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A Datasets562

In this section, we provide further details on the dataset used for experiments.563

A.1 Phonon DOS564

We use the Phonon DOS dataset following the instructions of the official Github repository4 of a565

previous work [9]. This dataset contains 1,522 crystalline materials whose phonon DOS is calculated566

from density functional perturbation theory (DFPT) by a previous work [36]. Since the provided567

dataset does not contain crystal system information, we additionally collect the information based on568

the Materials Project (MP) website 3 on the given each material’s unique ID (MP-id).569

A.2 Electron DOS570

We also use Electron DOS dataset that contains 38,889 crystalline materials. The Electron DOS571

dataset consists of the materials and their electron DOS information that is collected from the MP572

website 3. Among the collected data, we exclude the materials that are tagged to include magnetism573

because the DOS of magnetism materials is not accurate to be directly used for training machine574

learning models [21]. We consider an energy grid of 201 points ranging from −5 to 5 eV with respect575

to the band edges with 50 meV intervals and the Fermi energy is all set to 0 eV on this energy grid.576

Moreover, we normalize the DOS of each material to be in the range between 0 and 1. That is, the577

maximum and minimum value for each DOS is 1 and 0, respectively, for all materials. Moreover, we578

smooth the DOS values with the Savitzky-Golay filter with the window size of 17 and polyorder of 1579

using scipy library following a previous work [9].580

A.3 Data Statistics of Electron DOS dataset in OOD scenarios581

As described in the main manuscript, we further evaluate the model performance in two out-of-582

distribution scenarios: Scenario 1: regarding the number of atom species, and Scenario 2: regarding583

the crystal systems. We provide detailed statistics of the number of crystalline materials for each584

scenario in Table 5 and Table 6.585

Table 5: The number of crystals according to the number of atom species (Scenario 1).
Unary Binary Ternary Quaternary Quinary Senary Septenary Total(1) (2) (3) (4) (5) (6) (7)

# Materials 386 9,034 21,794 5,612 1,750 279 34 38,889

Table 6: The number of crystals according to different crystal systems (Scenario 2).
Cubic Hexagonal Tetragonal Trigonal Orthorhombic Monoclinic Triclinic Total

# Materials 8,385 3,983 5,772 3,964 8,108 6,576 2,101 38,889

4https://github.com/zhantaochen/phonondos_e3nn
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B Evaluation Protocol586

Phonon DOS. As described in the main manuscript, we evaluate the model performance based on587

the data splits given in a previous work [9].588

Electron DOS. On the other hand, for the Electron DOS dataset, we use different dataset split589

strategies for each scenario. For the in-distribution setting, we randomly split the dataset into590

train/valid/test of 80/10/10%. On the other hand, for the out-of-distribution setting, we split the591

dataset regarding the structure of the crystals. For both scenarios, we generate training sets with592

simple crystal structures and a valid/test set with more complex crystal structures, because it is crucial593

to transfer the knowledge obtained from simple crystal structures to that from complex structures in594

real-world materials science. More specifically, in the scenario 1 (different number of atom species,595

i.e., # Atom species in Table 2), we use Binary and Ternary materials as training data and Unary,596

Quaternary, and Quinary materials as valid and test data. In the case of Unary, we exclude it from597

training data despite its simplicity due to the observed difficulty of the structure, as will be discussed598

in Section E.1. In the scenario 2 (different crystal systems, i.e., Crystal System in Table 2), we599

use Cubic, Hexagonal, Tetragonal, Trigonal, and Orthorhombic crystal systems as training set and600

Monoclinic and Triclinic as valid and test set. In this scenario, where no prompt is available for601

unseen crystal systems, we employ the mean-pooled representations of the trained prompts during602

testing, i.e., for the Monoclinic and Triclinic crystal systems. Please refer to Table 5 and Table 6 for603

detailed statistics of crystals in each scenario.604

Physical Properties. In addition to evaluating the accuracy of the model’s predictions of the DOS, it605

is crucial to assess the physical meaningfulness of the predicted DOS for real-world applications. To606

assess the physical meaningfulness of the predicted DOS, we utilize the predicted DOS to estimate a607

range of important material properties. Specifically, we evaluate three materials’ properties: the bulk608

modulus for phonon DOS, and the band gap and Fermi energy for electron DOS (Table 1).609

Bulk Modulus 5 is a thermodynamic quantity measuring the resistance of a substance to compression.610

It provides a measure of the material’s ability to withstand changes in volume under applied pressure.611

