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Abstract

Fine-tuning vision-language models (VLMs) like CLIP to downstream tasks is1

often necessary to optimize their performance. However, a major obstacle is the2

limited availability of labeled data. We study the use of pseudolabels, i.e., heuristic3

labels for unlabeled data, to enhance CLIP via prompt tuning. Conventional pseu-4

dolabeling trains a model on labeled data and then generates labels for unlabeled5

data. VLMs’ zero-shot capabilities enable a “second generation” of pseudolabeling6

approaches that do not require task-specific training on labeled data. By using zero-7

shot pseudolabels as a source of supervision, we observe that learning paradigms8

such as semi-supervised, transductive zero-shot, and unsupervised learning can9

all be seen as optimizing the same loss function. This unified view enables the10

development of versatile training strategies that are applicable across learning11

paradigms. We investigate them on image classification tasks where CLIP exhibits12

limitations, by varying prompt modalities, e.g., textual or visual prompts, and13

learning paradigms. We find that (1) unexplored prompt tuning strategies that itera-14

tively refine pseudolabels consistently improve CLIP accuracy, by 19.5 points in15

semi-supervised learning, by 28.4 points in transductive zero-shot learning, and by16

15.2 points in unsupervised learning, and (2) unlike conventional semi-supervised17

pseudolabeling, which exacerbates model biases toward classes with higher-quality18

pseudolabels, prompt tuning leads to a more equitable distribution of per-class19

accuracy.20

1 Introduction21

Large pre-trained vision-language models (VLMs) [31, 43, 17] achieve remarkable accuracy without22

task-specific training but still require adaptation for optimal performance. Prompt-tuning [13, 18] is23

an approach to efficiently enhance VLMs performance on downstream tasks by learning inputs to the24

model. While learning prompts with a few labeled data can yield significant improvements [48, 2], a25

broader range of learning settings such as semi-supervised, transductive zero-shot, and unsupervised26

learning are still underexplored. All of these settings share access to unlabeled data, and the versatile27

zero-shot classification abilities of VLMs make pseudolabeling a natural approach to leveraging it.28

This paper investigates how the use of out-of-the-box pseudolabels assigned by CLIP can contribute29

to improving CLIP’s own performance. To this end, we conduct an extensive exploration of learning30

scenarios by varying prompt modalities, learning paradigms, and training strategies. We present31

empirical evidence showcasing the effectiveness of iterative prompt-training strategies that leverage32

CLIP-based pseudolabels, regardless of learning paradigms and prompt modalities, resulting in33

significant improvements in CLIP’s image classification performance across different settings.34

Pseudolabels are heuristic labels assigned by a model to unlabeled data, which are leveraged to35

further train the model [20]. Successful training with pseudolabels relies on two factors: the quality36
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Figure 1: Our design space to explore the effect of leveraging pseudolabels in a unified way across
prompt modalities, learning paradigms, and training strategies. The green (dashed) path has already
been explored [15], while the red (solid) lines are the unexplored combinations for prompt tuning.

of the labels and how they are used during training. To address the first, conventional methods assign37

labels to instances with high-confidence predictions [36]. For pseudolabeling using CLIP, Huang et38

al. propose to select the most confident samples for each class [15], mitigating CLIP’s bias [38] and39

miscalibration [22] (see Section 3). To assign pseudolabels, we rely on this approach and address the40

second point by exploring how to make the best use of them. We design a broad space of analysis41

considering three dimensions: prompt modalities, which are the model inputs we learn; learning42

paradigms, which define the data we have available; and training strategies, which describe the43

process used to optimize performance (Figure 1).44

Research on prompt tuning has demonstrated that training strategies used for learning prompts in45

one modality can be transferred to learning prompts in a different modality. For instance, Visual46

Prompt Tuning [18] was originally designed to effectively fine-tune large vision models but can be47

adapted to efficiently fine-tune CLIP using the same training strategy as standard textual prompt48

tuning [48, 34, 44]. On the contrary, different learning paradigms with limited labeled data typically49

require distinct approaches specifically tailored to extract information from the available data [27, 12].50

However, we observe that this changes by using VLM’s generated pseudolabels. Unlike conventional51

pseudolabeling approaches that bootstrap off labeled data and are used as semi-supervised learning52

techniques [36, 3, 40], VLMs can generate pseudolabels in any learning setting. This offers a53

significant advantage, expanding the scope of pseudolabeling beyond semi-supervised learning, and54

making it a promising approach for other settings, such as transductive zero-shot and unsupervised55

learning. By using CLIP-based pseudolabels as a source of supervision, we can view these settings as56

optimizing the same loss function, which is simply a weighted sum of the errors on labeled data, if57

available, and pseudolabeled data. Given that we can express different settings as the same problem,58

we can propose training strategies, i.e., the way of using pseudolabels, that suit them all.59

By standardizing the training strategies across various prompt modalities and learning settings, we60

can conduct experiments on different applications of pseudolabels for various combinations of prompt61

modalities, learning paradigms, and training strategies, as illustrated in Figure 1. To the best of62

our knowledge, only one potential path has been explored thus far; specifically, fine-tuning textual63

prompts in an unsupervised learning context using a few pseudolabels [15]. Rather than relying64

on a fixed set of pseudolabels, we propose iterative training techniques that allow for the ongoing65

refinement and expansion of the pool of pseudolabeled data used during training. In this way, with66

each iteration, we progressively enhance CLIP’s pseudolabeling ability, allowing us to extend the set67

of pseudolabeled data while maintaining the high quality of the initial pseudolabels, which tend to be68

reliable.69

We conduct experiments on six tasks where CLIP has been observed to underperform [31], such as70

satellite-image classification, flower-species identification, and texture-image recognition, among71

others. Our findings reveal that iterative approaches effectively fine-tune prompts irrespective of72

their modality and learning paradigms. Recent studies have identified the “Matthew effect” as a73

potential issue for semi-supervised models that use pseudolabels [49, 38]. This phenomenon causes74

models to perform well on classes with accurate pseudolabels but poorly on those with inaccurate75

ones, thereby reinforcing the model’s original bias towards certain classes. Our analysis reveals that76

using pseudolabels generated by CLIP for prompt-tuning with iterative strategies not only improves77

CLIP’s overall performance but also corrects its natural bias towards certain classes.78

We summarize the main takeaways of our work:79
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• General purpose zero-shot learners used as general purpose pseudolabelers open the opportu-80

nity to develop training strategies that leverage pseudolabeled data beyond semi-supervised81

learning. We point out that different learning paradigms, such as semi-supervised, transduc-82

tive zero-shot, and unsupervised learning, can be all considered as special cases of a single83

objective function, by using pseudolabels as a source of supervision.84

• We demonstrate that simple iterative training strategies for refining pseudolabels are highly85

effective approaches for limited-label prompt tuning. In fact, regardless of the prompt86

modality and learning setting, these strategies improve CLIP, by on average 19.5 points in87

semi-supervised learning, 28.4 in transductive zero-shot learning, and 15.2 in unsupervised88

learning.89

• We show that prompts learned with iterative strategies help mitigate the "rich get richer,90

poor get poorer" effect observed in semi-supervised approaches leveraging pseudolabels.91

By redistributing the quality of pseudolabels across different classes, we observe a “Robin92

Hood effect” where the extremely rich classes’ accuracy stays the same or decreases, while93

poorer classes get richer, leading to a more equitable distribution of per-class accuracy.94

2 Background and related work95

Vision-language models Vision-language models such as such as CLIP [31], ALIGN [17], and96

Florence [43] are models that align images and text. We focus on CLIP, which is composed of two97

components: a text encoder, ψ, and an image encoder, ϕ, which are jointly trained using a contrastive98

loss to learn a multi-modal embedding space which aligns the representations of similar text and99

image inputs. This pre-training enables CLIP to perform zero-shot image classification. Given an100

image x and a set of classes Y = {y1, ..., yC}, CLIP classifies x by measuring the similarity between101

the image representation z = ϕ(x) and each class representation wi = ψ(πi), based on their cosine102

distance in the shared embedding space. Here, πi is a natural language prompt such as “a photo of103

a [CLASSi]”, where CLASSi is the specific class name, such as “orange dahlia,” “forest” or “Boeing104

