational collapse, SSL methods use either a contrastive objective
to “push” apart representations of unrelated images [2, 3, 10–13] or other non-contrastive strategies.
Non-contrastive methods comprise explicit variance regularization techniques [6, 7, 14], whitening
approaches [15, 16], and asymmetric losses as in Bootstrap Your Own Latent (BYOL) [1] and
SimSiam [5]. Asymmetric losses break symmetry between the two branches by passing one of the
representations through a predictor network and stopping gradients from flowing through the other
“target” branch. How this architectural modification prevents representational collapse is not obvious
and has been the focus of several theoretical [17–21] and empirical studies [22–24]. A significant
advance was provided by Tian et al. [17] who showed that linear predictors align with the correlation
matrix of the embeddings, and proposed the closed-form predictor DirectPred based on this insight.
However, previous analyses assumed a Euclidean loss at the output [17–19, 21] except [20], whereas
practical implementations typically use the cosine loss [1, 5] which yields superior performance on
downstream tasks. This difference raises the question whether analysis based on the Euclidean loss
provides an accurate account of the learning dynamics under the cosine loss.
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In this work, we provide a comparative analysis of the learning dynamics for the Euclidean and
cosine-based asymmetric losses in the eigenspace of the closed-form predictor DirectPred. Our
analysis shows how both losses implicitly regularize the variance of the representations, revealing a
connection between asymmetric losses and explicit variance regularization in VICReg [7]. Yet, the
learning dynamics induced by the two losses are markedly different. While the learning dynamics of
different eigenmodes decouple in the Euclidean case, dynamics remain coupled for the cosine loss.

Moreover, our analysis shows that for both losses, the predictor’s eigenvalues act as learning rate
multipliers, thereby slowing down learning for modes with small eigenvalues. Based on our analysis,
we craft an isotropic loss function (IsoLoss) for each case that resolves this problem and speeds up
the initial learning dynamics. Furthermore, IsoLoss works without an EMA target network possibly
because it boosts small eigenvalues, the purported role of the EMA in DirectPred [17]. In summary,
our main contributions are the following:

• We analyze the SSL dynamics in the eigenspace of closed-form linear predictors for asym-
metric Euclidean and cosine losses and show that both perform implicit variance regulariza-
tion, but with markedly different learning dynamics.

• Our analysis shows that predictor eigenvalues act as learning rate multipliers which slows
down learning for small eigenvalues.

• We propose isotropic loss functions for both cases that equalize the dynamics across eigen-
modes and improve robustness, thereby allowing to learn without an EMA target network.

2 Eigenspace analysis of the learning dynamics

To gain a better analytic understanding of the SSL dynamics underlying non-contrastive methods
such as BYOL and SimSiam [1, 5], we analyze them in the predictor’s eigenspace. Specifically we
proceed in three steps. First, building on DirectPred, we invoke the neural tangent kernel (NTK) to
derive simple dynamic expressions of the predictor’s eigenmodes for Euclidean and cosine loss. This
formulation uncovers the implicit variance regularization mechanisms that prevent representational
collapse. Using the eigenspace framework, we illustrate how removing the predictor or the stop-
gradient results in collapse or run-away dynamics. Finally, we find that predictor eigenvalues act
as learning rate multipliers for their associated mode, thereby slowing down learning for small
eigenvalues. We derive a modified isotropic loss function (IsoLoss) that provides more equalized
learning dynamics across modes, which showcases how our analytic insights help to design novel loss
functions that actively shape the predictor spectrum. However, before we start our analysis, we will
briefly review DirectPred [17] and the NTK [25], a powerful theoretical tool linking representational
changes and parameter updates. We will rely on both concepts for our analysis.

2.1 Background and problem setup

We begin by reviewing DirectPred [17] and defining our notation. In the following, we consider a
Siamese neural network z = f (x;θ) with output z ∈ RM , input x ∈ RN , and parameters θ. We
further assume a linear predictor network WP ∈ RM×M and use the same parameters for the online
and target branches as in SimSiam [5]. We denote pairs of representations as z(1), z(2) corresponding
to pairs of inputs x(1),x(2) related through augmentation and implicitly assume that all losses are
averaged over many augmented pairs. The asymmetric loss function (Fig. 1a), introduced in BYOL
[1], is then given by:

L = d
(
WPz

(1),SG(z(2))
)
,

where SG denotes the stop-gradient operation, and d is either the Euclidean distance metric d(a, b) =
1
2∥a − b∥2 or the cosine distance metric d(a, b) = − a⊤b

∥a∥∥b∥ . We refer to the corresponding loss
functions as Leuc and Lcos respectively.

DirectPred. Tian et al. [17] showed that a linear predictor in the BYOL setting aligns during
learning with the correlation matrix of representations Cz := Ex

[
zz⊤], where the expectation is

taken over the data distribution. Since the correlation matrix is a real symmetric matrix, one can
diagonalize it over R: Cz = UDCU

⊤, where U is an orthogonal matrix whose columns are the
eigenvectors of Cz and DC is the real-valued diagonal matrix of the eigenvalues sm with m ∈ [1,M ].
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Figure 1: (a) Schematic of a Siamese network with a predictor network and a stop-gradient on
the target network branch. The target network can be a copy (SimSiam [5]) or a moving average
(BYOL [1]) of the online network. In either case, the target network is not optimized with gradient
descent. (b) Visualization of learning dynamics under the Euclidean distance metric showing learning
update directions along two eigenmodes, with the light cloud representing the distribution of the
representations z, the darker cloud representing the predictor outputs WPz, and the dotted circle
indicates the steady state λ1,2 = 1, reached during learning. All eigenvalues converge to one.
(c) Same as (b), but for the cosine distance. The dotted line indicates the steady state λ1 = λ2.

Given this eigendecomposition, the authors proposed DirectPred, in which the predictor is not learned
via gradient descent but directly set to:

WP = fα (Cz) = UDα
CU

⊤ , (1)

where α is a positive constant exponent applied element-wise to DC . The eigenvalues λm of the
predictor matrix WP are then λm = sαm. We use D to denote the diagonal matrix containing the
eigenvalues λm. While DirectPred used α = 0.5, the follow-up study DirectCopy [18] showed that
α = 1 is also effective while avoiding the expensive diagonalization step. While Tian et al. [17] based
their analysis on the Euclidean loss Leuc, most practical models, including Tian et al.’s large-scale
experiments, relied on the cosine similarity loss Lcos. This discrepancy raises the question to what
extent setting the predictor to the above expression is justified for the cosine loss. Empirically, we find
that a trainable linear predictor does align its eigenspace with that of the representation correlation
matrix also for the cosine loss (see Fig. 4 in Appendix A).

Neural tangent kernel (NTK). The NTK is a powerful analytical tool characterizing the learning
dynamics of neural networks [25, 26]. Here, we recall the definition of the empirical NTK [26]
corresponding to a single instantiation of the network’s parameters θ. If |D| denotes the size of the
training dataset, L : RM → R an arbitrary loss function, X , the training data concatenated into one
vector of size N |D|, and Z = z(X ), the concatenated output of size M |D|, then the empirical NTK is
the (M |D| ×M |D|)-sized matrix:

Θt(X ,X ) = ∇θZ∇θZ⊤,

and the continuous-time gradient-descent dynamics [26] of the representations z are given by:

dz

dt
= −ηΘt(x,X )∇ZL . (2)

In other words, the empirical NTK links the representational dynamics dz
dt under gradient descent on

the parameters θ, and the “representational gradient” ∇ZL.

2.2 Implicit variance regularization in non-contrastive SSL

As a starting point for our analysis, we first express the relevant loss functions in the eigenbasis of the
predictor network. We do this using a closed-form linear predictor as prescribed by DirectPred. In
the following, we use ẑ = U⊤z to denote the representation expressed in the eigenbasis.
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Lemma 1. (Euclidean and cosine loss in the predictor eigenspace) Let WP be a linear predictor set
according to DirectPred with eigenvalues λm, and ẑ the representations expressed in the predictor’s
eigenbasis. Then the asymmetric Euclidean loss Leuc and cosine loss Lcos can be expressed as:

Leuc = 1
2

M∑

m

|λmẑ(1)m − SG(ẑ(2)m )|2 , (3)

Lcos = −
M∑

m

λmẑ
(1)
m SG(ẑ

(2)
m )

∥Dẑ(1)∥∥SG(ẑ(2))∥
. (4)

for which we defer the simple proof to Appendix B. Rewriting the losses in the eigenbasis makes
it clear that the asymmetric loss with DirectPred can be viewed as an implicit loss function in the
predictor’s eigenspace, where the variance of each mode naturally appears through the λm terms. In
the following analysis, we will show how the learning dynamics implicitly regularize these variances
λm. From Eq. (3) we directly see that Leuc is a sum of M terms, one for each eigenmode, which
decouples the learning dynamics, a fact first noted by Tian et al. [17]. In contrast, the form of Lcos

yields coupled dynamics due to the ∥Dẑ(1)∥ =

√∑
k(λkẑ

(1)
k )2 term in the denominator. This

coupling arises from the normalization of the representation vectors to the unit hypersphere when
calculating the cosine distance. The normalization effectively removes one degree of freedom and, in
the process, adds a dependence between all the representation dimensions (Fig. 1b and 1c).

