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A Background and extensions364

A.1 Numerical Example365
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Figure 7: 2D Gaussian mixture denoising. Source samples are shown in blue. The MMSE

estimator (x⇤, orange) attains the best MSE but the worst perceptual index W2 . The posterior
samples (x|y, purple) attain the best perceptual index but half of the optimal MSE performance.
The Dmax estimator (x̂0, green) maintains the MSE of x⇤ while attaining a perceptual quality close
to x|y. The DP curve is obtained by interpolating x̂0 and x⇤ using eq. (4).

To guide the reader in understanding the MMSE transport paradigm, we showcase our method on a366

2-dimensional denoising problem. To avoid a too trivial uni-modal example, we draw the clean signal367

from a 4-components Gaussian mixture with non-trivial covariances. We derive linear MMSE and368

posterior estimators from [38] and proceed by applying the closed-form transport operator introduced369

in eq. (3).370

Note that to avoid deviating from our actual method, we refrain from using more advanced transport371

operators better suited for multi-modal data. Indeed, those are not a practical solution for real-world372

image datasets, as they require much more samples than actually available.373

We summarize the experiment results in fig. 7. We observe that we obtain the best perceptual quality374

by sampling from the posterior distribution. However, we witness a significant decrease in MSE375

performance as predicted by [2]. In contrast, the Dmax estimator enjoys a good perceptual index376

while maintaining a close-to-optimal distortion performance.377

A.2 Stochastic transport operator378

Throughout our experiments, we found out that increasing the patch-size p can result in numerical379

instabilities. Recall that the linear transport operator presented in eq. (3) uses the inverse square root380

of the source covariance matrix ⌃x1 . When p is large, (typically p � 7), we obtain ill-conditioned381

covariance matrices. When the smallest singular value is still positive, we add a small stability382

constant to the matrix diagonal to ensure it is strictly positive definite. However, the numerical errors383

sometimes adds up to negative eigenvalues. 1 In this case, we clamp the negative eigenvalues to zero384

and use the stochastic (one-to-many) transport operator proposed by [1],385

Tstochastic
px1�!px2

(x1) = ⌃
1
2
x2

⇣
⌃

1
2
x2⌃x1⌃

1
2
x2

⌘ 1
2

⌃
� 1

2
x2 ⌃†

x1
(x1 � µx1) + µx2 + w, (5)

when ⌃†
x1

denotes the pseudo-inverse of ⌃x1 (after negative eigenvalues where clamped) and386

w ⇠ N (0,⌃
1
2
x2(I � ⌃

1
2
x2T⇤⌃†

x1
T⇤⌃

1
2
x2)

1
2⌃

1
2
x2), with T⇤ = ⌃

� 1
2

x2

⇣
⌃

1
2
x2⌃x1⌃

1
2
x2

⌘ 1
2

⌃
� 1

2
x2 .387

1We tried to avoid overflow when summing over the images by using 64 bit precision
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B Practical choices and considerations in our algorithm388

B.1 Working in latent space389

We adopt the latent transport approach where the images are embedded into the latent space of390

a pre-trained auto-encoder. Let E(·), D(·) denote the encoder and decoder, respectively. Even if391

D(E(t)) = t, it is likely that E(·) “deforms” the space, I.e., kE(s)� E(t)k 6= ks� tk, which means392

that the optimal transport plan in the latent space could be different than the plan we seek in the pixel393

space (the cost function in eq. (3) has changed). We can address this by modifying the latent cost394

function to account for the deformation via the following change of variables395
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where |@E(x)
@x | is the determinant of the Jacobian matrix of E(·) However it is not a practical solution396

since we lose access to the closed-form solution eq. (2). Note that the latent MSE approximation is397

usually desirable when dealing with natural images (e.g. to elaborate image quality measure [39],398

perceptual quality metrics [25]). It is also true in our case but it means we can no longer claim we399

obtain the Dmax estimator.400

With that, we argue that switching to a latent cost is actually a strength rather than a weakness of401

our method. Indeed, using the MSE between deep latent variables has shown to be a better fit to402

compare natural images than directly working in the pixel space [32]. The authors of [7] trained403

their VAE (which is used in our experiments) to remove “imperceptible details” from the latent404

representation, in order to better focus on higher level image semantics. In section 5.1 we validate405

this claim by showing that our algorithm maintains the “perceptual” discrepancy performance of the406