737”. The image x gets assigned to the class with the highest similarity score. In this work, we study105

how to learn better prompts that enhance CLIP by leveraging pseudolabels.106

Prompt tuning Prompt tuning is a technique that enhances the practical application of large pre-107

trained models like CLIP [31] and GPT [32, 7]. It involves providing task-specific information to the108

model during inference through textual or visual inputs, leading to improved performance on down-109

stream tasks [1, 33, 6, 7]. While discrete prompts are manually crafted natural language descriptions110

of classes that guide the model, they may not yield optimal results [47]. Soft prompting [21, 24], on111

the other hand, optimizes prompts as continuous vectors. These can be optimized by backpropagating112

through the frozen pre-trained model, resulting in better performance. Soft prompts can be learned113

for various modalities, e.g., text or image, [48, 13, 17, 2, 44, 19] and applications [34, 27, 12, 28] by114

training on a small number of labeled examples per class. If only unlabeled data is accessible, it is115

possible to learn textual soft prompts by leveraging CLIP-based pseudolabels [15]. Expanding on this116

concept, we further investigate the use of pseudolabels across a broader range of prompt modalities117

and learning approaches, and we introduce novel training strategies to leverage pseudolabels more118

effectively.119

Learning from pseudolabels Pseudolabeling is the practice of assigning labels to unlabeled data120

based on the prediction of a model [20]. Then, pseudolabels are used to improve the performance of121

the model itself. There are different ways to obtain and use pseudolabels and each impacts the final122

predictions of the model [41, 45, 16, 35]. Some approaches use confidence thresholds [36, 3, 40] and123

others average predictions from multiple augmentations [4]. Pseudolabeling is a semi-supervised124

learning technique, and it is rarely used in transductive zero-shot learning [42, 5, 25]. Applying125

such techniques requires a few labeled examples related to the target task to learn a baseline model126

capable of pseudolabeling. However, this limitation has been overcome by VLMs, which are capable127

of pseudolabeling examples without task-specific training. The conventional pseudolabeling scheme128

based on confidence threshold is not effective if we assign pseudolabels based on CLIP. In fact129

CLIP is miscalibrated [22] and has imbalanced predictions [38] which may induce noise in the130

pseudolabels. An alternative approach selects the top-K most confident examples per class to131

improve performance [15]. In our analysis, we rely on this scheme (Section 3).132
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3 Design space133

Our analysis encompasses the design space consisting of various combinations of prompt modalities,134

learning paradigms, and training strategies (Figure 1). Within this space, two key components remain135

constant: the pseudolabeling scheme and a unified loss function. This section begins by introducing136

these components and subsequently delves into a comprehensive discussion of each dimension within137

the design space to be explored.138

Pseudolabeling scheme The use of CLIP to generate pseudolabels has been investigated in [15].139

Given unlabeled data Xu with target classes {y1, ..., yC}, the goal is to assign labels to data points in140

which the model is most confident. Typically, pseudo labeling schemes use a confidence threshold141

(P (y|x) > τ ) to select instances to pseudolabel. However, this approach does not work well for CLIP142

due to its miscalibration [22] and imbalanced predictions [38]. Instead, one can use a top-K pseudo143

labeling approach, where the top-K most confident examples per class are used as pseudolabeled144

data [15]. This approach guarantees an equal distribution of pseudolabeled training samples for145

each class, effectively addressing the natual bias in CLIP’s pseudolabels [38]. Moreover, it enables146

leveraging the similarity signals from CLIP’s probabilities, irrespective of the distribution of its147

predictions.148

This top-K pseudolabeling scheme is applicable to unlabeled data, regardless of the availability of149

labeled data. As a result, we can extend the use of pseudolabels to any learning setting that involves150

unlabeled data. We observe that by treating pseudolabeled examples as true labeled data, we can view151

all learning settings as optimizing the same objective function.152

Unified objective function Consider a C-class image classification task, where XL and YL rep-153

resent the image representations and labels of the labeled data, and XU and ỸU denote the image154

representations and pseudolabels for the unlabeled data. We define a loss function that combines two155

cross-entropy losses, one accounting for the error on the labeled data points and the other accounting156

for the error on pseudolabeled data:157

L = γ LCE(XL, YL) + λLCE(XU , ỸU )

where γ and λ define the training balance between the errors on labeled and pseudolabeled data.158

3.1 Prompt modalities159

Learning prompts is the process of training a set of vectors P = [p]1 . . . [p]K that are prepended160

to the textual or visual inputs of the encoders within the CLIP architecture. By prepending these161

vectors to specific inputs, we can learn textual prompts, visual prompts, or multimodal prompts162

when applying a set of vectors to both inputs simultaneously. We provide a technical and detailed163

explaination in Appendix A.1.164

In our exploration, we consider all three types of prompts. The efficacy of prompts can vary depending165

on the task. Text prompt tuning may be most beneficial when image features are well-separated166

by class but may not be aligned with the corresponding textual prompt. Visual prompts rearrange167

the image features within the projection space, and it has the potential to improve CLIP when the168

pre-trained image features are not well separated by class. Finally, multimodal prompts allows for169

beneficial interaction between the two separate modalities, which might lead to both separable visual170

features, and text classifiers that are well-aligned with the corresponding visual features.171

3.2 Learning paradigms172

By adjusting the values of parameters γ and λ and using the appropriate sets of labeled and pseudola-173

beled data, the unified objective loss can be customized for each learning paradigm.174

Semi-supervised learning In the semi-supervised learning (SSL) scenario we have access to a175

limited number of labeled data for all the target classesDL = {(x, y)} where x is an input feature and176

y ∈ Y = [C] is the corresponding label. In addition, we have access to unlabeled data XU = {x},177
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where x is an image in the target domain Y . From XU , we get DPL = {(x, ỹ)}, where ỹ ∈ [C]178

is x’s pseudolabel. When using the unified loss in this setting, we set γ to |DPL|/|DL|. As |DL|179

is much smaller than |DPL|, γ acts as an upweighting factor for the few-labeled instances, thus180

counterbalancing the learning effect of pseudolabels (λ=1).181

Transductive zero-shot learning In transductive zero-shot learning (TZSL), we are provided with182

labeled data DL = {(x, y)} for some target classes S (referred to as seen classes), where x represents183

input features, and y ∈ [S] is the corresponding label. Additionally, we have access to unlabeled184

data XU = {x} for a disjoint set of classes U (referred to as unseen classes). Using XU , we obtain185

DPL = (x, ỹ), where ỹ ∈ [U ] denotes the pseudolabels for x. The value of λ in the unified loss is186

set to |DL|/|DPL|, which makes the weight of the pseudolabel loss equivalent to that of the labeled187

data (γ = 1). This is necessary because an imbalance in the number of labeled and pseudolabeled188

samples can result in a skewed training distribution, leading to better performance on seen classes189

while the performance on unseen classes may either remain stagnant or degrade. Studying this setting190

is interesting beyond transductive zero-shot learning. In fact, it has the potential to generalize to191

scenarios where the target task involves unseen classes, while the seen classes consist of auxiliary192

labeled data from the same domain but different task [30].193

Unsupervised learning In the unsupervised learning (UL) setting, we have access only to unlabeled194

data XU = {x}, from which we obtain DPL = (x, ỹ), where ỹ ∈ [C] denotes the pseudolabel for x.195

In this case, γ is set to 0, as there is no labeled data, and λ = 1. The use of this setting was initially196

explored in [15], who leveraged a few pseudolabels per class to learn textual prompts. In this paper,197

we build on their work by investigating a variety of training strategies and prompt modalities.198

Supervised learning In supervised learning (SL), we are only provided with labeled data DL =199

(x, y), where x represents an input feature, and y ∈ [C] is the corresponding label. If we set λ to 0,200

the unified loss function is equivalent to the objective functions of default prompt-tuning approaches201

that optimize the prompts using a few labeled instances per target class. This setting is not strictly202

part of our design space. However, we will refer to it to define baselines in Section 4.203

3.3 Training strategies204

The unified objective function enables the development of training strategies broadly applicable205

across various learning paradigms. We explore three distinct learning strategies to effectively utilize206

pseudolabels in this context. The first strategy utilizes pseudolabels in a static manner. The other207

two strategies, which are novel and proposed here for the first time for prompt tuning, involve the208

dynamic use of pseudolabeled data.209

Few-pseudolabels (FPL) We select K pseudolabels per target class, resulting in a pseudolabeled210

dataset of size K ·C. We learn the prompts by minimizing the objective function via backpropagation211

through CLIP’s encoders. This strategy aligns with Unsupervised Prompt Learning (UPL) in [15]. We212

refer to it as few-pseudolabels (FPL) to encompass its applicability for learning prompts of diverse213

modalities across learning paradigms.214

Iterative Refinement of FPL (IFPL) Similar to FPL, we assign K pseudolabels per target class.215

After the first iteration, we recompute the set of C ·K pseudolabels. Then, we conduct I iterations of216

training-pseudolabeling reinitializing the prompt every time. With this iterative approach, if training217

with the initial pseudolabel set leads to an improvement in the model’s performance, the model itself218

can become a more effective pseudolabeler, refining the pseudolabels in each subsequent iteration.219

Grow and Refine Iteratively Pseudolabels (GRIP) Although the iterative refinement of FPL can220

improve the quality of the K pseudolabels used for training, it still limits learning to a few examples221

per target class. To overcome this constraint, we expand the set of pseudolabels at each iteration such222

that, at the ith iteration, we use i/I-th of the unlabeled data. The rationale behind this strategy is that223

as the model’s accuracy in generating pseudolabels improves, we can increase the total number of224

pseudolabels without introducing excessive noise.225
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4 Experiments226

We explore the design space outlined in Section 3 to understand the effectiveness of leveraging227

pseudolabels for limited-label prompt tuning. We show that (1) iterative strategies significantly228

improve CLIP’s performance across prompt modalities and learning settings, (2) using CLIP-based229

pseudolabels with iterative strategies induces a more equitable distribution of per-class accuracy.230