To get an analytic handle on the evolution of the eigen-representations ẑ as the encoder learns, we
first note that if training were to update the representations directly, instead of indirectly through
updating the weights θ, they would evolve along the following “representational gradients”:

∇ẑ(1)Leuc =
(
Dẑ(1) − ẑ(2)

)
D , (5)

∇ẑ(1)Lcos = − Dẑ(2)

∥Dẑ(1)∥∥ẑ(2)∥
+

(Dẑ(1))⊤ẑ(2)

∥Dẑ(1)∥3∥ẑ(2)∥
D2ẑ(1) . (6)

In practice, however, representations of different samples do not evolve independently along these
gradients, but influence each other through parameter changes in θ. This interdependence of rep-
resentations and parameters are captured by the empirical NTK Θt(X ,X ) (cf. Eq. (2)). Because
the NTK is positive semi-definite, loosely speaking, gradient descent on the parameters changes
representations “in the direction” of the above representational gradients.

To see this link more formally, we express the NTK in the eigenbasis as Θ̂t(X ,X ) = ∇θẐ∇θẐ⊤

where Ẑ = ẑt(X ) = U⊤zt(X ). Since we are concerned with the learning dynamics in this rotated
basis, we will rewrite Eq. (2) for continuous-time gradient descent for a generic loss function L as:

dẑ

dt
= −ηΘ̂t(x,X )∇ẐL . (7)

Note, that structurally these dynamics are the same as the embedding space dynamics in Eq. (2) but
merely expressed in the predictor eigenbasis (see Lemma 2 in Appendix B for a derivation). Although
Θ̂t changes over time and is generally intractable in finite-width networks, it is positive semidefinite.
This property guarantees that the cosine angle between the representational training dynamics under
the parameter-space optimization of a neural network d

dt Ẑ ∝ −Θ̂t∇ẐL and the dynamics that would
result from optimizing the representations d

dt Ẑ ∝ −∇ẐL is non-negative:
〈
−∇ẐL,

dẐ
dt

〉
= η

〈
∇ẐL, Θ̂t∇ẐL

〉
≥ 0.

In other words, the representational updates due to network training lie within a 180-degree cone of
the dynamics prescribed by Eqs. (5) and (6). This guarantee makes it possible to draw qualitative
conclusions about asymptotic collective behavior, e.g., whether a network is bound to collapse or not,
from analyzing the more tractable dynamics that follow the representational gradients d

dt Ẑ ∝ −∇ẐL
of the transformed BYOL/SimSiam loss. For ease of analysis, we now consider linear networks with
Gaussian i.i.d inputs, an important limiting case amenable for theoretical analysis [27]. In this setting
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the empirical NTK becomes the identity and the simplified representational dynamics are exact,
allowing us to fully characterize the representational dynamics for Leuc and Lcos in the following
two theorems. In the proofs for these theorems, we show that the assumption of Gaussian inputs can
be relaxed further.

Theorem 1. (Representational dynamics under Leuc) For a linear network with i.i.d Gaussian
inputs learning with Leuc, the representational dynamics of each mode m independently follow the
gradient of the loss −∇ẑLeuc. More specifically, the dynamics uncouple and follow M independent
differential equations:

dẑ
(1)
m

dt
= −η

∂Leuc

∂ẑ
(1)
m

(t) = ηλm

(
ẑ(2)m − λmẑ(1)m

)
, (8)

which, after taking the expectation over augmentations yields the dynamics:

dẑm
dt

= ηλm (1− λm) ẑm . (9)

We provide the proof in Appendix B and appreciate that d
dt ẑm has the same sign as ẑm whenever

λm < 1 and the opposite sign whenever λm > 1. These dynamics are convergent and approach an
eigenvalue λm of one, thereby preventing collapse of mode m. Since the eigenmodes are orthogonal
and uncorrelated, and the condition simultaneously holds for all modes, this ultimately prevents
both representational and dimensional collapse [28]. Since the eigenvalues also correspond to the
variance of the representations, the underlying mechanism constitutes an implicit form of variance
regularization. Finally, we note that the above decoupling of the dynamics for the Euclidean loss has
been described previously in Tian et al. [17].

Nevertheless, the representational dynamics are different for the commonly used cosine loss Lcos.

Theorem 2. (Representational dynamics under Lcos) For a linear network with i.i.d Gaussian inputs
trained with Lcos, the dynamics follow a system of M coupled differential equations:

dẑ
(1)
m

dt
= η

λm

∥Dẑ(1)∥3∥ẑ(2)∥
∑

k ̸=m

λk

(
λk(ẑ

(1)
k )2ẑ(2)m − λmẑ(1)m ẑ

(1)
k ẑ

(2)
k

)
, (10)

and reach a regime in which the eigenvalues are comparable in magnitude. In this regime, the
expected update over augmentations is well approximated by:

dẑm
dt

≈ ηλm · E
[

ẑ2m
∥Dẑ∥3

]
· E
[
ẑm
∥ẑ∥

]
·
∑

k ̸=m

λk (λk − λm) , (11)

where we have assumed averages over augmentations. See Appendix B for the proof. Theorem 2
states that d

dt ẑm has the same or different sign as ẑm depending on the sign of the aggregate sum∑
k ̸=m λk(λk − λm). This relation suggests that a steady state is only reached through mutual

agreement when the non-zero eigenvalues are all equal. In contrast to the Euclidean case, there is
no pre-specified target value (see Fig. 5 in Appendix A). Thus, the cosine loss also induces implicit
variance regularization, but through a markedly different mechanism in which eigenmodes cooperate.

2.3 Stop-grad and predictor network are essential for implicit variance regularization.

We now extend our analysis to explain the known failure modes due to ablating the predictor or the
stop-gradient for each distance metric. When we omit the stop-grad operator from Leuc, we have:

Leuc
noSG = 1

2∥WPz
(1) − z(2)∥2 ⇒ dẑm

dt
= −η (1− λm)

2
ẑm , (12)

so that d
dt ẑm and ẑm always have opposite signs (see Appendix C for the derivation). This drives

the representations toward zero with exponentially decaying eigenvalues, causing the notorious
representational collapse [5]. Omitting the stop-grad operator from Lcos yields a nontrivial expression
for the dynamics causing the largest eigenmode to diverge (see Appendix C) . Interestingly, this is
different from the collapse to zero inferred for the Euclidean distance.
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Similarly, when removing the predictor network in the Euclidean loss case, the dynamics read:

Leuc
noPred = 1

2∥z(1) − SG(z(2))∥2 ⇒ dẑm
dt

= 0 , (13)

meaning that no learning updates occur. When the predictor is removed in the cosine loss case, the
dynamics are:

Lcos
noPred = −

(
z(1)

)⊤
SG(z(2))

∥z(1)∥∥SG(z(2))∥ ⇒ dẑm
dt

= η
∑

k ̸=m

(
E
[

ẑ2k
∥ẑ∥3

]
E
[
ẑm
∥ẑ∥

]
− E

[
ẑmẑk
∥ẑ∥3

]
E
[
ẑk
∥ẑ∥

])
.

(14)

As we show in Appendix C, these dynamics also avoid collapse. However, the effective learning
rates become impractically small without the eigenvalue factors from Eq. (11). We summarized the
predicted dynamics of all settings in Table 1. Thus, our analysis provides mechanistic explanations
for why stop-grad and predictor networks are required for avoiding collapse in non-contrastive SSL.

Table 1: Summary of eigendynamics as predicted by our analysis for linear networks.

Loss dẑm/dt ∝ Predicted dynamics

Leuc λm(1− λm) λs converge to 1, large ones faster.

Leuc
noSG −(1− λm)2 All λs collapse.

Leuc
noPred 0 No learning updates.

Leuc
iso (1− λm) λs converge to 1 at homogeneous rates.

Lcos λm

∑
k ̸=m λk(λk − λm) λs converge to equal values.