original estimator (e.g., LPIPS).407

B.2 Overlapping patches extraction strategy408

For Convolutional Neural Network (CNN) encoders 2, let (c,He,We) denote the shape of the latent409

representation (CNN encoders produce 3-dimensional encoded tensors), where He,We the spatial410

extent and c is the number of channels (i.e., the number of convolution kernels in the last convolution411

layer). The covariance matrices ⌃x̂e , ⌃xe contain (c,He,We)
2

2 parameters, which may require a412

large amount of samples for large latent images with He,We � 1. To mitigate the quadratic413

dependency on He ·We, we assume that the latent pixels depend only on the pixels in their close414

neighborhood. In practice, we unfold the latent representation, extracting all overlapping patches of415

shape (c, p, p). A similar approximation exists in the style-transfer literature [8, 9], where instead of416

patches, only the pixels are considered (i.e., this is a private case of our approach with p = 1). In417

section 5.3 we empirically show that increasing p improves the perceptual quality at the expense of418

MSE performance, given that enough training samples are available.419

B.3 Shared distribution420

When dealing with natural image scenes, it is beneficial to suppose that overlapping patches share421

common statistical attributes [39, 40]. In the case of a CNN encoded image, this approximation422

remains satisfying because we ultimately look at filter activations which are spatial-invariant with each423

latent patch having the same receptive field. Therefore, we assume that the overlapping patches are424

all samples from the same distribution. This approach dramatically reduces the number of estimated425

parameters, and also multiplies the number of samples at our disposal by He ·We, which alleviates426

the curse of dimensionality. We demonstrate these practical benefits in section 5.3. In practice, given427

N images, we “flatten” all the extracted patches to vectors v
cp2⇥1 which we stack into a sample428

matrix X
NHeWe⇥cp2 . We then aggregate the samples to compute the MVG statistics: µ = X

T1,429

⌃ = NHeWe
NHeWe�1 (X � µ)(X � µ)T . As NHeWe may be very large, we perform all computations in430

double precision. When training, this process is done twice; once for the natural image samples, and431

once for the restored samples we wish to transport.432

2This methodology can easily be extrapolated to other encoder architectures.
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B.4 Size of the latent representation433

When increasing the capacity of models with a fixed encoding rate, deepening is preferable than434

widening. Indeed, increasing c makes the covariance estimation dramatically harder while increasing435

He,We enlarges the sample pool. Therefore, the VAE from [7] with c = 4 and He,We � 1 is a436

particularly good candidate for our method. For p = 3 for instance, the covariance matrix admits only437

1296 parameters while each 5122 image contributes 4096 samples to its estimation. As we see next,438

this greatly contributes to reducing the number of training samples needed to estimate the covariance439

matrices and allows to compute the transport operator in a few-shot manner.440

B.5 Transport441

In a single pass on a data set of natural images and a (possibly different) data set of restored442

samples, we compute TMVG
px̂e�!pxe

(see eq. (2)). Note that each latent distribution could sometimes be443

degenerate, especially for severe degradations. Fortunately, the classical MVG transport operator can444

be generalized to ill-posed settings where ⌃x̂ is a singular matrix (see appendix A.2).445

B.6 Decoding446

Since the transported patches overlap, we “fold” them back into a latent image x̂0,latent by averaging.447

The latent image is then decoded back to the pixel space, i.e. x̂0 = D(x̂0,latent). Since E(·) is not448

invertible, the decoder D(·) is used as a convenient approximation in the training domain of the449

auto-encoder. A corollary of this approximation is that the auto-encoder should in theory be trained450

on the image distribution we aim to transport, which weakens our claim to a fully blind algorithm.451

All the steps described above are summarized in fig. 4.452

B.7 Transporting the degraded measurement453

We tried applying our algorithm on the degraded measurement directly. Indeed we observe quali-454

tatively and quantitatively that transporting the degraded measurement y amplifies the degradation455

(refer to fig. 8).

y (degraded) x⇤ (SwinIR) Tpy�!px(y) x̂0 x (original)

Figure 8: Transporting the degraded measurement (JPEGq=10) directly is not enough to restore the
image. It can sometimes even exacerbate the degradation. Quantitatively, the degraded sample y has
better PSNR and FID than its transported version (respectively 27.26 dB and 13.88 FID v.s. 23.69 dB
and 15.88 FID).
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