Datasets We conduct the analysis on six tasks, covering specialized and fine-grained domains,231

where CLIP shows deficiencies [31]. We call this set of tasks FRAMED, and it includes232

Flowers102 [29], RESICS45 [9], FGVC-Aircraft [26], MNIST [11], EuroSAT [14], and DTD [10].233

For each dataset we use the training and test splits provided in [23]. For the transductive zero-shot234

learning setting we randomly generate three splits of seen and unseen classes with a 62-38 ratio.235

Further details are in Appendix A.2.236

Baselines To evaluate the effectiveness of the training strategies described in Section 3.3, we237

compare the performance of CLIP when queried with the learned soft prompts to CLIP zero-shot238

with default prompts such as “a photo of a [CLASS].” In addition, we compare with default239

supervised prompt-tuning baselines, for which we only use the available labeled data: CoOp [48]240

for textual prompts, VPT [18] for visual prompts, and UPT [44] for multimodal prompts. We defer241

to Appendix A.1 the technical details of these methods.242

Evaluation metrics We assess the performance of each method by measuring the accuracy of the243

test set, averaging the results over five runs. In the case of TRZSL, we report the harmonic mean to244

account for potentially imbalanced performance between seen and unseen classes [39].245

Training settings For all experiments, datasets, and learning strategies, we use ViT-B/32 as the246

vision backbone. For both visual and textual prompt learning, we set the prefix size to 16 [48, 18].247

Multimodal prompts have length 8 [44]. We use SGD as the optimizer and train for 150 epochs.248

We utilize 5 warmup epochs at a learning rate of 0.0001, and then set the learning rate to l, which249

is decayed by the cosine annealing rule. For textual and visual prompt learning, l = .1, while for250

multimodal prompt learning, l = .01. In SSL, we use 2 labeled samples per class to assess the impact251

of pseudolabels in the scenario of very few labeled data and abundant unlabeled data. FPL and IFPL252

have the number of pseudolabels per class fixed to 16 [15]. The number of iterations I = 10.253

4.1 Exploring the design space254

GRIP consistently enhances CLIP across prompt modalities and learning settings Table 1255

reports the performance of GRIP, the best performing among the training strategies in Section 3.3,256

compared to CLIP and prompt-tuning baselines. Overall, GRIP consistently improves the performance257

of CLIP and the baselines across prompt modalities and learning settings. By tuning textual prompts,258

the average improvement over CLIP is 20.7 points in SSL, 14.9 in UL, and 32.4 in TRZSL, while259

the improvement on CoOp is 9.6 points in SSL, and 26.6 in TRZSL. Similar results for the visual260

prompts show that GRIP improves CLIP by 18.2 points in SSL, 15.7 in UL, and 30.8 in TRZSL, and261

VPT by 12.9 points in SSL, and 20.8 in TRZSL. We note that CoOp and VPT applied to the SSL262

setting correspond to learning only on the labeled data, and we do not run them in the UL setting as263

there is no labeled data. Results are similar for multimodal prompts. We defer them to Appendix A.3,264

due to space constraints.265

Unsupervised learning is equivalent or more robust than learning with very few shots The266

accuracy of GRIP when applied to the fully unsupervised setting is either higher or equivalent to267

the accuracy of VPT, which is trained using two labeled instances per class (Table 1). This shows268

that pseudolabeled data can substitute very few labeled examples for prompt tuning. However, the269

significant improvement of GRIP over CoOp and VPT in the semi-supervised setting (see Table 1)270

suggests that leveraging unlabeled data through pseudolabeling is advantageous in scenarios where271

labeled data is scarce but there is an abundance of unlabeled data.272

Transductive zero-shot learning effectively transfers knowledge In the TRZSL setting,273

GRIP improves over CLIP and the baselines by a large margin (Table 1). Figure 2274

displays the balance of seen and unseen classes of each method alongside its accuracy.275
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Textual prompts
Flowers102 RESICS45 FGVCAircraft

Method SSL UL TRZSL SSL UL TRZSL SSL UL TRZSL

CLIP 63.670.00 63.400.00 54.480.00 54.460.00 17.580.00 17.860.00
CoOp 76.761.11 - 63.220.02 58.5310.81 - 63.370.02 14.913.22 - 21.700.03
GRIP 83.60.68 69.841.06 86.260.00 74.110.68 70.550.88 81.070.00 16.980.82 15.220.71 26.080.00

∆ CLIP ↑ 19.93 ↑ 6.17 ↑ 22.86 ↑ 19.63 ↑ 16.07 ↑ 26.61 ↓ 0.6 ↓ 2.36 ↑ 8.22
∆ CoOp ↑ 6.84 - ↑ 23.04 ↑ 15.58 - ↑ 17.70 ↑ 2.07 - ↑ 4.38

MNIST EuroSAT DTD

CLIP 25.100.00 20.770.00 32.880.00 30.540.00 43.240.00 43.450.00
CoOp 56.422.66 - 21.150.09 59.514.55 - 49.680.08 37.105.45 - 46.30.03
GRIP 71.783.59 67.882.76 74.060.00 58.662.64 57.211.77 92.330.00 56.070.85 46.091.06 65.300.01

∆ CLIP ↑ 46.68 ↑ 42.78 ↑ 53.29 ↑ 25.78 ↑ 24.33 ↑ 61.79 ↑ 12.83 ↑ 2.85 ↑ 21.85
∆ CoOp ↑ 15.36 - ↑ 52.91 ↓ 0.85 - ↑ 42.65 ↑ 18.97 - ↑ 19.00

Visual prompts
Flowers102 RESICS45 FGVCAircraft

Method SSL UL TRZSL SSL UL TRZSL SSL UL TRZSL

CLIP 63.670.00 63.400.00 54.480.00 54.460.00 17.580.00 17.860.00
VPT 63.731.52 - 64.710.00 60.801.65 - 67.060.00 17.760.68 - 26.690.00

GRIP 67.951.2 63.090.55 77.180.00 71.220.77 68.430.61 82.190.00 19.430.5 17.510.61 26.420.00

∆ CLIP ↑ 4.28 ↓ 0.58 ↑ 13.78 ↑ 16.74 ↑ 13.95 ↑ 27.73 ↑ 1.85 ↓ 0.07 ↑ 8.56
∆ VPT ↑ 4.22 - ↑ 12.47 ↑ 10.42 - ↑ 15.13 ↑ 1.67 - ↓ 0.27

MNIST EuroSAT DTD

CLIP 25.100.00 20.770.00 32.880.00 30.540.00 43.240.00 43.450.00
VPT 42.5314.13 - 25.510.05 47.131.34 - 62.240.02 36.412.17 - 44.160.01
GRIP 69.665.51 68.041.11 69.540.01 63.483.09 63.683.42 96.970.00 54.574.86 50.510.99 62.780.00

∆ CLIP ↑ 44.56 ↑ 42.94 ↑ 48.77 ↑ 30.60 ↑ 30.80 ↑ 66.43 ↑ 11.33 ↑ 7.27 ↑ 19.33
∆ VPT ↑ 27.14 - ↑ 44.03 ↑ 16.35 - ↑ 34.73 ↑ 18.16 - ↑ 18.62

Table 1: For each learning paradigm, we compare the accuracy of GRIP with CLIP zero-shot (ViT-
B/32), CoOp, and VPT. Results are for SSL, UL, and TRZSL on FRAMED. We average the accuracy
on 5 seeds and report the standard deviation. ∆ METHOD is the difference between the accuracy of
GRIP and METHOD. We note that for UL we can not apply CoOp and VPT since no labeled data is
available.
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Figure 2: Balance of seen and unseen
accuracies vs. model’s overall accuracy.
Points close to 0 indicate a good balance.
Negatives represent better accuracy for
the seen classes.

The class balance is (accunseen − accseen)/accseen,276

where values close to zero indicate a good balance, neg-277

ative values indicate better accuracies for seen classes,278

and positive values indicate better accuracies for unseen279

classes. Methods employing an iterative usage of pseudola-280

bels maintain a good balance, as opposed to CoOp/VPT281

and FPL. This balance in accuracy is likely a combined282

effect of the quality of the pseudolabels and the transfer of283

knowledge from the seen to the unseen classes. The latter284

point holds significant relevance as it can imply that even285

if we only possess unlabeled data for a specific target task,286

we can still utilize labeled data from related classes [30]287

within the same domain to enhance CLIP’s performance.288

There is a trade-off between quality and quantity of289

pseudolabels Table 2 shows the performance of CLIP290

employing prompts learned with different training strategies, all leveraging pseudolabels (Section 3.3).291

Iterative strategies are more effective than FPL which, similarly to [15], uses a static set of a few292

pseudolabels for one iteration. On Flowers102, RESICS45, and DTD, IFPL improves on average293

FPL by 5.6 points in SSL, 1.7 in UL, and 5.6 in TRZSL. GRIP boosts the performance even more by294

on average 7.8 points in SSL, 3.1 in UL, and 9.7 in TRZSL. Results on the other tasks are comparable295

or larger and we report them in Appendix A.3 due to space constraints.296

Figure 3 shows the progression of pseudolabels quality for the iterative learning of textual prompts.297