Lcos
noSG Appendix C All λs diverge.

Lcos
noPred Appendix C λs converge to equal values at low rates.

Lcos
iso

∑
k ̸=m λk(λk − λm) λs converge to equal values at homogeneous rates.

2.4 Isotropic losses that equalize convergence across eigenmodes

In Eqs. (9) and (11) the eigenvalues appear as multiplicative learning rate modifiers in front of the
difference terms that determine the fixed point. Hence, modes with larger eigenvalues converge
faster than modes with smaller eigenvalues, reminiscent of previous theoretical work on supervised
learning [27]. We hypothesized that the anisotropy in learning dynamics could lead to slow con-
vergence for small eigenvalue modes or instability for large eigenvalues. To alleviate this issue, we
designed alternative isotropic loss functions that equalize relaxation dynamics for all eigenmodes by
exploiting the stop-grad function. Put simply, this involves taking the dynamics from Eqs. (8) and
(10), removing the leading λm term, and deriving the loss function that would result in the desired
dynamics. One such isotropic “IsoLoss” function for the Euclidean distance is:

Leuc
iso = 1

2∥z(1) − SG(z(2) + z(1) −WPz
(1))∥2. (15)

We note that this IsoLoss has the same numerical value as Leuc, but the gradient flow is modified by
placing the prediction inside the stop-grad and also adding and subtracting z(1) inside and outside of
the stop-grad. The associated idealized learning dynamics in our analytic framework are given by:

dẑm
dt

= η (1− λm) ẑm, (16)

where the λm factor (cf. Eq. (9)) disappeared (Table 1). Similarly, for the cosine distance,

Lcos
iso = −(z(1))⊤SG

(
z(2)

∥WPz(1)∥∥z(2)∥

)
+

1

2
SG

(
(WPz

(1))⊤z(2)

∥WPz(1)∥3∥z(2)∥

)
∥W 1/2

P z(1)∥2 (17)

is one possible IsoLoss, in which W
1/2
P = UD1/2U⊤ with the square-root applied element-wise to

the diagonal matrix D. While this IsoLoss does not preserve numerical equality with the original loss
Lcos, it achieves the desired effect of removing the leading λm learning-rate modifier (cf. Table 1).
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Figure 2: Evolution of representations (top) and eigenvalues (below) of WP throughout training
with different loss functions. The representational trajectories correspond to training with M = 2 for
visualization and the points signify the final network outputs. The eigenvalues were computed with
dimensions N = 15 and M = 10. (a) Omitting the stop-grad leads to representational collapse in the
Euclidean case (top), and diverging eigenvalues for the cosine case (bottom). (b) No learning occurs
without the predictor with the Euclidean distance, but learning does occur with the cosine distance,
although at low rates. Note the change in scale of the time-axis. (c) Optimizing the BYOL/SimSiam
loss leads to isotropic representations under both distance metrics. (d) Optimizing IsoLoss has the
same effect, but with uniform convergence dynamics for all eigenvalues for both distance metrics.

3 Numerical experiments

To validate our theoretical findings (cf. Table 1), we first simulated a small linear Siamese neural
network as shown in Fig.1a, for which Theorems 1 and 2 hold exactly. We fed the network with
independent standard Gaussian inputs, and generated pairs of augmentations using isotropic Gaussian
perturbations of standard deviation σ = 0.1. We then trained the linear encoder with each config-
uration described above. Training the network with Leuc

noSG resulted in collapse with exponentially
decaying eigenvalues, whereas Lcos

noSG succumbed to diverging eigenvalues as predicted (Fig. 2a).
Training without the predictor caused vanishing updates for Leuc

noPred and slow learning for Lcos
noPred, in

line with our analysis (Fig. 2b). Optimizing Leuc, the representations become increasingly isotropic
with all the eigenvalues λm converging to one (Fig. 2c, top), whereas optimizing Lcos also resulted in
the eigenvalues converging to the same value, but different from one (Fig. 2c, bottom). The anisotropy
in the dynamics of different eigenmodes noted above is particularly striking in the case of the Eu-
clidean distance (Fig. 2c). Training with Leuc

iso and Lcos
iso resulted in similar convergence properties as

their non-isotropic counterparts, but the eigenmodes converged at more homogeneous rates (Fig. 2d).
Finally, we confirmed that these findings were qualitatively similar in the corresponding nonlinear
networks with ReLU activation (see Fig. 6 in Appendix A). Thus, our theoretical findings hold up in
simple Siamese networks.
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Figure 3: Learning dynamics for a ResNet-18 network trained with different loss functions. (a) Evo-
lution of the eigenvalues of the representation correlation matrix during training for closed-form
predictors as prescribed by DirectPred (left) and IsoLoss (center). Right: Standard BYOL with
the nonlinear trainable predictor. For clarity, we plot only one in ten eigenvalues. Both Leuc and
Leuc
iso drive the eigenvalues to converge quickly and remain constant thereafter with relatively small

fluctuations (note the logarithmic scale). BYOL results in the eigenvalues being spread across a
large range of magnitudes. (b) Linear readout validation accuracy for Leuc and Leuc

iso during the first
500 training epochs. IsoLoss accelerates the initial learning dynamics as predicted by the theory.
(c) Same as in (a) but for the cosine distance. Lcos recruits few large eigenvalues, but drives them
gradually to the same magnitude, whereas Lcos

iso quickly recruits all eigenvalues and causing them
to converge to an isotropic solution. In contrast, BYOL recruits eigenvalues in a step-wise manner.
(d) Same as (b) but for the cosine distance.

3.1 Theory qualitatively captures dynamics in nonlinear networks and real-world datasets.

To investigate how well our theoretical analysis holds up in non-toy settings, we performed several
self-supervised learning experiments on CIFAR-10, CIFAR-100 [29], STL-10 [30], and TinyIma-
geNet [31]. We based our implementation1 on the Solo-learn library [32], and used a ResNet-18
backbone [33] as the encoder and the cosine loss, unless mentioned otherwise (see Appendix D for
details). As baselines for comparison, we trained the same backbone using BYOL with the nonlinear
predictor and DirectPred with the closed-form linear predictor. We recorded the online readout
accuracy of a linear classifier trained on frozen features following standard practice, evaluated either
on the held-out validation or test set where available.

We found that the eigenvalue dynamics of the representational correlation matrix in the ResNet-18
closely mirrored the analytical predictions for the closed-form predictor. For Euclidean distances
(Fig. 3a), the eigenvalues for DirectPred and IsoLoss converged to a small range of values around
one. However, the dynamics for BYOL with a learnable nonlinear predictor deviated significantly
with the eigenvalues distributed over a larger range. Consistent with our analysis, IsoLoss had faster
initial dynamics for the eigenvalues which also resulted in a faster initial improvements in model
performance (Fig. 3b). The faster learning with IsoLoss was even more evident for the cosine distance
(Fig. 3c). Surprisingly, BYOL, which uses a nonlinear predictor also closely matched the predicted
dynamics in the case of the cosine distance. Furthermore, the dynamics showed a stepwise learning
phenomenon wherein eigenvalues are progressively recruited one-by-one, consistent with recent
findings for other SSL methods [34]. Finally, IsoLoss exhibited faster initial learning (Fig. 3d),
in agreement with our theoretical analysis. Thus, our theoretical analysis accurately predicts key
properties of the eigenvalue dynamics in nonlinear networks trained on real-world datasets.

1Code is available at https://github.com/fmi-basel/implicit-var-reg
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3.2 IsoLoss promotes eigenvalue recruitment and works without an EMA target network.

To further investigate the impact of IsoLoss on learning, we first verified that it does not have
any adverse effects on downstream classification performance. We found that IsoLoss matched or
outperformed DirectPred on all benchmarks (Table 2) when trained with an EMA target network as
used in the original studies. Yet, it performed slightly worse than BYOL, which uses a nonlinear
predictor and an EMA target network. Because EMA target networks are thought to amplify small
eigenvalues [17], we speculated that IsoLoss may work without it. We repeated training for the
closed-form predictor losses without EMA to test this idea. We found that Lcos

iso was indeed robust to
EMA removal. However, it caused a slight drop in performance (Table 2) and a notable reduction
in the recruitment of small eigenvalues (see Fig. 7 in Appendix A). In contrast, optimizing the
standard BYOL/SimSiam loss Lcos with the symmetric linear predictor was unstable, as reported
previously [17]. Finally, we confirmed the above findings also hold for α = 1 (cf. Eq. (1)) as
prescribed by DirectCopy [18] (see Table 3 in Appendix A). Thus, IsoLoss allows training without
an EMA target network.