In the context of elastic properties, the bulk modulus serves as a descriptor, as it indicates how well a612

material can recover its original volume after being subjected to compression.613

Another property we focus on is the Band Gap 6, which refers to the energy range in a material where614

no electronic states exist. It represents the energy difference between the top of the valence band and615

the bottom of the conduction band in insulators and semiconductors. Functional inorganic materials,616

such as those used in applications like LEDs, transistors, photovoltaics, or scintillators, require a617

comprehensive understanding of their band gap [62]. By accurately predicting the band gap based on618

DOS, we can accelerate the development of new materials for a wide range of applications.619

Additionally, we predict the Fermi Energy 7, which represents the highest energy level occupied by620

electrons at absolute zero temperature (0K). It can be used to determine the electrical and thermal621

characteristics of materials.622

C Implementation Details623

In this section, we provide implementation details of DOSTransformer.624

Graph Neural Networks. Our graph neural networks consist of two parts, i.e., encoder and processor.625

Encoder learns the initial representation of atoms and bonds, while the processor learns to pass the626

messages across the crystal structure. More formally, given an atom vi and the bond eij between627

atom vi and vj , node encoder ϕnode and edge encoder ϕedge outputs initial representations of atom628

vi and bond eij as follows:629

h0
i = ϕnode(Xi), b0

ij = ϕedge(Bij), (4)

where X is the atom feature matrix whose i-th row indicates the input feature of atom vi, B ∈630

Rn×n×Fe is the bond feature tensor with Fe features for each bond. With the initial representations631

5https://en.wikipedia.org/wiki/Bulk_modulus
6https://en.wikipedia.org/wiki/Band_gap
7https://en.wikipedia.org/wiki/Fermi_energy
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of atoms and bonds, the processor learns to pass messages across the crystal structure and update632

atoms and bonds representations as follows:633

bl+1
ij = ψl

edge(h
l
i,h

l
j ,b

l
ij), hl+1

i = ψl
node(h

l
i,

∑
j∈N (i)

bl+1
ij ), (5)

where N (i) is the neighboring atoms of atom vi, ψ is a two-layer MLP with non-linearity, and634

l = 0, . . . , L′. Note that hL′

i is equivalent to the i-th row of the atom embedding matrix H in635

Equation 1.636

Model Training. In all our experiments, we use the AdamW optimizer for model optimization. For637

all the tasks, we train the model for 1,000 epochs with early stopping applied if the best validation638

loss does not change for 50 consecutive epochs.639

Hyperparameter Tuning. Detailed hyperparameter specifications are given in Table 7. For the640

hyperparameters in DOSTransformer, we tune them in certain ranges as follows: number of message641

passing layers in GNN L′ in {2, 3, 4}, number of cross-attention layers L1, L3 in {2, 3, 4}, number of642

self-attention layers L2 in {2, 3, 4}, hidden dimension d in {64, 128, 256}, learning rate η in {0.0001,643

0.0005, 0.001}, and batch size B in {1, 4, 8}. We use the sum pooling to obtain the crystalline644

material i’s representation, i.e., gi. We report the test performance when the performance on the645

validation set gives the best result.646

Table 7: Hyperparameter specifications of DOSTransformer.

Hyperparameters In-Distribution Out-of-Distribution

Phonon DOS Electron DOS # Atom Species Crystal Systems

# Message Passing 3 3 3 3Layers (L′)
# Cross-Attention 2 2 2 2Layers (L1)
# Self-Attention 2 2 2 2Layers (L2)
# Cross-Attention 2 2 2 2Layers (L3)

Hidden Dim. (d) 256 256 256 256

Learning Rate (η) 0.0001 0.0001 0.0001 0.0001

Batch Size (B) 1 8 8 8

D Methods Compared647

In this section, we provide further details on the methods that are compared with DOSTransformer in648

our experiments.649

MLP. We first encode the atoms in a crystalline material with an MLP. Then, we obtain the repre-650

sentation of material i, i.e., gi, by sum pooling the representations of its constituent atoms. With651

the material representation, we predict DOS with an MLP predictor ϕ′, i.e., Ŷi = ϕ′(gi), where652

ϕ′ : Rd → R201.653

On the other hand, when we incorporate energy embeddings into the MLP, we predict DOS for654

each energy j with a learnable energy embedding E0
j and obtained material representation gi, i.e.,655