IFPL maintains a fixed set of 16 pseudolabels, improving their quality with each iteration. On298

the other hand, GRIP expands pseudolabels by incorporating an additional decile of unlabeled299
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Textual prompts
Flowers102 RESICS45 DTD

Method SSL UL TRZSL SSL UL TRZSL SSL UL TRZSL

FPL 75.960.74 65.670.23 80.970.00 68.130.55 63.070.38 72.110.00 37.105.45 44.960.55 46.30.03
IFPL 78.680.75 69.561.05 82.080.00 70.521.12 64.110.98 75.510.00 55.240.97 47.771.15 59.140.02
GRIP 83.600.48 69.841.06 86.260.00 74.110.68 70.550.88 81.070.00 56.070.85 46.091.06 65.300.01

∆ IFPL ↑ 2.72 ↑ 3.89 ↑ 1.11 ↑ 2.39 ↑ 1.07 ↑ 3.4 ↑ 18.14 ↑ 2.81 ↑ 12.84
∆ GRIP ↑ 7.64 ↑ 4.17 ↑ 5.29 ↑ 5.89 ↑ 7.48 ↑ 8.96 ↑ 18.97 ↑ 1.13 ↑ 19.00

Visual prompts
FPL 67.030.65 65.500.41 71.940.00 65.140.25 62.240.22 67.850.00 47.601.09 47.690.48 52.430.00
IFPL 68.690.45 66.120.46 76.910.00 67.111.19 62.931.23 73.530.00 51.650.70 50.340.65 57.860.01
GRIP 67.951.2 63.090.56 77.180.00 71.220.77 68.430.61 82.190.00 54.574.86 50.510.99 62.780.00

∆ IFPL ↑ 1.66 ↓ 0.38 ↑ 4.97 ↑ 1.97 ↑ 0.69 ↑ 5.68 ↑ 4.05 ↑ 2.65 ↑ 5.43
∆ GRIP ↑ 0.92 ↓ 3.41 ↑ 5.24 ↑ 6.08 ↑ 6.19 ↑ 14.34 ↑ 6.97 ↑ 2.82 ↑ 10.35

Multimodal prompts
FPL 72.540.36 65.260.38 77.470.00 62.841.05 62.320.65 71.430.00 43.712.19 44.850.31 54.860.00
IFPL 73.140.87 65.391.33 81.470.00 70.601.04 63.690.53 46.040.36 53.211.24 47.591.04 43.170.25
GRIP 74.562.02 64.821.63 82.010.00 73.780.91 69.370.61 82.170.00 54.072.25 47.370.70 63.420.00

∆ IFPL ↑ 1.91 ↑ 0.13 ↑ 4.00 ↑ 7.76 ↑ 1.37 ↓ 25.39 ↑ 9.5 ↑ 2.74 ↓ 11.69
∆ GRIP ↑ 2.02 ↓ 0.44 ↑ 4.54 ↑ 10.84 ↑ 7.05 ↑ 10.74 ↑ 10.36 ↑ 2.52 ↑ 8.56

Table 2: For each learning paradigm, we compare FPL, IFPL, and GRIP on Flowers102, RESICS45,
and DTD, for all the learning settings SSL, UL, TRZSL. We average across 5 runs and report the
standard deviation. ∆ METHOD is the difference between the accuracy of FPL and METHOD.

data in each iteration. Initially, GRIP maintains accuracy, but as it nears completion the qual-300

ity tends to decrease, while a larger dataset with good-quality pseudolabels becomes available.301
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Figure 3: Evolution of pseudolabels accuracy
during training. The rows refer to SSL, UL, and
TRZSL, in order. IFPL refers to the top x-axis,
while CLIP and GRIP to the bottom.

Comparing GRIP and CLIP, GRIP’s expanded302

pseudolabels exhibit superior quality and performs303

better (Table 1). Even though IFPL’s pseudola-304

bel accuracy surpasses GRIP in the final iteration,305

GRIP’s overall performance remains better due306

to training on a larger number of pseudolabels307

(Table 2). This suggests that numerous, slightly308

noisier pseudolabels can yield better results, high-309

lighting a trade-off and offering insights for future310

approaches.311

GRIP benefits adaptation even for larger image312

encoders We measure how much the effect of313

the iterative strategies changes if we consider a314

larger pre-trained image encoder. In Table 3, we315

report the average improvements of GRIP on CLIP316

for Flowers102, RESICS45, and DTD. The mag-317

nitude of improvements slightly decreases when318

using a larger image encoder. However, we still319

see significant benefits for both modalities.320

4.2 The Robin Hood effect321

Although training models with pseudolabels can322

lead to good performance, it can also result in bi-323

ased predictions and generate disparate impacts on324

sub-populations, i.e., the “Matthew effect” [49, 8].325

Particularly, the use of pseudolabels can lead to326

improved performance in well-behaved (high accuracy) classes but can cause stagnation or decreased327

performance in poorly behaved (low accuracy) classes. As we explore the use of pseudolabels, we328

investigate how the accuracy of the analyzed approaches distributes across classes. Figure 4 shows329

an opposite scenario from typical SSL. For all learning paradigms, the iterative training strategies330

increase the accuracy of classes where CLIP is not proficient, while maintaining or decreasing the accu-331
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racy of initially well-behaved classes. This effect, we call the “Robin Hood effect,” is very interesting332

because it shows how CLIP can mitigate its own bias toward certain classes by learning from itself.333

Textual prompts
SSL UL TRZSL

Avg. ∆ CLIP (ViT-B/32) 17.4612.83 8.362.85 23.772.51
Avg. ∆ CLIP (ViT-L/14) 15.856.44 8.166.12 19.966.19

Visual prompts
SSL UL TRZSL

Avg. ∆ CLIP (ViT-B/32) 10.784.28 6.88−0.58 20.2813.78
Avg. ∆ CLIP (ViT-L/14) 7.613.27 4.89−0.48 16.1411.13

Table 3: Average improvement of GRIP with dif-
ferent backbones on Flowers102, RESICS45, and
DTD. ∆ CLIP is the difference between the accu-
racy of GRIP and CLIP. Alongside the average, we
provide the minimum improvement across tasks.

To understand the roots of the Robin Hood ef-334

fect, we examine two factors: (1) the role of335

pseudolabels generated by CLIP, and (2) the role336

of prompt tuning. To disentangle these factors,337

we explore the variation in per-class accuracy of338

a basic linear classifier trained on CLIP’s ViT-339

B/32 image representation.340

“Second generation” pseudolabels are a good341

treatment for class disparity We train the342

linear classifier in the SSL setting on 2 la-343

beled examples per class and pseudolabels. The344

pseudolabels are obtained through conventional345

methods, where a threshold of .95 is applied, or346

by using CLIP to generate 16 pseudolabels per347

class. We find that both approaches yield similar overall accuracies. However, we observe the348

"Matthew effect" when using the first approach. In contrast, when using CLIP-based pseudolabels,349

the class disparity of the regressor trained solely on seen classes is reduced. Particularly, we see a350

significant improvement on initially poor classes, together with a significant diminish of the accuracy351

of well-behaved classes. We observe a clear manifestation of the “Robin Hood effect.” We present352

plots illustrating this effect in Appendix A.4.353
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Figure 4: Improvements of FPL
and GRIP on CLIP’s per-class ac-
curacies (RESICS45). X-axis is the
ranked class index, while y-axis is
the accuracy.

Prompt tuning retains the accuracy of already rich classes354

better than linear probing To evaluate the role of prompt355

tuning in the “Robin Hood effect,” we train a linear classifier356

and textual prompts in the UL setting using GRIP’s training357

strategy. Comparing the per-class acurracies of the two ap-358

proaches, GRIP on prompts shows an average improvement359

of 22.85 points for the poor classes across tasks, along with a360

slight average decrease of 0.3 points for the rich classes. On the361

other hand, linear probing determines a 14.42-point improve-362

ment for the poor classes, but it results in an average decrease363

of 9.39 points in accuracy for the rich classes (Appendix A.4).364

5 Conclusions365

We show that prompt tuning using pseudolabels generated by366

CLIP itself is a successful approach to enhance CLIP across367

various learning settings. Training strategies that iteratively368

refine pseudolabels turn out to be effective ways of leverag-369

ing pseudolabeled data. These approaches not only enhance370

CLIP’s accuracy but also mitigate model biases toward cer-371

tain classes. We hope this work lays a solid groundwork for372

reducing reliance on labeled data when adapting pre-trained373

vision-language models like CLIP to new tasks.374

Limitations The effectiveness of the training strategies ex-375

amined in this paper depends on both the strategies themselves376

and the quality of pseudolabels. The latter is particularly crucial. If CLIP performs poorly on a task,377

we may struggle to obtain a reliable set of pseudolabels to begin with, potentially diminishing CLIP’s378

performance. Despite this potential risk, we have not observed any relevant failure of GRIP, even in379

tasks where CLIP’s initial accuracy is extremely low (such as FGVCAircraft). The pseudolabeling380

strategy we adopt involves selecting K pseudolabels per class, which can create a strong assumption381

about the distribution of the training data if we attempt to cover all unlabeled data. In fact, during the382

final iteration, it is as if we assume a uniform data distribution.383
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deep semi-supervised learning. 2019 IEEE/CVF Conference on Computer Vision and Pattern453