Table 2: Linear readout validation accuracy in % ± stddev over five random seeds. The † denotes
crashed runs, known to occur with symmetric predictors like DirectPred [17]. Starred values ∗ were
taken from the Solo-learn library [32].

Model EMA CIFAR-10 CIFAR-100 STL-10 TinyImageNet

BYOL Yes 92.6∗ 70.5∗ 91.7 ± 0.1 38.3 ± 1.5
SimSiam No 90.7 ± 0.2 66.3 ± 0.4 87.5 ± 0.7 39.8 ± 0.6

DirectPred (α = 0.5) Yes 92.0 ± 0.2 66.6 ± 0.5 88.8 ± 0.3 40.1 ± 0.5
No 12.1 ± 1.3† 1.6 ± 0.6† 10.4 ± 0.1† 1.3 ± 0.2†

IsoLoss (ours) Yes 91.5 ± 0.2 69.0 ± 0.2 89.0 ± 0.3 44.8 ± 0.4
No 91.5 ± 0.2 64.3 ± 0.3 87.4 ± 0.1 40.4 ± 0.4

The above result suggests that IsoLoss promotes the recruitment of small eigenvalues in closed-form
predictors. Another factor that has been implicated in suppressing recruitment is weight decay [18].
To probe how weight decay and IsoLoss affect small eigenvalue recruitment, we repeated the above
simulations with EMA and different amounts of weight decay. Indeed, we observed less eigenvalue
recruitment with increasing weight decay for DirectPred (Appendix A, Fig. 8a), but not for IsoLoss
(Fig. 8b). However, for IsoLoss larger weight decay resulted in lower magnitudes of all eigenvalues.
Hence, IsoLoss reduces the impact of weight decay on eigenvalue recruitment.

4 Discussion

We provided a comprehensive analysis of the SSL representational dynamics in the eigenspace of
closed-form linear predictor networks (i.e., DirectPred and DirectCopy) for both the Euclidean loss
and the more commonly used cosine similarity. Our analysis revealed how asymmetric losses prevent
representational and dimensional collapse through implicit variance regularization along orthogonal
eigenmodes, thereby formally linking predictor-based SSL with explicit variance regularization
approaches [6, 7, 14]. Our work provides a theory framework which further complements the
growing body of work linking contrastive and non-contrastive SSL [24, 35–38].

We empirically validated the key predictions of our analysis in linear and nonlinear network models
on several datasets, including CIFAR-10/100, STL-10, and TinyImageNet. Moreover, we found
that the eigenvalues of the predictor network act as learning rate multipliers, causing anisotropic
learning dynamics. We derived Euclidean and cosine IsoLosses, which counteract this anisotropy and
enable closed-form linear predictor methods to work without an EMA target network, thereby further
consolidating its presumed role in boosting small eigenvalues [17].

To our knowledge, this is the first work to comprehensively characterize asymmetric SSL learning
dynamics for the cosine distance metric widely used in practice. However, our analysis rests on
several assumptions. First, the analytic link through the NTK between gradient descent on parameters
and the representational changes is an approximation in nonlinear networks. Moreover, we assumed
Gaussian i.i.d inputs for proving Theorems 1 and 2. Although these assumptions generally do not
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hold in nonlinear networks, our analysis qualitatively captures their overall learning behavior and
predicts how networks respond to changes in the stop-grad placement.

In summary, we have provided a simple theoretical explanation of how asymmetric loss configurations
prevent representational collapse in SSL and elucidate their inherent dependence on the placement of
the stop-grad operation. We further demonstrated how the eigenspace framework allows crafting new
loss functions with a distinct impact on the SSL learning dynamics. We provided one specific example
of such loss functions, IsoLoss, which equalizes the learning dynamics in the predictor’s eigenspace,
resulting in faster initial learning and improved stability. In contrast to DirectPred, IsoLoss learns
stably without an EMA target network. Our work thus lays out an effective framework for analyzing
and developing new SSL loss functions.
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Figure 4: Eigenspace alignment between Cz = Ex

[
zz⊤] and a linear predictor WP trained with

gradient descent. Following [1], we measure eigenspace alignment as the cosine between ui and
WPui for every eigenvector ui of Cz . (a) Measured alignment for every eigenvector of Cz ordered
by sorted eigenvalue indices over training epochs, when the network is trained with Leuc. (b) Same
as (a) but for training with Lcos.
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Figure 5: Comparison between the dynamics under Euclidean and cosine asymmetric losses for
different initializations in a network with M = 2 output neurons. (a) Observed dynamics of the
eigenvalues in the two-neuron toy network under three different initializations. Both eigenvalues
always converge to 1 regardless of the initialization. (b) Same as (a), but for the cosine distance.
Under different initializations, the two eigenvalues converge to arbitrary, but equal, values.

Table 3: Linear readout validation accuracy in % ± stddev over five random seeds. The † denotes
crashed runs, known to occur with symmetric predictors like DirectPred [1].

Model α EMA CIFAR-10 CIFAR-100 STL-10 TinyImageNet

DirectCopy 1 Yes 91.3 ± 0.2 68.7 ± 0.3 89.3 ± 0.2 45.3 ± 0.3
No 12.1 ± 0.6† 1.5 ± 0.5† 10.3 ± 0.1† 0.6 ± 0.1†

DirectPred 0.5 Yes 92.0 ± 0.2 66.6 ± 0.5 88.8 ± 0.3 40.1 ± 0.5
No 12.1 ± 1.3† 1.6 ± 0.6† 10.4 ± 0.1† 1.3 ± 0.2†

IsoLoss (ours)
1 Yes 91.5 ± 0.2 69.3 ± 0.2 89.1 ± 0.3 45.6 ± 0.9

No 91.4 ± 0.2 63.0 ± 0.3 86.9 ± 0.4 38.5 ± 0.5

0.5 Yes 91.5 ± 0.2 69.0 ± 0.2 89.0 ± 0.3 44.8 ± 0.4
No 91.5 ± 0.2 64.3 ± 0.3 87.4 ± 0.1 40.4 ± 0.4
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Figure 6: Same as Fig. 2 but with a ReLU nonlinearity on the embeddings. We observe learning
dynamics qualitatively similar to the linear network.
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Figure 7: Eigenvalue dynamics for learning under IsoLoss (Lcos
iso ) with and without the EMA target

network. Removing the EMA results in markedly different dynamics with fewer eigenmodes recruited
during training.
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Figure 8: Effect of weight decay on eigenvalue recruitment for DirectPred and IsoLoss. (a) Evolution
of eigenvalues during learning under DirectPred (Lcos) with EMA and different amounts of weight
decay. Decreasing weight decay correlates with the number of eigenvalues recruited during learning.
(b) Same as (a) but for IsoLoss (Lcos

iso ). All eigenvalues are recruited independent of the strength of
weight decay. However, the magnitude of the eigenvalues inversely correlates with the magnitude of
weight-decay.
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B Proofs

Lemma 1. (Euclidean and cosine loss in the predictor eigenspace) Let WP be a linear predictor set
according to DirectPred with eigenvalues λm, and ẑ the representations expressed in the predictor’s
eigenbasis. Then the asymmetric Euclidean loss Leuc and cosine loss Lcos can be expressed as:

Leuc = 1
2

M∑

m

|λmẑ(1)m − SG(ẑ(2)m )|2 , (3)

Lcos = −
M∑

m

λmẑ
(1)
m SG(ẑ

(2)
m )

∥Dẑ(1)∥∥SG(ẑ(2))∥
. (4)

Proof. Under DirectPred, the predictor is a symmetric matrix with eigendecomposition WP =
UDU⊤. Since U is an orthogonal matrix, we also have UU⊤ = I so that we can simplify the losses
as follows:

Leuc = 1
2∥WPz

(1) − SG(z(2))∥2

= 1
2∥UDU⊤z(1) − SG(UU⊤z(2))∥2

= 1
2∥Dẑ(1) − SG(ẑ(2))∥2

= 1
2

M∑

m

|λmẑ(1)m − SG(ẑ(2)m )|2

L = −
(
WPz

(1)
)⊤

SG(z(2))

∥WPz(1)∥∥SG(z(2))∥

= − (z(1))⊤UDU⊤ SG(z(2))

∥UDU⊤z(1)∥∥SG(UU⊤z(2))∥

= − (ẑ(1))⊤D SG(ẑ(2))

∥Dẑ(1)∥∥SG(ẑ(2))∥

= −
M∑

m

λmẑ
(1)
m SG(ẑ

(2)
m )

∥Dẑ(1)∥∥SG(ẑ(2))∥
,

where we used the fact that U is orthogonal and therefore does not change the Euclidean norm.
ẑ = U⊤z is the representation rotated into the eigenbasis.
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Lemma 2. (Learning dynamics in a rotated basis) Assuming that a given loss L is optimized by
gradient descent on the parameters of a neural network with network outputs z, a given orthogonal
transformation ẑ = U⊤z and learning rate η, then the rotated representations ẑ evolve according to
the dynamics:

dẑ

dt
= −ηΘ̂t(x,X )∇ẐL ,

where Θ̂t(X ,X ) = ∇θẐ∇θẐ⊤ is the empirical NTK expressed in the rotated basis.