Ŷi
j = ϕ(E0

j ||gi), where ϕ : R2d → R1 is a parameterized MLP.656

Graph Network. We first encode the atoms in a crystalline material with a graph network [4]. As657

done for MLP, we obtain the representation of material i, i.e., gi, by sum pooling the representations658

of its constituent atoms. With the material representation, we predict the DOS with an MLP predictor,659

i.e., Ŷi = ϕ′(gi), where ϕ′ : Rd → R201. Note that the only difference with MLP is that the atom660

representations are obtained through the message passing scheme. We also compare the vanilla graph661

network that incorporates the energy information as we have done in MLP.662
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E3NN. For E3NN [9], we use the official code published by the authors8, which implements663

equivariant neural networks with E3NN python library9. By learning the equivariance, the model can664

generate high-quality representations with a small number of training materials. After obtaining the665

crystalline material representation gi, all other procedures have been done in the same manner with666

other baseline models, i.e., MLP and Graph Network.667

E Additional Experiments668

E.1 Model Performance Analysis on Out-of-Distribution Scenarios669

In this section, we conduct a comprehensive analysis of the model’s predictions in the out-of-670

distribution scenarios presented in Table 2. In Table 8, we evaluate the performance of the model671

for each type of material, providing detailed insights into its predictive capabilities. We have672

following observations: 1) We observe that DOSTransformer consistently outperforms in both673

out-of-distribution scenarios, which demonstrates the superiority of DOSTransformer. 2) The674

performance of all the compared models generally degrades as the crystal structure gets more675

complex. That is, models perform worse in Quinary crystals than in Quarternary crystals, and worse676

in Triclinic crystals than in Monoclinic crystals. 3) On the other hand, it is not the case in Unary677

crystal. This is because in Unary crystal only one type of atom repeatedly appears in the crystal678

structure, which cannot give enough information to the model. However, DOSTransformer also679

makes comparably accurate predictions in the Unary materials by modeling the complex relationship680

between the atoms and various energy levels.681

Table 8: Model performance in Out-of-Distribution scenarios.

Model
# Atom Species Crystal System

Unary Quarternary Quinary Monoclinic Triclinic

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Energy ✗

MLP 1.457 0.300 0.737 0.186 0.926 0.206 0.747 0.188 0.841 0.202
(0.022) (0.004) (0.002) (0.001) (0.001) (0.002) (0.013) (0.001) (0.018) (0.001)

Graph Network 0.894 0.222 0.551 0.152 0.712 0.177 0.504 0.145 0.582 0.160
(0.049) (0.003) (0.015) (0.003) (0.003) (0.004) (0.011) (0.002) (0.005) (0.002)

E3NN 0.541 0.164 0.491 0.144 0.716 0.177 0.393 0.130 0.510 0.149
(0.022) (0.006) (0.001) (0.001) (0.008) (0.000) (0.004) (0.001) (0.008) (0.001)

Energy ✓

MLP 0.501 0.170 0.468 0.147 0.638 0.173 0.402 0.138 0.520 0.156
(0.012) (0.002) (0.002) (0.000) (0.008) (0.002) (0.006) (0.001) (0.011) (0.001)

Graph Network 0.461 0.158 0.420 0.134 0.586 0.162 0.370 0.125 0.479 0.143
(0.001) (0.010) (0.003) (0.001) (0.008) (0.001) (0.012) (0.002) (0.014) (0.002)

E3NN 0.496 0.156 0.479 0.145 0.686 0.177 0.385 0.129 0.502 0.148
(0.019) (0.002) (0.004) (0.001) (0.009) (0.001) (0.002) (0.001) (0.002) (0.001)

DOSTransformer 0.438 0.145 0.407 0.127 0.575 0.155 0.353 0.119 0.467 0.137
(0.007) (0.002) (0.006) (0.001) (0.007) (0.001) (0.004) (0.001) (0.004) (0.002)

E.2 Injecting Crystal System Information to Baseline Methods682

In this section, we adopt our prompt-based crystal system information injection procedure to the683

baseline methods. We examine two approaches for injecting the information: 1) injecting the684

information into the input atoms (i.e., Position 1), and 2) injecting it before the DOS prediction685

layer (i.e., Position 2). In Table 9, we have the following observations: 1) Compared to Table 1, all686

baseline models benefit from using crystal system information. This demonstrates the importance of687

utilizing crystal structural systems information, which has been overlooked in previous works. 2)688

However, DOSTransformer still outperforms all baseline methods with crystal system information689

(See DOSTransformer in Table 1), verifying the importance of an elaborate design of crystal system690

injection procedure. To be more specific, we notice a relatively significant performance gap between691

8https://github.com/ninarina12/phononDoS_tutorial
9https://docs.e3nn.org/en/latest/index.html
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DOSTransformer and the best baseline model in Electron DOS, which comprises a broader range of692

crystalline materials than Phonon DOS. This finding highlights the importance of an intricate crystal693

system injection procedure when striving to learn the DOS of diverse crystalline materials.694

Table 9: Baseline model performance with crystal structural system prompts.