Recognition (CVPR), pages 5065–5074, 2019.454

[17] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yun-455

Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation456

learning with noisy text supervision. In International Conference on Machine Learning, 2021.457

[18] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan,458

and Ser-Nam Lim. Visual prompt tuning. In ECCV 2022: 17th European Conference on459

Computer Vision, 2022.460

[19] Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fa-461

had Shahbaz Khan. Maple: Multi-modal prompt learning. ArXiv, abs/2210.03117, 2022.462

[20] Dong-Hyun Lee. Pseudo-label : The simple and efficient semi-supervised learning method463

for deep neural networks. ICML 2013 Workshop : Challenges in Representation Learning464

(WREPL), 2013.465

[21] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient466

prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural467

Language Processing, 2021.468

[22] Will LeVine, Benjamin Pikus, Pranav Vishnu Raja, and Fernando Amat. Enabling calibration469

in the zero-shot inference of large vision-language models. In ICLR 2023 Workshop on Pitfalls470

of limited data and computation for Trustworthy ML, 2023.471

[23] Chunyuan Li, Haotian Liu, Liunian Li, Pengchuan Zhang, Jyoti Aneja, Jianwei Yang, Ping472

Jin, Houdong Hu, Zicheng Liu, Yong Jae Lee, and Jianfeng Gao. Elevater: A benchmark and473

toolkit for evaluating language-augmented visual models. In Advances in Neural Information474

Processing Systems, 2022.475

[24] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.476

In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics477

and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long478

Papers), 2021.479

[25] Bo Liu, Lihua Hu, Qiulei Dong, and Zhanyi Hu. An iterative co-training transductive framework480

for zero shot learning. IEEE Transactions on Image Processing, 30:6943–6956, 2021.481

[26] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew B. Blaschko, and Andrea Vedaldi. Fine-482

grained visual classification of aircraft. ArXiv, abs/1306.5151, 2013.483

11



[27] Shu Manli, Nie Weili, Huang De-An, Yu Zhiding, Goldstein Tom, Anandkumar Anima, and484

Xiao Chaowei. Test-time prompt tuning for zero-shot generalization in vision-language models.485

In NeurIPS, 2022.486

[28] Nihal V. Nayak, Peilin Yu, and Stephen Bach. Learning to compose soft prompts for composi-487

tional zero-shot learning. In The Eleventh International Conference on Learning Representa-488

tions, 2023.489

[29] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large490

number of classes. 2008 Sixth Indian Conference on Computer Vision, Graphics & Image491

Processing, 2008.492

[30] Wasu Piriyakulkij, Cristina Menghini, Ross Briden, Nihal V. Nayak, Jeffrey Zhu, Elaheh Raisi,493

and Stephen H. Bach. TAGLETS: A system for automatic semi-supervised learning with494

auxiliary data. In Conference on Machine Learning and Systems (MLSys), 2022.495

[31] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-496

wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya497

Sutskever. Learning transferable visual models from natural language supervision. In Interna-498

tional Conference on Machine Learning, 2021.499

[32] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language500

models are unsupervised multitask learners. 2019.501

[33] Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai,502

Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish503

Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal504

Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica,505

Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala506

Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan507

Teehan, Teven Le Scao, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M Rush.508

Multitask prompted training enables zero-shot task generalization. In International Conference509

on Learning Representations, 2022.510

[34] Sheng Shen, Shijia Yang, Tianjun Zhang, Bohan Zhai, Joseph E. Gonzalez, Kurt Keutzer, and511

Trevor Darrell. Multitask vision-language prompt tuning. arXiv preprint arXiv:2211.11720,512

2022.513

[35] Weiwei Shi, Yihong Gong, C. Ding, Zhiheng Ma, Xiaoyu Tao, and Nanning Zheng. Transductive514

semi-supervised deep learning using min-max features. In European Conference on Computer515

Vision, 2018.516

[36] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raf-517

fel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-518

supervised learning with consistency and confidence. In Advances in Neural Information519

Processing Systems, 2020.520

[37] Ximeng Sun, Ping Hu, and Kate Saenko. Dualcoop: Fast adaptation to multi-label recognition521

with limited annotations. ArXiv, 2022.522

[38] Xudong Wang, Zhi-Li Wu, Long Lian, and Stella X. Yu. Debiased learning from naturally523

imbalanced pseudo-labels. 2022 IEEE/CVF Conference on Computer Vision and Pattern524

Recognition (CVPR), 2022.525

[39] Yongqin Xian, Bernt Schiele, and Zeynep Akata. Zero-shot learning — the good, the bad and526

the ugly. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.527

[40] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data aug-528

mentation for consistency training. In Advances in Neural Information Processing Systems,529

2020.530

[41] Yi Xu, Lei Shang, Jinxing Ye, Qi Qian, Yu-Feng Li, Baigui Sun, Hao Li, and Rong Jin. Dash:531

Semi-supervised learning with dynamic thresholding. In International Conference on Machine532

Learning, 2021.533

12



[42] Yunlong Yu, Zhong Ji, Xi Li, Jichang Guo, Zhongfei Zhang, Haibin Ling, and Fei Wu. Trans-534

ductive zero-shot learning with a self-training dictionary approach. IEEE Transactions on535

Cybernetics, 48(10):2908–2919, 2018.536

[43] Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel C. F. Codella, Xiyang Dai, Jianfeng Gao,537

Houdong Hu, Xuedong Huang, Boxin Li, Chunyuan Li, Ce Liu, Mengchen Liu, Zicheng Liu,538

Yumao Lu, Yu Shi, Lijuan Wang, Jianfeng Wang, Bin Xiao, Zhen Xiao, Jianwei Yang, Michael539

Zeng, Luowei Zhou, and Pengchuan Zhang. Florence: A new foundation model for computer540

vision. ArXiv, abs/2111.11432, 2021.541

[44] Yuhang Zang, Wei Li, Kaiyang Zhou, Chen Huang, and Chen Change Loy. Unified vision and542

language prompt learning. ArXiv, abs/2210.07225, 2022.543

[45] Bowen Zhang, Yidong Wang, Wenxin Hou, HAO WU, Jindong Wang, Manabu Okumura, and544

Takahiro Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo545

labeling. In Advances in Neural Information Processing Systems, 2021.546

[46] X. Zhang, Yusuke Iwasawa, Yutaka Matsuo, and Shixiang Shane Gu. Domain prompt learning547

for efficiently adapting clip to unseen domains. 2021.548

[47] Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use:549

Improving few-shot performance of language models. 2021.550

[48] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for551

vision-language models. International Journal of Computer Vision, 2021.552

[49] Zhaowei Zhu, Tianyi Luo, and Yang Liu. The rich get richer: Disparate impact of semi-553

supervised learning. In International Conference on Learning Representations, 2022.554

A Appendix555

We include here extra information that supports the results presented in the main body of the paper.556

Reproducibility We have provided the code to run the experiments as supplementary material for557

the submission. However, we plan to release it as an open repository upon acceptance.558

A.1 Trainable Prompts559

Text Prompt Tuning The primary objective of text prompt tuning is to improve the alignment560

between the class token and the image features extracted by the image encoder. This is achieved by561

adding learnable vectors, i.e., prefix, before the CLASS token to create a contextualized representation.562

Specifically, the sequence563

t = [V]1[V]2 . . . [V]M [CLASS]

is fed into the textual encoder, where each vector [V]m (m ∈ 1, . . . ,M) has the same dimension as564

word embeddings, and M is a hyperparameter that determines the length of the prefix.565

Context Optimization (CoOp) [48] was the first work to explore continuous prompts for VLMs.566

Follow-up works have experimented with different training strategies to enhance the generalizability567

of the learned prompts while preserving the core concept of continuous vector tuning [34, 12, 27, 46,568

13, 37].569

Tuning the text prefix vector changes the resulting n linear weight vectors wi = ψ(pi), while leaving570

the image features unchanged. Therefore, text prompt tuning may be most beneficial when image571

features are well-separated by class but may not be aligned with the corresponding textual prompt.572

Conversely, text prompt tuning may not be as effective when the image features are poorly separated,573

as in specialized or novel domains where CLIP may lack sufficient training data.574
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Num. classes (|Y|) Num. seen classes (|S|) Num. unseen classes (|U |) Size training data Avg. labeled data per class Size test

Flowers102 102 63 39 2040 16 6149
RESICS45 45 27 18 6300 110 25200
FGVC-Aircraft 100 62 38 6667 53 3333
MNIST 10 6 4 60000 4696 10000
EuroSAT 10 6 4 27000 2200 5000
DTD 47 29 18 3760 64 1880

Table 4: For each dataset we report the number of classes, the number of seen and unseen classes in
the TRZSL setting, the size of training data (including both labeled and unlabeled data), the average
number of labeled examples per class, and the size of the test set which is the same across learning
paradigms. We recall that we use the datasets gathered by the recent ELEVATER [23] benchmark
for vision-language models.