Proof. Let θ be the parameters of the neural network. Then we obtain the representational dynamics
using the chain rule in the continuous-time gradient-flow setting [2]:

dẑ

dt
= ∇θẑ

dθ

dt
= ∇θẑ (−η∇θL)
= ∇θẑ

(
−η∇θẐ⊤∇ẐL

)

= −ηΘ̂t(x,X )∇ẐL .

The above is a reiteration of the derivation of Eq. (2) given by Lee et al. [2], with an additional
orthogonal transformation on the network outputs.

We proceed by proving the following Lemma which we will use in our proofs of Theorems 1 and 2.
Lemma 3. The NTK for a linear network is invariant under orthogonal transformations of the
network output.

Proof. We first note that for a linear network, the parameters θ are just the feedforward weights W .
Therefore, for any orthogonal transformation U of the network output:

ẑ = U⊤f(x) = U⊤Wx

⇒ ∇θẑ = ∇W ẑ = ∇W

(
U⊤Wx

)
= x⊤ ⊗ U⊤, (18)

where ⊗ is the Kronecker product resulting from the fact that every input vector component appears
in the update once for each output component.

We now study Θ̂t(X ,X ), the transformed empirical NTK (cf. Lemma 2). The (M ×M) diagonal
blocks in the full (M |D| ×M |D|) empirical NTK Θ̂t(X ,X ) correspond to single samples and the
off-diagonal blocks are cross-terms between samples, where |D| denotes the size of the training
dataset and M the dimension of the outputs. We can develop a generic expression for each (M ×M )
block Θ̂t(xi,xj) corresponding to the interactions between samples i and j as:

Θ̂t(xi,xj) = ∇W ẑi∇W ẑ⊤
j

=
(
x⊤
i ⊗ U⊤) (x⊤

j ⊗ U⊤)⊤

=
(
x⊤
i ⊗ U⊤) (xj ⊗ U)

=
(
x⊤
i xj

)
⊗
(
U⊤U

)

=
(
x⊤
i xj

)
⊗ IM

=
(
x⊤
i xj

)
IM. (19)

where we have used the fact that (A⊗B)⊤ = A⊤ ⊗B⊤ and (A⊗B)(C ⊗D) = AC ⊗BD. Here,
IM is the identity matrix of size M . Noting that Eq. (19) is unchanged when U is just the identity
matrix completes the proof.
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Theorem 1. (Representational dynamics under Leuc) For a linear network with i.i.d Gaussian
inputs learning with Leuc, the representational dynamics of each mode m independently follow the
gradient of the loss −∇ẑLeuc. More specifically, the dynamics uncouple and follow M independent
differential equations:

dẑ
(1)
m

dt
= −η

∂Leuc

∂ẑ
(1)
m

(t) = ηλm

(
ẑ(2)m − λmẑ(1)m

)
, (8)

which, after taking the expectation over augmentations yields the dynamics:

dẑm
dt

= ηλm (1− λm) ẑm . (9)

Proof. For a linear network with weights W ∈ RM×N , we have from Lemma 3 that the empirical
NTK Θ̂(X ,X ) in the orthogonal eigenbasis is equal to the empirical NTK Θ(X ,X ) in the original
basis. Furthermore from the proof for the lemma (see Eq. (19) above), each (M ×M) block of the
full (M |D| ×M |D|) empirical NTK is given by:

Θ̂t(xi,xj) =
(
x⊤
i xj

)
IM. (20)

where IM ∈ RM×M is the identity. Eq. (20) gives the total effective interaction between the samples
i and j from the dataset. For high-dimensional inputs x drawn from an i.i.d standard Gaussian
distribution, we have x⊤

i xj ≈ δij by the central limit theorem. Therefore, in the special case of
a linear network with Gaussian i.i.d inputs, the representational dynamics (Lemma 2) simplify as
follows:

dẑ
(1)
i

dt
= −ηΘ̂t(xi,X )∇ẐL

= −ηΘ̂t(xi,xi)∇ẑi
L − η

∑

j ̸=i

Θ̂t(xi,xj)∇ẑj
L

= −η
(
x⊤
i xi

)
∇ẑi

L − η
∑

j ̸=i

(
x⊤
i xj

)
∇ẑj

L

= −η∇ẑi
L . (21)

While the assumption of Gaussian i.i.d inputs is quite restrictive, we offer a generalizing interpretation
here. Specifically, the above argument also holds when the inputs x are not all mutually orthogonal,
but fall into P orthogonal clusters in the input dataset. Then, we would have x⊤

i xj ≈ δpi=pj where
pi is the “label” of the cluster corresponding to sample i. If Pi is the number of all the samples with

the same label pi, then Eq. (21) would simply be scaled to give dẑ
(1)
i

dt = −ηPi∇ẑi
L.

For brevity, we proceed with the simplest case Eq. (21) in which every input is orthogonal. For Leuc,
the representational gradient ∇ẑi

L is then given by:

∇ẑi
Leuc =

(
Dtẑ

(1)
i − ẑ

(2)
i

)
Dt

Noting that Dt is just a diagonal matrix containing the eigenvalues λm and dropping the sample
subscript i for notational ease, we obtain for the m-th component of ∇ẑi

Leuc:

∂Leuc

∂ẑm
= λm(λmẑ(1)m − ẑ(2)m ) .

Substituting this result in Eq. (21) gives us Eq. (8), the expression we were looking for. Finally,
introducing ẑm ≡ E[ẑ(1)m ] = E[ẑ(2)m ] as the expectation over augmentations, we find that each
eigenmode evolves independently in expectation value as:

E

[
dẑ

(1)
m

dt

]
=

dẑm
dt

= ηλm

(
E[ẑ(2)m ]− λmE[ẑ(1)m ]

)

= ηλm (1− λm) ẑm .
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Theorem 2. (Representational dynamics under Lcos) For a linear network with i.i.d Gaussian inputs
trained with Lcos, the dynamics follow a system of M coupled differential equations:

dẑ
(1)
m

dt
= η

λm

∥Dẑ(1)∥3∥ẑ(2)∥
∑

k ̸=m

λk

(
λk(ẑ

(1)
k )2ẑ(2)m − λmẑ(1)m ẑ

(1)
k ẑ

(2)
k

)
, (10)

and reach a regime in which the eigenvalues are comparable in magnitude. In this regime, the
expected update over augmentations is well approximated by:

dẑm
dt

≈ ηλm · E
[

ẑ2m
∥Dẑ∥3

]
· E
[
ẑm
∥ẑ∥

]
·
∑

k ̸=m

λk (λk − λm) , (11)

Proof. We can retrace the steps from the proof for Theorem 1 until Eq. (21):

dẑ
(1)
i

dt
= −η∇ẑi

L .

∇ẑi
L is a vector of dimension M . Ignoring the sample subscript i for simplicity, and focusing on the

m-th component of ∇ẑi
L, we get:

Lcos = −
M∑

m

λmẑ
(1)
m SG(ẑ

(2)
m )

∥Dẑ(1)∥∥SG(ẑ(2))∥

⇒ ∂L
∂ẑ

(1)
m

= − λmẑ
(2)
m

∥Dẑ(1)∥∥ẑ(2)∥
+

∑
k λkẑ

(1)
k ẑ

(2)
k

∥Dẑ(1)∥3∥ẑ(2)∥
· λ2

mẑ(1)m

= − λm

∥Dẑ(1)∥3∥ẑ(2)∥

[
∥Dẑ(1)∥2ẑ(2)m − λmẑ(1)m

(∑

k

λkẑ
(1)
k ẑ

(2)
k

)]

= − λm

∥Dẑ(1)∥3∥ẑ(2)∥

[(∑

k

λ2
k(ẑ

(1)
k )2

)
ẑ(2)m − λmẑ(1)m

(∑

k

λkẑ
(1)
k ẑ

(2)
k

)]

= − λm

∥Dẑ(1)∥3∥ẑ(2)∥
∑

k ̸=m

λk

(
λk(ẑ

(1)
k )2ẑ(2)m − λmẑ(1)m ẑ

(1)
k ẑ

(2)
k

)

⇒ dẑ
(1)
m

dt
= −η

∂L
∂ẑ

(1)
m

=
ηλm

∥Dẑ(1)∥3∥ẑ(2)∥
∑

k ̸=m

λk

(
λk(ẑ

(1)
k )2ẑ(2)m − λmẑ(1)m ẑ

(1)
k ẑ

(2)
k

)
,

proving Eq. (10). Assuming sufficiently small augmentations, ẑ(1)k and ẑ
(2)
k carry the same sign, and

the net sign of both terms inside the parenthesis is fully determined by γm ≡ sign(ẑ
(1)
m ). Hence, we

may write:

dẑ
(1)
m

dt
=

ηλmγm

∥Dẑ(1)∥3∥ẑ(2)∥
∑

k ̸=m

(
λ2
k(ẑ

(1)
k )2|ẑ(2)m | − λmλk|ẑ(1)m ||ẑ(1)k ||ẑ(2)k |

)
.