Model
Phonon DOS Electron DOS

Position 1 Position 2 Position 1 Position 2

MSE MAE MSE MAE MSE MAE MSE MAE

Energy ✗

MLP 0.357 0.116 0.341 0.114 0.751 0.191 0.759 0.192
(0.007) (0.001) (0.002) (0.001) (0.010) (0.000) (0.015) (0.003)

Graph Network 0.363 0.104 0.343 0.106 0.317 0.112 0.323 0.113
(0.008) (0.000) (0.023) (0.001) (0.005) (0.001) (0.008) (0.001)

E3NN 0.210 0.077 0.209 0.079 0.296 0.109 0.301 0.110
(0.007) (0.002) (0.010) (0.001) (0.005) (0.001) (0.006) (0.001)

Energy ✓

MLP 0.239 0.099 0.228 0.098 0.316 0.123 0.313 0.122
(0.003) (0.001) (0.003) (0.001) (0.004) (0.001) (0.002) (0.001)

Graph Network 0.209 0.089 0.204 0.087 0.247 0.101 0.245 0.100
(0.003) (0.001) (0.004) (0.000) (0.001) (0.001) (0.004) (0.002)

E3NN 0.194 0.073 0.190 0.073 0.291 0.109 0.293 0.112
(0.004) (0.000) (0.000) (0.001) (0.001) (0.001) (0.002) (0.001)

E.3 Qualitative Analysis695

In this section, we provide a qualitative analysis of the predicted DOS by mainly comparing it to696

the DFT-calculated (i.e., Ground Truth) DOS and our main baseline (i.e., E3NN). In Figure 5 (a),697

which represents the predicted DOS of materials not containing transitional metals, both E3NN698

and DOSTransformer successfully capture the overall trend of the DOS for several materials (e.g.,699

mp-13063, mp-10931, mp-1009129, and mp-16378). However, DOSTransformer shows a much700

more precise prediction that closely aligns with the ground truth DOS, providing even more useful701

information beyond the shape of DOS. For example, peak points represent regions of high density702

and are likely to be strongly influenced when materials undergo changes in property, and thus703

represents the probabilistically important energy regions of the materials in the process of material704

discovery. Notably, our model better captures the peak points in the ground truth DOS compared to705

E3NN, demonstrating the applicability of DOSTransformer-predicted DOS for real-world material706

discovery.707

On the other hand, Figure 5 (b) shows the DOS prediction for materials containing transition materials.708

Although DOSTransformer provides more reliable prediction, we observe that the prediction errors709

of both models get larger compared to the materials that do not contain transition metals shown in710

Figure 5 (a). This can be attributed to the inherent complexity of physical properties in materials711

containing transition metals, as discussed in Section 6. Therefore, for our future work, we plan to712

design expert models in which each expert is responsible for materials with and without transition713

metals, to achieve more refined and accurate predictions of the DOS. This approach would enable a714

more comprehensive and elaborate analysis of the DOS in different material compositions.715

E.4 Various Training Data Ratio for Fine-Tuning716
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Figure 6: Various training data
ratios for fine-tuning.

In this section, we additionally provide experimental results on var-717

ious ratios of training data for fine-tuning in Table 3. That is, instead718

of sampling 10% of training data from the test set used in OOD sce-719

narios in Section 5.3, we try various sampling ratios, i.e., 5%, 10%,720

15%, and 20%, from the test set. We have the following observations:721

1) We notice a significant performance disparity between the “Only722

Prompt" and “All" approaches, particularly when the training dataset723

is limited. This phenomenon can be attributed to the challenge of724

overfitting when fine-tuning the entire model on a small subset of725

materials, as discussed in Section 5.3. 2) In contrast, when the train-726
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ing data becomes more abundant, we find that fine-tuning the entire model parameters surpasses727

the performance of only tuning the prompt parameters. This observation aligns with the analysis728

presented in Section 5.3. However, it is important to note that the existing DFT calculation-based729

databases suffer from a highly biased distribution, which limits their coverage of different materials.730