Visual Prompt Tuning Instead of tuning the text prompts, one can also tune the inputs of the vision575

encoder. In this case, a learnable visual prefix is prepended to the image tokens as input to the image576

transformer as follows:577

Î = [p]1 . . . [p]K [I]1 . . . [I]P

where p represents a sequence of K learnable prefix vectors, and [I]1 . . . [I]P are the image tokens578

from the corresponding P patches of the input images. The new sequence Î is the input to the image579

encoder ϕ.580

Visual Prompt Tuning (VPT) was introduced in the context of efficiently adapting pre-trained vision581

transformers to downstream tasks [18]. However, the approach has since been applied in the context582

of VLM [34].583

Whereas text prompt tuning does not alter the image features, visual prompt tuning does. By584

rearranging the image features within the projection space, VPT has the potential to improve CLIP585

when the image features are not well separated by class, such as in specialized domains.586

Multimodal Prompt Tuning The previous approaches are unimodal, as they either involve modi-587

fying the text or visual input, but never both. This choice may be suboptimal as it does not allow the588

flexibility to dynamically adjust both representations on a downstream task. Recently, multimodal589

prompt tuning has been introduced [44, 19]. We focus on Unified Prompt Tuning (UPT) [44] which590

essentially learns a tiny neural network to jointly optimize prompts across different modalities. UPT591

learns a set of prompts U = [UT ,UV ] ∈ Rd×n with length n, where UT ∈ Rd×nT ,UV ∈ Rd×nV .592

U is transformed as follows:593

U ′ = SA(U) + LN(U)

Û = FFN
(
LN

(
U ′))+ LN

(
U ′)

where SA is the self-attention operator, LN is the layer normalization operator, and FFN is a feed594

forward network. After transformation, we obtain Û =
[
ÛT , ÛV

]
∈ Rd×n, such that ÛT is to be595

used as a text prompt, and ÛV is to be used as a visual prompt.596

The author of UPL argue that self-attention allows for beneficial interaction between the two separate597

modalities, which leads to both separable visual features, and text classifiers that are well-aligned598

with the corresponding visual features [44].599

Prompts initialization We initialize textual and visual prompts from a normal distribution of mean600

0 and variance 0.02. We note that we learn shallow visual prompts by modifying only the input to the601

image encoder. Multimodal prompts are initialized from a uniform distribution. We found that the602

latter was not working properly for textual and visual prompts.603

Additional training settings For training, the batch size is 64.604

A.2 Datasets details605

We use six datasets from specialized or fine-grained domains. Here we provide a description of each606

of them. In Table 4, we report the details about the number of classes and data available for each607

dataset. For each dataset, we also show CLIP’s prediction distribution over classes Figure 5.608
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Figure 5: For each dataset we show
the distribution of CLIP’s predic-
tions over classes on the test set.
The blue dots represent the true
class distribution.

Flowers102 [29] It is a dataset collecting images for 102609

flower categories commonly occurring in the United King-610

dom. For each class we have between 40 and 258 images.611

Figure 5a shows that CLIP’s predictions are skewed toward612

certain classes, which are predicted more often than what we613

would expect according to the real class distribution on the test614

set.615

RESICS45 [9] This is a publicly available benchmark for616

Remote Sensing Image Scene Classification. It collects 45 kind617

of scenes. Figure 5b shows that CLIP predicts more often a618

subset of classes.619

FGVC-Aircraft [26] It describes the fine-grained task of cat-620

egorizing aircraft. We consider the task of classifying aircrafts621

into 100 variants. Also for this task, CLIP assigns images to a622

reduced set of classes (Figure 5c).623

MNIST [11] MNIST is a database of handwritten digits. The624

digits are size-normalized and centered in a fixed-size image.625

We observe that CLIP never predicts 6 out of 10 classes (Fig-626

ure 5c).627

EuroSAT [14] EuroSAT represents the task of categorizing628

satellite images of scenes. It consists of 10 classes. In Figure 5e,629

we show CLIP’s predictions distribution over the classes.630

DTD [10] DTD stands for Describable Textures Dataset. It is631

an evolving collection of textural images in the wild, and it is632

annotated relying on human-centric attributes, inspired by the633

perceptual properties of textures. The zero-shot CLIP predic-634

tions show the model’s bias toward certain classes (Figure 5f).635

A.3 Experiments636

In this section, we report tables and plots that complement the637

results presented in Section 4.638

The effect of GRIP on multimodal prompts Table 5 shows639

the improvements of GRIP on CLIP and Unified Prompt Tuning640

(UPL) [44]. Similar to the results in Table 1, GRIP consistently641

improves CLIP with respect to the baselines. The improve-642

ments on CLIP are by 18.2 in semi-supervised learning, 14.8 in643

unsupervised learning, and 30.7 in transductive zero-shot learn-644

ing. While GRIP outperforms UPL by 4.7 in semi-supervised645

learning, and 19.5 in transductive zero-shot learning.646

Comparison across iterative strategies In Table 6, we report647

a comparison between FPL and the iterative strategies (IFPL648

and GRIP) on MNIST, EuroSAT, and FGVC-Aircraft. Results on the other tasks can be found in the649

main body of the paper Section 4.1. While GRIP largely and consistently outperforms FPL by on650

average 16.7 points in accuracy, IFPL is not robust and it leads to performances that are inferior to651

FPL by on average 4.4 points in accuracy.652

The evolving accuracy of dynamic pseudolabels Figure 6 represents the evolution of pseudolabels653

accuracy during training for all datasets, but Flowers102 and RESICS45 presented in Figure 3. We654

observe that the accuracy of the pseudolabels characterizes the overall performance of the models655

reported in Table 6. For instance, IFPL for EuroSAT in the TRZSL setting is highly variable,656
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Multimodal prompts
Flowers102 RESICS45 FGVCAircraft

Method SSL UL TRZSL SSL UL TRZSL SSL UL TRZSL

CLIP 63.670.00 63.400.00 54.480.00 54.460.00 17.580.00 17.860.00

UPT 68.031.29 - 61.050.04 62.841.05 - 58.790.04 11.134.98 - 15.890.07
GRIP 74.562.02 64.821.63 82.010.01 73.680.91 69.370.61 82.170.00 17.360.43 14.730.08 17.8510.30

∆ CLIP ↑ 10.89 ↑ 1.15 ↑ 18.61 ↑ 19.2 ↑ 14.89 ↑ 27.71 ↓ 0.22 ↓ 2.85 ↓ 0.01
∆ UPT ↑ 6.53 - ↑ 20.96 ↑ 10.84 - ↑ 22.38 ↑ 6.23 - ↑ 1.96

MNIST EuroSAT DTD

CLIP 25.100.00 20.770.00 32.880.00 30.540.00 43.240.00 43.450.00
UPT 64.443.66 - 63.590.11 68.859.92 - 60.430.04 43.712.18 - 36.910.04
GRIP 65.942.23 68.18run 73.752.93 60.384.77 61.523.04 95.520.40 54.072.25 47.370.7 63.420.00

∆ CLIP ↑ 40.84 ↑ 43.08 ↑ 52.98 ↑ 27.5 ↑ 28.64 ↑ 64.98 ↑ 10.83 ↑ 4.13 ↑ 19.97
∆ UPT ↑ 2.35 - ↑ 10.16 ↓ 8.47 - ↑ 35.09 ↑ 10.36 - ↑ 26.51

Table 5: For each learning paradigm, we compare the accuracy of GRIP with CLIP zero-shot (ViT-
B/32), and UPL. Results are for SSL, UL, and TRZSL on FRAMED. We average the accuracy on 5
seeds and report the standard deviation. ∆ METHOD is the difference between the accuracy of GRIP
and METHOD. We note that for UL we can not apply UPL since no labeled data is available.

Textual prompts
MNIST EuroSAT FGVCAircraft

Method SSL UL TRZSL SSL UL TRZSL SSL UL TRZSL

FPL 66.061.10 40.032.63 9.7319.45 62.051.64 48.961.49 53.7026.87 20.020.77 16.620.67 17.550.37
IFPL 59.143.43 28.942.05 0.000.00 61.281.59 56.463.26 14.3628.71 18.000.35 13.800.67 21.720.77
GRIP 71.783.59 67.882.76 74.060.29 58.662.64 57.211.77 92.330.69 16.980.82 15.220.71 26.080.25

∆ IFPL ↓ 6.92 ↓ 11.09 ↓ 9.73 ↓ 0.77 ↑ 7.50 ↓ 39.34 ↓ 2.02 ↓ 2.82 ↑ 4.17
∆ GRIP ↑ 5.72 ↑ 27.85 ↑ 64.33 ↓ 3.39 ↑ 8.25 ↑ 38.63 ↓ 3.04 ↓ 1.40 ↑ 8.53

Visual prompts
FPL 42.8416.80 39.626.53 31.8217.53 52.472.53 48.793.69 68.6814.74 20.140.26 18.280.33 16.280.45
IFPL 52.918.99 37.176.27 38.384.21 57.856.52 32.5210.00 48.1311.13 18.770.48 16.360.37 19.290.36
GRIP 69.665.51 68.041.11 69.541.31 63.483.09 63.683.42 96.970.77 19.430.50 17.510.61 26.420.30