It is useful to separate out γm in this manner because every other term in the expression is now
non-negative. Then sign(γm · dẑdt ) = sign(ẑm · dẑmdt ) tells us whether ẑm tends to increase or decrease
in magnitude, as we have argued in the main text.

Asymptotic analysis. To get a handle on how the different eigenvalues influence each other, we
consider two important limiting cases. First, we consider the asymptotic regime dominated by one
eigenvalue, and show that it tends towards a more symmetric solution in which the gap between
different eigenvalues decreases. Second, we derive asymptotic expressions for the near-uniform
regime in which all eigenvalues are comparable in size and show that this solution tends toward the
uniform solution (cf. Eq. (11)).
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To facilitate our analysis, we define each mode’s relative contribution χm ≡ |ẑm|
∥ẑ∥ and evaluate

Eq. (10) taking the expectation value over augmentations:

E

[
dẑ

(1)
m

dt

]
= ηλm

∑

k ̸=m

(
λ2
k · E

[
(ẑ

(1)
k )2ẑ

(2)
m

∥Dẑ(1)∥3∥ẑ(2)∥

]
− λmλk · E

[
ẑ
(1)
m ẑ

(1)
k ẑ

(2)
k

∥Dẑ(1)∥3∥ẑ(2)∥

])

dẑm
dt

= ηλm

∑

k ̸=m

(
λ2
k · E

[
ẑ2k

∥Dẑ∥3
]
· E
[
ẑm
∥ẑ∥

]
− λmλk · E

[
ẑmẑk
∥Dẑ∥3

]
· E
[
ẑk
∥ẑ∥

])

= ηλmγm
∑

k ̸=m

(
λ2
k · E

[
χ2
k

∥ẑ∥2
∥Dẑ∥3

]
· E [χm]− λmλk · E

[
χmχk

∥ẑ∥2
∥Dẑ∥3

]
· E [χk]

)
.

(22)

In the second equality we used the fact that the expectation value taken over augmentations is
conditioned on the input sample, which makes them conditionally independent.

One dominant eigenvalue. First, we consider the low-rank regime in which one eigenvalue
dominates. Without loss of generality, we assume λ1 ≫ λk ∀k ̸= 1. We then have:

χ1 ∼ 1

χk ∼ ϵ (0 < ϵ ≪ 1) ∀ k ̸= 1

Plugging these values into Eq. (22) gives the following dynamics for the dominant eigenmode:

dẑ1
dt

≈ ηλ1γ1
∑

k ̸=1

(
λ2
k · E

[
ϵ2

∥ẑ∥2
∥Dẑ∥3

]
· E [1]− λ1λk · E

[
ϵ
∥ẑ∥2
∥Dẑ∥3

]
E [ϵ]

)

= ηλ1γ1
∑

k ̸=1

(
λ2
kϵ

2 · E
[ ∥ẑ∥2
∥Dẑ∥3

]
· E [1]− λ1λkϵ

2 · E
[ ∥ẑ∥2
∥Dẑ∥3

])

= ηλ1γ1ϵ
2E
[ ∥ẑ∥2
∥Dẑ∥3

]∑

k ̸=1

λk (λk − λ1) .

These updates are always opposite in sign to the representation component, which corresponds to
decaying dynamics for the leading eigenmode because γ1

dẑ1
dt < 0.

For all other modes we have:

dẑm̸=1

dt
≈ ηλmγm

∑

k ̸∈{m,1}

(
λ2
kϵ

2 · E
[ ∥ẑ∥2
∥Dẑ∥3

]
· E [ϵ]− λmλkϵ

2 · E
[ ∥ẑ∥2
∥Dẑ∥3

]
· E [ϵ]

)

+ ηλmγm

(
λ2
1 · E

[ ∥ẑ∥2
∥Dẑ∥3

]
· E [ϵ]− λmλ1ϵ · E

[ ∥ẑ∥2
∥Dẑ∥3

]
· E [1]

)

= ηλmγmϵ · E
[ ∥ẑ∥2
∥Dẑ∥3

]
λ1(λ1 − λm) + ϵ2

∑

k ̸∈{m,1}

λk(λk − λm)




≈ ηλmγmλ1ϵ · E
[ ∥ẑ∥2
∥Dẑ∥3

]
(λ1 − λm) ,

so that γm dẑm
dt > 0, i.e, the updates have the same sign as the representation component, which

corresponds to growth dynamics. In other words: The dominant eigenvalue “pulls all the other
eigenvalues up,” a form of implicit cooperation between the eigenmodes. We also note that the
non-dominant eigenmodes increase at a rate proportional to ϵ, whereas the dominant eigenmode
decreases at a slower rate proportional to ϵ2. Thus, for sensible initializations with at least one
large and many small eigenvalues, the modes will tend toward an equilibrium at some non-zero
intermediate value, without a dominant mode. Next we study this other limiting case in which all
eigenvalues are of similar size.
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Near-uniform regime. To study the dynamics in a near-uniform regime, we note that all χm are
of order O(1) in ẑm, whereas the eigenvalues λm are of order O(ẑ2m). In this setting, the effect of
the eigenvalue terms λm on the dynamics is stronger than the χm terms which are bounded between
0 and 1. With a sufficiently high-dimensional representation, all χm terms will be centered around
1/

√
M . Based on these observations, we may make the simplifying assumption that the contributions

are all approximately equal, i.e, χi = χ for all i. Substituting this value in Eq (22) gives:

dẑm
dt

= ηλmγm · E
[
χ2 ∥ẑ∥2

∥Dẑ∥3
]
· E [χ] ·

∑

k ̸=m

λk (λk − λm) . (23)

Finally, substituting for χ, which by assumption are all approximately equal:

χ ≈ χm =
|ẑm|
∥ẑ∥ ,

and absorbing back the sign from γm, we obtain the approximate dynamics in Eq (11):

dẑm
dt

≈ ηλm · E
[

ẑ2m
∥Dẑ∥3

]
· E
[
ẑm
∥ẑ∥

]
·
∑

k ̸=m

λk (λk − λm)
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C Derivation of idealized learning dynamics for different loss variations

C.1 Removing the stop-grad from the Euclidean loss Leuc

Omitting the stop-grad operator from Leuc gives:

Leuc
noSG =

1

2
∥WPz

(1) − z(2)∥2

=
1

2

M∑

m

|λmẑ(1)m − ẑ(2)m |2 .

Tracing the steps to prove Theorem 1 and assuming Gaussian i.i.d inputs for a linear network, we
write:

∂Leuc
noSG

∂ẑm
=

∂Leuc
noSG

∂ẑ
(1)
m

+
∂Leuc

noSG

∂ẑ
(2)
m

=
(
λmẑ(1)m − ẑ(2)m

)
λm −

(
λmẑ(1)m − ẑ(2)m

)

=
(
λmẑ(1)m − ẑ(2)m

)
(λm − 1)

⇒ dẑm
dt

= −ηE
[
∂Leuc

noSG

∂ẑm

]

= −η
(
λmE[ẑ(1)m ]− E[ẑ(2)m ]

)
(λm − 1)

= −η (1− λm)
2
ẑm ,

which results in decaying representations and thus collapse.