This limitation emphasizes the significance of achieving good performance even with a small subset731

of training data. Therefore, we argue that the application of prompt tuning enhances the real-world732

applicability of DOSTransformer.733

E.5 Model Training and Inference Time734

In this section, to verify the efficiency of DOSTransformer, we compare the training and inference735

time of the baseline methods in Table 10. We observe that DOSTransformer requires a longer736

training time per epoch on the Phonon DOS dataset compared to E3NN, which can be attributed to737

the two forward passes (i.e., system and global energy embeddings) during the training procedure.738

However, when it comes to the Electron DOS dataset, DOSTransformer demonstrates a shorter739

training time per epoch compared to E3NN. This is because the Electron DOS dataset has complex740

crystal structures, requiring more time for E3NN to learn equivariant representations. Furthermore, in741

terms of inference time, DOSTransformer demonstrates significantly faster computation per epoch742

compared to E3NN, particularly on the Electron DOS dataset. This is because we only utilize system743

prediction without global prediction during inference. As many predictive ML models are used for744

high-throughput screening in material discovery, inference time is a critical factor for ML models in745

materials science, demonstrating the practicality of DOSTransformer in real-world applications.746

Table 10: Training and inference time per epoch for each dataset (sec/epoch).
Model Training Inference

Phonon DOS Electron DOS Phonon DOS Electron DOS

Energy ✗

MLP 4.10 23.52 1.51 3.00

Graph Network 16.17 59.74 1.95 3.88

E3NN 21.21 141.02 3.72 9.49

Energy ✓

MLP 4.67 27.88 1.66 3.10

Graph Network 17.45 66.83 2.16 4.28

E3NN 24.12 152.80 3.92 10.21

DOSTransformer 39.17 145.85 2.98 5.99
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F Broader Impacts747

Potential Positive Scientific Impacts. In this work, we propose DOSTransformer, which is the first748

work that considers various energy levels during DOS prediction and introduces prompts for crystal749

structural system, demonstrating its applicability in real-world scenarios. For example, transferring750

the knowledge obtained from simple structured materials to complex structured materials is crucial751

because DFT calculation-based databases cover limited types of materials or structural archetypes.752

Therefore, we believe DOSTransformer has broad impacts on various fields of materials science.753

Potential Negative Societal Impacts. This work explores the automation process for materials754

science without wet lab experiments. However, it is important to acknowledge that in the industry,755

there are skilled professionals dedicated to conducting such experiments for materials science.756

Therefore, it is important to proactively address these concerns by encouraging collaboration between757

automated methods and human experts.758

G Pseudo Code759

Algorithm 1 shows the pseudocode of DOSTransformer.760

Algorithm 1: Pseudocode of DOSTransformer.
Input :An input crystalline material G = (X,A), Ground truth DOS Y, Number of attention layers

L1, L2, L3, Initialized energy embeddings E, Initialized crystal system prompts P.

1 H← GNN(X,A)

2 EL1 ← Cross-Attention(H,E, L1)
3 g← Sum Pooling(H)

4 Eglob ← (EL1 ||g)
5 Ẽ0,glob ← ϕ1(E

glob)

6 ẼL2,glob ← Self-Attention(Ẽ0,glob, L2) // Global Self-Attention
7 EL3,glob ← Cross-Attention(H, ẼL2,glob, L3)

8 Ŷ ← ϕpred(E
L3,glob)

9 Lglob ← RMSE(Ŷ,Y)

10 Esys ← (EL1 ||g||P)

11 Ẽ0,sys ← ϕ2(E
sys)

12 ẼL2,sys ← Self-Attention(Ẽ0,sys, L2) // System Self-Attention
13 EL3,sys ← Cross-Attention(H, ẼL2,sys, L3)

14 Ŷ ← ϕpred(E
L3,sys)

15 Lsys ← RMSE(Ŷ,Y)

16 Ltotal ← Lglob + β · Lsys // Calculate total loss

17 Function Cross-Attention(H,E0, L):
18 for l = 1, 2, . . . , L do
19 El ← Softmax(E

l−1H⊤

H
)

20 end
21 return EL

22 Function Self-Attention(Ẽ0, L):
23 for p = 1, 2, . . . , L do
24 Ẽp ← Softmax( Ẽ

p−1Ẽp−1⊤

Ẽp−1 )

25 end
26 return ẼL
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