∆ IFPL ↑ 10.07 ↓ 2.45 ↑ 6.56 ↑ 5.38 ↓ 16.27 ↓ 20.55 ↓ 1.37 ↓ 1.92 ↑ 3.01
∆ GRIP ↑ 26.82 ↑ 28.42 ↑ 37.72 ↑ 11.01 ↑ 14.89 ↑ 28.29 ↓ 0.71 ↓ 0.77 ↑ 10.14

Table 6: For each learning paradigm, we compare FPL, IFPL, and GRIP on MNIST, EuroSAT,
and FGVCAircraft. We average across 5 runs and report the standard deviation. ∆ METHOD is the
difference between the accuracy of FPL and METHOD.

explaining the low average accuracy of the model on the test set (Table 6). Similarily, for MNIST in657

the TRZSL we observe that after the first iteration, the pseudolabels get very noisy.658

GRIP performance on transductive zero-shot learning We show how the effectiveness of GRIP659

is consistent over the three random splits of seen and unseen classes which we randomly generated.660

The splits are reported in Table 9. Table 8 gathers the accuracy of seen and unseen classes, along661

with the harmonic mean for all three splits using textual prompts. Beyond the consistent improvement662

induced by GRIP training strategy, we observe that the accuracy of GRIP on the seen classes is often663

lower than the accuracy of CoOp on the same set of classes. We speculate this can result from two664

factors: (1) we learn to distinguish between seen and unseen losing knowledge specialized on the665

seen classes, and (2) the parameter λ that upweights the error on the pseudolabeled data is too large666

(Section 3.3) and further training might be needed.667

A.4 The Robin Hood effect668

The Robin Hood effect on all tasks For each dataset, we provide the per-class accuracy distribution669

of GRIP compared with CLIP, Figure 8. The Robin Hood effect characterizes all the tasks. We670

observe that for GRIP the increase in overall accuracy corresponds to consistent improvements in671

the predictions of initially poor classes. By comparing Figure 7 with Figure 8, we see that GRIP672

reinforces the Robin Hood effect already visible when using FPL in certain cases.673
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Figure 6: We plot the evolution of dynamic-pseudolabels accuracy during training. The rows refer to
SSL, UL, and TRZSL, in order. IFPL refers to the top x-axis, while CLIP and GRIP to the bottom.

The importance of good quality pseudolabels to mitigate the Matthew effect in SSL In the SSL674

setting, we train a logistic regression on top of the visual feature extracted by CLIP’s image encoder675

(ViT-B/32). In Figure 9, we show the per-class accuracy of the final model trained by combining676

labeled data with either pseudolabels assigned with the conventional scheme (threshold at .95) or 16677

CLIP-generated pseudolabels. We compare the two distribution with the per-class accuracy of the678

model trained solely on the few labeled examples per class (2 instances).679

The different impact of prompt tuning and linear probing on the Robin Hood effect We680

investigate if there is any difference in the Robin Hood effect when adapting CLIP via prompt681

tuning or linear probing. We train both relying on the iterative training strategy that grows the set of682

pseudolabels at each iteration by using the top-K scheme (Section 3). We consider the UL setting.683

Among the set of target classes, we distinguish between poor and rich classes. A class is poor, if684

CLIP’s accuracy on that class is lower than its overall accuracy on the task. Otherwise, the class is685

considered rich. Table 7 reports the accuracy of the two approaches, and the accuracy on the poor and686

rich classes, while highlighting the average effect with respect to CLIP. Training with prompt tuning687

retains more knowledge of the rich classes than linear probing. Prompt tuning reduces the accuracy688

on the rich classes by on average 0.3 points, while linear probing has an average deterioration of 9.4.689

Overall, GRIP works better than linear probing. We note that the lower accuracy of linear probing690

is characterized by a worse ability to correctly predict the rich classes, i.e., “rich get poorer.” This691

is surprising, as we would have expected the errors to concentrate on the poor classes compared to692

CLIP.693
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Figure 7: Per-class accuracy of FPL compared to CLIP’s per-class accuracy on Flowers102, FGVC-
Aircraft, MNIST, EuroSAT, DTD. X-axis is the ranked class index, while the y-axis is the accuracy.
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Figure 8: Per-class accuracy of GRIP compared to CLIP’s per-class accuracy on Flowers102, FGVC-
Aircraft, MNIST, EuroSAT, and DTD. X-axis is the ranked class index, while the y-axis is the
accuracy.
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Figure 9: Per-class accuracy of a logistic classifier using conventional pseudolabels (first row) and
CLIP-based pseudolabels (second row). The solid orange line represents the per-class accuracy of a
logistic regression trained on 2-shots per class. X-axis is the ranked class index, while the y-axis is
the accuracy. We present results for Flowers102, RESICS45, FGVC-Aircraft, MNIST, EuroSAT, and
DTD, in order.

Flowers102 RESICS45 FGVC-Aircraft MNIST EuroSAT DTD Avg. ∆

Linear probe (LP) 41.01 58.79 61.94 50.52 51.37 10.17 -
GRIP 46.09 70.55 69.84 57.21 67.88 15.22 -

Rich CLIP 67.81 75.47 85.16 65.26 65.14 45.93 -
Rich LP 52.87 69.01 79.55 67.53 50.34 29.12 -
Rich GRIP 56.05 78.81 86.40 71.73 77.84 31.95 -

∆ LP ↓ 14.92 ↓ 6.47 ↓ 5.61 ↑ 2.26 ↓ 14.79 ↓ 16.81 ↓ 9.39
∆ GRIP ↓ 11.76 ↑ 3.33 ↑ 1.24 ↑ 6.46 ↑ 12.70 ↓ 13.98 ↓ 0.33

Poor CLIP 25.63 35.60 27.98 11.10 3.18 5.35 -
Poor LP 26.50 42.77 36.25 28.34 56.76 4.77 -
Poor GRIP 35.03 56.85 42.82 39.88 65.08 6.31 -

∆ LP ↑ 0.87 ↑ 7.18 ↑ 8.27 ↑ 17.24 ↑ 53.58 ↓ 0.58 ↑ 14.43
∆ GRIP ↑ 9.4 ↑ 21.26 ↑ 14.84 ↑ 28.78 ↑ 61.9 ↑ 0.96 ↑ 22.86

Table 7: For each task we report the overall accuracy of linear probing (LP) and GRIP textual along
with the accuracy on poor and rich classes. ∆ METHOD is the difference between the accuracy of CLIP
and METHOD. For an overall evaluation of the difference between linear probing and prompt tuning,
we report the average difference of LP and GRIP with respect to CLIP on poor and rich classes.
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Split 1
Flowers102 RESICS45 FGVCAircraft

Method S U H S U H S U H

CLIP 64.260.00 62.560.00 63.40.00 54.850.00 54.080.00 54.460.00 16.270.00 19.790.00 17.860.00
CoOp 91.520.36 48.352.96 63.222.60 84.661.01 50.733.28 63.372.23 34.181.56 16.283.69 21.703.45
GRIP 90.310.51 82.571.26 86.260.81 82.680.47 79.530.72 81.070.37 22.250.07 31.510.59 26.080.25

∆ CLIP ↑ 26.05 ↑ 20.01 ↑ 22.86 ↑ 27.83 ↑ 25.45 ↑ 26.61 ↑ 5.98 ↑ 11.72 ↑ 8.22
∆ CoOp ↓ 1.21 ↑ 34.22 ↑ 23.04 ↓ 1.98 ↑ 28.8 ↑ 17.7 ↓ 11.93 ↑ 15.23 ↑ 4.38

MNIST EuroSAT DTD

CLIP 31.740.00 15.430.00 20.770.00 22.330.00 48.30.00 30.540.00 42.50.00 44.440.00 43.450.00
CoOp 94.685.64 15.437.75 21.1512.18 82.918.81 46.029.23 58.645.86 69.671.17 34.813.44 46.32.92
GRIP 95.130.11 60.630.44 74.060.29 91.750.53 92.910.91 92.330.70 68.260.69 62.611.87 65.301.03

∆ CLIP ↑ 63.39 ↑ 45.2 ↑ 53.29 ↑ 69.42 ↑ 44.61 ↑ 61.79 ↑ 25.76 ↑ 18.17 ↑ 21.85
∆ CoOp ↑ 0.45 ↑ 45.2 ↑ 52.91 ↑ 8.84 ↑ 46.89 ↑ 33.69 ↓ 1.41 ↑ 27.8 ↑ 19.00

Split 2
Flowers102 RESICS45 FGVCAircraft

Method S U H S U H S U H

CLIP 65.380.00 60.640.00 62.920.00 59.50.00 47.060.00 52.550.00 17.300.00 18.120.00 17.700.00
CoOp 91.81.32 47.753.86 62.773.31 86.541.92 48.003.01 61.702.17 33.594.12 19.571.37 24.630.63

GRIP 88.840.75 70.932.08 78.861.26 84.470.41 84.091.01 84.280.73 22.130.24 28.320.33 24.840.05

∆ CLIP ↑ 23.46 ↑ 10.29 ↑ 15.94 ↑ 27.83 ↑ 25.45 ↑ 26.61 ↑ 4.83 ↑ 10.20 ↑ 7.14
∆ CoOp ↓ 2.96 ↑ 23.18 ↑ 16.09 ↓ 2.07 ↑ 36.09 ↑ 22.58 ↓ 11.46 ↑ 8.75 ↑ 0.21