C.2 Removing the stop-grad from the cosine loss Lcos

Following the same arguments as above, omitting the stop-grad operator from Lcos gives:

Lcos
noSG = −

(
WPz

(1)
)⊤

z(2)

∥WPz(1)∥∥z(2)∥

⇒ ∂Lcos
noSG

∂ẑm
=

−λm

∥Dẑ(1)∥3∥ẑ(2)∥
∑

k ̸=m

(
λ2
k(ẑ

(1)
k )2ẑ(2)m − λmλkẑ

(1)
m ẑ

(1)
k ẑ

(2)
k + λ2

kλm(ẑ
(1)
k )3 − λkẑ

(2)
m ẑ

(2)
k ẑ

(1)
k

)

+
−λm

∥Dẑ(1)∥3∥ẑ(2)∥

(
λ3
m(ẑ(1)m )3 − λm(ẑ(2)m )2ẑ(1)m

)
,

so that, when taking the expectation value over augmentations, the dynamics follow:

dẑm
dt

= −ηE
[
∂Lcos

noSG

∂ẑm

]

= ηλmγm
∑

k ̸=m

λk

(
λk · E

[
χ2
k

∥ẑ∥2
∥Dẑ∥3

]
· E [χm]− λm · E

[
χmχk

∥ẑ∥2
∥Dẑ∥3

]
· E [χk]

)

+ ηλmγm
∑

k ̸=m

λk

(
λmλkE

[
χ3
k

∥ẑ∥3
∥Dẑ∥3

]
· E
[

1

∥ẑ∥

]
− E

[
χk

∥ẑ∥
∥Dẑ∥3

]
· E [χmχk∥ẑ∥]

)

+ ηλ2
mγm

(
λ2
mE

[
χ3
m

∥ẑ∥3
∥Dẑ∥3

]
· E
[

1

∥ẑ∥

]
− E

[
χm

∥ẑ∥
∥Dẑ∥3

]
· E
[
χ2
m∥ẑ∥

])
.
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In the asymptotic regime with dominant eigenvalue λ1, we get the dynamics:

dẑ1
dt

= ηλ1γ1
∑

k ̸=m

λk

(
λkϵ

2E
[ ∥ẑ∥2
∥Dẑ∥3

]
− λmϵ2E

[ ∥ẑ∥2
∥Dẑ∥3

])

+ ηλ1γ1
∑

k ̸=m

λk

(
λ1λmϵ3E

[ ∥ẑ∥3
∥Dẑ∥3

]
· E
[

1

∥ẑ∥

]
− ϵ2E

[ ∥ẑ∥
∥Dẑ∥3

]
· E [∥ẑ∥]

)

+ ηλ2
1γ1

(
λ2
1 · E

[ ∥ẑ∥3
∥Dẑ∥3

]
· E
[

1

∥ẑ∥

]
− E

[ ∥ẑ∥
∥Dẑ∥3

]
· E [∥ẑ∥]

)

≈ ηλ4
1γ1 · E

[ ∥ẑ∥3
∥Dẑ∥3

]
· E
[

1

∥ẑ∥

]

dẑm̸=1

dt
= ηλmγm

∑

k ̸∈{m,1}

λk

(
λkϵ

3E
[ ∥ẑ∥2
∥Dẑ∥3

]
− λmϵ3E

[ ∥ẑ∥2
∥Dẑ∥3

])

+ ηλmγmλ1

(
λ1ϵE

[ ∥ẑ∥2
∥Dẑ∥3

]
− λmϵE

[ ∥ẑ∥2
∥Dẑ∥3

])

+ ηλmγm
∑

k ̸∈{m,1}

λk

(
λmλkϵ

3E
[ ∥ẑ∥3
∥Dẑ∥3

]
· E
[

1

∥ẑ∥

]
− ϵ3E

[ ∥ẑ∥
∥Dẑ∥3

]
· E [∥ẑ∥]

)

+ ηλmγmλ1

(
λmλ1E

[ ∥ẑ∥3
∥Dẑ∥3

]
· E
[

1

∥ẑ∥

]
− ϵE

[ ∥ẑ∥
∥Dẑ∥3

]
· E [∥ẑ∥]

)

+ ηλ2
mγm

(
λ2
mϵ3E

[ ∥ẑ∥3
∥Dẑ∥3

]
· E
[

1

∥ẑ∥

]
− ϵ3E

[ ∥ẑ∥
∥Dẑ∥3

]
· E [∥ẑ∥]

)

≈ ηλ2
mγmλ2

1 · E
[ ∥ẑ∥3
∥Dẑ∥3

]
· E
[

1

∥ẑ∥

]
,

Thus, all eigenmodes diverge because γm
dẑm
dt > 0.

Similarly, we find divergent dynamics when starting in the near-uniform regime:

dẑm
dt

= ηλmγmE
[
χ2 ∥ẑ∥2

∥Dẑ∥3
]
· E [χ]

∑

k ̸=m

λk (λk − λm)

+ ηλ2
mγmE

[
χ3 ∥ẑ∥3

∥Dẑ∥3
]
· E
[

1

∥ẑ∥

]∑

k

λ2
k

− ηλmγmE
[
χ

∥ẑ∥
∥Dẑ∥3

]
· E
[
χ2∥ẑ∥

]∑

k

λk

≈ ηλ2
mγmE

[
χ3 ∥ẑ∥3

∥Dẑ∥3
]
· E
[

1

∥ẑ∥

]∑

k

λ2
k ,

selecting the terms with the highest power in the eigenvalues.

Thus, omission of stop-grad precludes successful representation learning for both the Euclidean and
the cosine loss, but due to different mechanisms. Euclidean loss yields collapse, whereas the cosine
loss succumbs to run-away activity.

C.3 Removing the predictor from the Euclidean loss Leuc

To analyze the representational dynamics in the absence of the predictor network, we consider
Leuc
noPred:

Leuc
noPred =

1

2
∥z(1) − SG(z(2))∥2

=
1

2

M∑

m

|ẑ(1)m − SG(ẑ(2)m )|2 .

23



The dynamics resulting from this loss function are a special case of the dynamics derived in Theorem 1
with all the eigenvalues equal to one (λk = 1). In particular Eq. (8) becomes:

dẑ
(1)
m

dt
= −η

∂Leuc
noPred

∂ẑ
(1)
m

(t) = η
(
ẑ(2)m − ẑ(1)m

)
,

which evaluates to 0 under expectation over augmentations. Hence there is no learning without the
predictor.

C.4 Removing the predictor from the cosine loss Lcos

Similarly, when we remove the predictor from Lcos it yields:

Lcos
noPred = −

M∑

m

ẑ
(1)
m SG(ẑ

(2)
m )

∥ẑ(1)∥∥SG(ẑ(2))∥
,

so that Eq. (10) becomes:

dẑ
(1)
m

dt
=

η

∥ẑ(1)∥3∥ẑ(2)∥
∑

k ̸=m

(
(ẑ

(1)
k )2ẑ(2)m − ẑ(1)m ẑ

(1)
k ẑ

(2)
k

)
. (24)

Here, the near-uniform approximation (Eq. (11)) of ignoring the differences in χ between different
eigenmodes is not valid. This is because the λ-terms are no longer present, and the effects of the
χ-terms on the dynamics cannot be treated as negligible. In particular, setting WP = I in the
dynamics derived in Theorem 2 would yield zero dynamics. However taking the expectation of
Eq. (24) over augmentations yields the non-zero dynamics:

dẑm
dt

= η
∑

k ̸=m

(
E
[

ẑ2k
∥ẑ∥3

]
E
[
ẑm
∥ẑ∥

]
− E

[
ẑmẑk
∥ẑ∥3

]
E
[
ẑk
∥ẑ∥

])
, (25)

which consists of terms of order O
(

1
ẑm

)
and O(1) in ẑm, hinting at slower dynamics compared

to Eq. (10). To study these granular effects, we would need to explicitly model the effect of the
augmentations, for which we do not have a good statistical model. In lieu of deriving these dynamics
analytically, we make an observation which restricts the possible dynamical behavior. Specifically,
the sum of the eigenvalues remains constant throughout training. To show this, we begin by writing
out the expression for the derivative over time of the sum of all the eigenvalues:

d

dt

∑

m

λm =
∑

m

dλm

dt
=
∑

m

d

dt
Edata

[
ẑ2m
]

= Edata

[∑

m

dẑ2m
dt

]

= Edata

[∑

m

ẑm
dẑm
dt

]
.

