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In this supplementary, we will first provide the detailed structure and training strategies of DifftUTE
in Section 1 to ensure better understanding and reproducibility. Then, we will provide more visual
results of text editing tasks in Section 2. Moreover, we provide the source code of DiffUTE in CODE
folder, making it easy to reproduce our method.

1 Details of DiffUTE

Model Architecture. Our DiffUTE is composed of VAE, glyph encoder and UNet. (i) The VAE
uses the same structure as in stable-diffusion-2-inpainting |'}, with a downsampling factor of 8. (ii)
The glyph encoder employs the pre-trained TrOCR model |L1 et al.| [2023]], specifically the trocr-
large-printed || version. The TrOCR model is an encoder-decoder model, consisting of an image
Transformer as encoder, and a text Transformer as decoder. The image encoder was initialized
from the weights of BEiT [Bao et al.|[2021], while the text decoder was initialized from the weights
of RoBERTa |Liu et al.| [2019]. And the TrOCR model is fine-tuned on the SROIE dataset Huang
et al.| [2019]. Note that we only use image encoder of TrOCR. Given a character image, the glyph
encoder will return a latent feature of size 577 x 1024. This output is just the right size to be fed
directly into the conditioned Unet as a condition. (iii) The UNet uses the same structure as in
stable-diffusion-2-inpainting.

Training Details. We adopt the Stable Diffusion Rombach et al.[[2022] as our baseline model and
choose their publicly released v2 model for image inpainting as initialization for VAE and UNet. For
the glyph encoder, we use its pre-trained checkpoints for initialization and freeze its weights during
training. To improve the reconstruction ability of VAE, we use progressive training strategy. The
experimental setting of VAE and UNet is shown in Table[ST} Upon completion of VAE training, we
proceed to train UNet while keeping the weights of VAE frozen.

Table S1: Training setting for VAE.

Module Batchsize Crop Image Size Iterations Learning Rate

64 0-8w
128 Sw—16w

VAE 48 256 16w—24w Se-6
512 24w-32w

UNet 256 256 0-10w le-5

Thttps://huggingface.co/stabilityai/stable-diffusion-2-inpainting
Zhttps://huggingface.co/microsoft/trocr-large-printed
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Figure S1: More visualization results of text editing.

2 Visualization Results

We provide additional generated images for editing text in image by our method DiffUTE in Figure[ST]
DiffUTE consistently generates correct visual text, and the texts naturally follow the same text style,
i.e. font, and color, with other surrounding texts. We can see from the experiment that DiffUTE has a
strong generative power. (i) In sample N1, DiffUTE can automatically generate slanted text based on
the surrounding text. (ii) As shown in sample N2, the input is 234, and DiffUTE can automatically
add the decimal point according to the context, which shows that DiffUTE has some document
context understanding ability. (iii) In the sample CN4, DiffUTE can generate even artistic characters
very well.
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