We can derive the term inside the expectation by adding up the dynamics given by Eq. (25) for all the
different eigenmodes:

ẑ(1)m

dẑ
(1)
m

dt
=

η

∥ẑ(1)∥3∥ẑ(2)∥
∑

k ̸=m

(
(ẑ

(1)
k )2ẑ(1)m ẑ(2)m − (ẑ(1)m )2ẑ

(1)
k ẑ

(2)
k

)

=⇒
∑

m

ẑ(1)m

dẑ
(1)
m

dt
=

η

∥ẑ(1)∥3∥ẑ(2)∥
∑

m

∑

k ̸=m

(
(ẑ

(1)
k )2ẑ(1)m ẑ(2)m − (ẑ(1)m )2ẑ

(1)
k ẑ

(2)
k

)

= 0

=⇒ Edata

[
Eaug

[∑

m

ẑ(1)m

dẑ
(1)
m

dt

]]
= Edata

[∑

m

ẑm
dẑm
dt

]
= 0 ,

proving that d
dt

∑
m λm = 0, i.e, the sum of the eigenvalues is conserved. This precludes collapsing

dynamics where all eigenvalues go to zero as well as diverging dynamics where at least one eigenvalue
diverges.
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C.5 Isotropic losses for equalized convergence rates

In Expressions (9) and (11) we see that the overall learning dynamics have a quadratic dependence
on the eigenvalues with a root near collapsed solutions, which causes these modes to learn slower.
We reasoned that this anisotropy could be detrimental for learning. To address this issue, we sought
to derive alternative loss functions that encourage isotropic learning dynamics for all modes.

C.5.1 Euclidean IsoLoss.

We start by deriving an IsoLoss function for the Euclidean case Leuc. To avoid the unwanted quadratic
dependence, we first note that we would like to arrive at the following expression for the dynamics:

dẑm
dt

= η (1− λm) ẑm .

By recalling the Euclidean loss and corresponding dynamics:

Leuc = 1
2

M∑

m

|λmẑ(1)m − SG(ẑ(2)m )|2 ⇒ dẑm
dt

= ηλm (1− λm) ẑm ,

we note that the leading λm term has no influence on the overall sign of the dynamics, and is
introduced by the second step in the chain rule:

∂Leuc

∂ẑ
(1)
m

= (λmẑ(1) − ẑ(2)) · ∂

∂ẑ
(1)
m

(λmẑ(1) − ẑ(2)) .

Based on this realization we see that this second step needs to be modified. To that end, we start with
the desired derivative:

∂Leuc
iso

∂ẑ
(1)
m

= (λmẑ(1) − ẑ(2)) · ∂

∂ẑ
(1)
m

(ẑ(1) − ẑ(2)) ,

and see that several loss functions are possible. The one we have reported in Eq. (15) we derived by
applying an appropriate stop-grad while integrating:

∂Leuc
iso

∂ẑ
(1)
m

= (ẑ(1)m + λmẑ(1) − ẑ(2) − ẑ(1)m ) · ∂

∂ẑ
(1)
m

(ẑ(1) − ẑ(2)) .

to give:

Leuc
iso = 1

2

M∑

m

|ẑ(1)m − SG(ẑ(2)m + ẑ(1)m − λmẑ(1)m )|2

Another alternative loss with the same desired isotropic learning dynamics, but using a different
placement of the stop-gradient operators, is given by:

Leuc
iso =

M∑

m

SG
(
λmẑ(1)m − ẑ(2)m

)
·
(
ẑ(1)m − SG(ẑ(2)m )

)

C.5.2 Cosine Similarity IsoLoss.

Since most practical SSL approaches rely on cosine similarity, which suffers from a similar anisotropy
of the learning dynamics, we sought to find IsoLosses in this setting. With the same goal as above,
we would like to arrive at the dynamics:

dẑm
dt

= η
ẑ
(2)
m

∥Dẑ(1)∥∥ẑ(2)∥
− η

∑
k λkẑ

(1)
k ẑ

(2)
k

∥Dẑ(1)∥3∥ẑ(2)∥
· λmẑ(1)m

starting from the cosine loss and corresponding dynamics:

Lcos = −
M∑

m

λmẑ
(1)
m SG(ẑ

(2)
m )

∥Dẑ(1)∥∥SG(ẑ(2))∥ (26)

⇒ dẑm
dt

= η
λmẑ

(2)
m

∥Dẑ(1)∥∥ẑ(2)∥
− η

∑
k λkẑ

(1)
k ẑ

(2)
k

∥Dẑ(1)∥3∥ẑ(2)∥
· λ2

mẑ(1)m . (27)
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The IsoLoss in this case can be derived by noting how λm arises in each of the two terms in Eq. (27),
and engineering an alternative loss function corresponding to each term separately.

In the first term, λm arises from the partial derivative of the numerator λmẑ
(1)
m SG(ẑ

(2)
m ) in the original

loss (Eq. (26)). This can be remediated by using ẑ
(1)
m SG(ẑ

(2)
m ) as the numerator instead.

In the second term in Eq. (27), λ2
m arises from the partial derivative of ∥Dẑ(1)∥ =

√∑
k(λkẑ

(1)
m )2 in

the denominator. We can reduce λ2
m to λm by instead taking the partial derivative of ∥D1/2ẑ(1)∥ =√∑

k(λ
1/2
k ẑ

(1)
m )2.

Putting these insights together, we arrive at the desired partial derivative:

∂Lcos
iso

∂ẑ
(1)
m

=
−1

∥Dẑ(1)∥∥ẑ(2)∥
· ∂ẑ

(1)
m ẑ

(2)
m

∂ẑ
(1)
m

+

∑
k λkẑ

(1)
k ẑ

(2)
k

∥Dẑ(1)∥3∥ẑ(2)∥
· 1
2

∂λm(ẑ
(1)
m )2

∂ẑ
(1)
m

=
−1

∥Dẑ(1)∥∥ẑ(2)∥
· ∂(ẑ

(1))⊤ẑ(2)

∂ẑ
(1)
m

+

∑
k λkẑ

(1)
k ẑ

(2)
k

∥Dẑ(1)∥3∥ẑ(2)∥
· 1
2
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and the integrated IsoLoss in eigenspace:
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2
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∥Dẑ(1)∥3∥ẑ(2)∥

)
∥D1/2ẑ(1)∥2 .

Rotating all terms back to the original space gives the desired IsoLoss for cosine similarity as reported
(Eq. (17)):
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D Experimental methods

Self-supervised pretraining. We used the CIFAR-10, CIFAR-100 [3], STL-10 [4], and TinyIma-
geNet [5] datasets for self-supervised learning with a ResNet-18 [6] encoder and the SimCLR set of
transformations [7]. We also adopted several modifications of ResNet-18 which have been proposed
to deal with the low resolution of the images in these datasets [7]. The ResNet modifications comprise
using 3×3 convolutional kernels instead of 7×7 kernels and skipping the first max-pooling operation.
The Solo-learn library [8] also provides specialized sets of augmentations that work well for these
datasets, which we adopted as well. The configurations we used for each dataset are summarized
in Table 4. We used BatchNorm in the backbone and the projector multi-layer perceptron (MLP) in
the hidden layer for all methods. For BYOL, we included BatchNorm also in the hidden layer of the
predictor MLP.

We used a projection dimension of 256 for the projection MLP using one hidden layer with 4096
units, and the same architecture for the nonlinear predictor for the BYOL baseline. For networks
using EMA target networks, we used the LARS optimizer with learning rate 1.0 whereas for networks
without the EMA, we used stochastic gradient descent with momentum 0.9 and learning rate 0.1.
Furthermore, we used a warmup period of 10 epochs for the learning rate followed by a cosine decay
schedule and a batch size of 256. We also used a weight decay 4× 10−4 for the closed-form predictor
models and 10−5 for the nonlinear predictor models. For evaluation, we removed the projection MLP
and used the embeddings at the pooled output of the ResNet convolutional layers following standard
practice. For the EMA, we started with τbase = 0.99 and increased τEMA to 1 with a cosine schedule
exactly following the configuration reported in [9]. For DirectPred, we used α = 0.5 and τ = 0.998
for the moving average estimate of the correlation matrix updated at every step.

Table 4:

CIFAR-10 CIFAR-100 STL-10 TinyImageNet

Resolution 32× 32 32× 32 96× 96 64× 64

Kernel size 3× 3 3× 3 7× 7 3× 3
First max-pool No No Yes Yes

Blur No No Yes No

Linear evaluation protocol. We reported the held-out classification accuracy on the test sets for
CIFAR-10/100 and STL-10, and the validation set for TinyImageNet, after online training of the
gradient-isolated linear classifier on each labeled example in the training set during pretraining.

Compute resources All simulations were run on an in-house cluster consisting of 5 nodes with 4
V100 NVIDIA GPUs each, one node with 4 A100 NVIDIA GPUs, and one node with 8 A40 NVIDIA
GPUs. Runs on CIFAR-10/100 took about 8 hours each, and the STL-10 and TinyImagenet runs took
about 24 hours each.
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