MNIST EuroSAT DTD

CLIP 15.990.00 39.180.00 22.710.00 32.470.00 33.10.00 32.780.00 45.430.00 39.720.00 42.390.00
CoOp 90.613.02 18.779.12 30.2912.38 86.433.23 47.1611.17 60.538.42 70.41.99 32.534.58 44.424.63
GRIP 95.71 97.50 96.59 91.080.02 92.020.98 91.550.47 66.690.53 56.191.18 60.990.69

∆ CLIP ↑ 85.12 ↑ 50.76 ↑ 79.32 ↑ 58.61 ↑ 58.92 ↑ 58.77 ↑ 21.26 ↑ 16.47 ↑ 18.6
∆ CoOp ↑ 6.11 ↑ 71.20 ↑ 57.19 ↑ 4.65 ↑ 44.86 ↑ 31.02 ↓ 3.71 ↑ 23.66 ↑ 16.57

Split 3
Flowers102 RESICS45 FGVCAircraft

Method S U H S U H S U H

CLIP 68.290.00 57.250.00 62.280.00 56.020.00 52.320.00 54.100.00 17.550.00 17.710.00 17.630.00
CoOp 91.520.35 48.352.95 63.222.60 87.612.17 43.644.97 58.144.12 37.771.92 16.463.23 22.773.09
GRIP 90.090.53 69.002.44 78.131.71 85.190.15 75.583.17 80.071.79 22.070.23 28.720.76 24.950.20

∆ CLIP ↑ 21.8 ↑ 11.75 ↑ 15.85 ↑ 29.17 ↑ 23.26 ↑ 25.97 ↑ 4.52 ↑ 11.01 ↑ 7.32
∆ CoOp ↓ 1.43 ↑ 20.65 ↑ 14.91 ↓ 2.42 ↑ 31.94 ↑ 21.93 ↓ 15.70 ↑ 12.26 ↑ 2.18

MNIST EuroSAT DTD

CLIP 10.590.00 46.740.00 17.270.00 41.470.00 19.600.00 26.620.00 45.520.00 39.580.00 42.340.00
CoOp 89.68.08 26.312.88 39.416.61 79.339.37 43.3812.49 55.068.62 70.533.11 24.945.37 36.635.57
GRIP 95.8 96.06 95.93 90.570.13 94.251.10 92.370.60 67.280.74 58.942.78 62.811.75

∆ CLIP ↑ 79.81 ↑ 56.88 ↑ 73.22 ↑ 49.1 ↑ 74.65 ↑ 65.75 ↑ 21.76 ↑ 19.36 ↑ 20.47
∆ CoOp ↑ 5.20 ↑ 77.29 ↑ 65.64 ↑ 11.24 ↑ 50.87 ↑ 37.31 ↓ 3.25 ↑ 34.00 ↑ 26.18

Table 8: In the TRZSL settings, for each dataset and split, we compare the accuracy of GRIP textual
with CLIP zero-shot (ViT-B/32), and CoOp. Results show the accuracy on seen (S) and unseen
classes (U ), and the harmonic mean (H). We average the accuracy on 5 seeds and report the standard
deviation. ∆ METHOD is the difference between the accuracy of GRIP and METHOD.
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Split 1 Seen classes (S) Unseen classes (U )

Flowers102 canna lily, petunia, silverbush, prince of wales feathers, pincushion flower,
bird of paradise, frangipani, hard-leaved pocket orchid,

bearded iris, passion flower, tiger lily, lenten rose, cape flower,
air plant, mexican petunia, common dandelion, magnolia, foxglove,

hibiscus, camellia, orange dahlia, clematis, anthurium,
bougainvillea, ruby-lipped cattleya, stemless gentian, oxeye daisy, spring crocus,

king protea, cyclamen, fritillary, californian poppy, wild pansy,
desert-rose, sunflower, rose, grape hyacinth, pink primrose,

red ginger, corn poppy, watercress, colt’s foot, blanket flower,
monkshood, morning glory, siam tulip, barbeton daisy, bolero deep

blue, carnation, tree poppy, globe thistle, english marigold,
primula, wallflower, blackberry lily, fire lily, love in the mist,

moon orchid, sweet pea, mallow, pelargonium, mexican aster, poinsettia

canterbury bells, snapdragon, spear thistle,
yellow iris, globe flower,

purple coneflower, peruvian lily,
balloon flower, giant white arum lily, artichoke,
sweet william, garden phlox, alpine sea holly,

great masterwort,
daffodil, sword lily, marigold,

buttercup, bishop of llandaff, gaura,
geranium, pink and yellow dahlia,

cautleya spicata, japanese anemone, black-eyed susan,
osteospermum, windflower, gazania, azalea, water lily,

thorn apple, lotus, toad lily, columbine, tree mallow,
hippeastrum, bee balm, bromelia, trumpet creeper

RESICS45 beach, palace, roundabout, railway station, railway,
thermal power station, river, airplane, island, bridge,
basketball court, desert, runway, ground track field,

sea ice, sparse residential, cloud, dense residential, wetland,
mountain, meadow, baseball diamond, parking lot, storage tank,

tennis court, commercial area, mobile home park

airport, ship, snowberg,
chaparral, church, circular farmland, stadium,

terrace, forest, freeway,
golf course, harbor, industrial area, intersection,

lake, medium residential,
overpass, rectangular farmland

FGVC-Aircraft Tu-134, Spitfire, Challenger 600, 737-700, F-A-18, E-170, 727-200, A300B4, Falcon 2000,
DR-400, MD-87, CRJ-700 ERJ 145, Falcon 900,

MD-80, DC-10, Il-76, Global Express, Gulfstream IV,
Saab 340, Yak-42, CRJ-900, L-1011, A330-200, A321,

747-300, DC-3, A310, ATR-42, CRJ-200, Hawk T1,
Fokker 100, ATR-72, PA-28, A319, 707-320, A318, A320, BAE-125, 747-200, ERJ 135, 737-800,

SR-20, BAE 146-300, Beechcraft 1900, Cessna 172, A340-300, EMB-120,
737-900, 737-400, Cessna 208, MD-90, 777-300, A340-600, 737-600,

737-300, DHC-1, DC-6, A380, C-47, 767-200, BAE 146-200

737-200, 737-500, 747-100, 747-400, 757-200, 757-300,
767-300, 767-400, 777-200, A330-300, A340-200, A340-500,

An-12, Boeing 717, C-130,
Cessna 525, Cessna 560, DC-8, DC-9-30,

DH-82, DHC-6, DHC-8-100,
DHC-8-300, Dornier 328, E-190, E-195,

Embraer Legacy 600, Eurofighter Typhoon,
F-16A-B, Fokker 50, Fokker 70, Gulfstream V,

MD-11, Metroliner, Model B200, Saab 2000, Tornado, Tu-154

MNIST 4, 2, 9, 3, 0, 5 8, 1, 6, 7

EuroSAT industrial buildings or commercial buildings, brushland or shrubland,
lake or sea, highway or road, annual crop land, pasture land

river, forest,
permanent crop land, residential buildings or homes or apartments

DTD knitted, pitted, studded, bumpy, spiralled, scaly, polka-dotted, veined, wrinkled,
banded, flecked, stained, chequered, sprinkled, bubbly, grid, lined, crystalline, fibrous,

meshed, zigzagged, pleated, braided, perforated, potholed, waffled, dotted, matted, gauzy

blotchy, smeared, cobwebbed, cracked, crosshatched, stratified,
striped, swirly, woven, freckled, frilly, grooved,

honeycombed, interlaced, lacelike, marbled, paisley, porous

Split 2
Flowers102 prince of wales feathers, air plant, canterbury bells, bishop of llandaff, bee balm, desert-rose,

purple coneflower, spring crocus, pelargonium, windflower, sunflower,
bougainvillea, rose, spear thistle, bird of paradise, carnation,

fritillary, grape hyacinth, mexican aster, monkshood, poinsettia,
black-eyed susan, sweet pea, anthurium, wallflower, oxeye daisy,

moon orchid, blackberry lily, hibiscus, frangipani , cautleya spicata,
camellia, canna lily, passion flower, wild pansy, stemless

gentian, balloon flower, gaura, thorn apple, morning glory,
hard-leaved pocket orchid, japanese anemone, sword lily, daffodil, english marigold,

globe flower, peruvian lily, barbeton daisy, siam tulip, tiger lily,
foxglove, pink and yellow dahlia, pink primrose, alpine sea holly, artichoke,

petunia, colt’s foot, ruby-lipped cattleya, red ginger, primula,
snapdragon, garden phlox, mexican petunia

globe thistle, king protea, yellow iris,
giant white arum lily, fire lily, pincushion flower,

corn poppy, sweet william,
love in the mist, cape flower, great masterwort,

lenten rose, bolero deep blue, marigold,
buttercup, common dandelion,

geranium, orange dahlia, silverbush,
californian poppy, osteospermum, bearded iris,

tree poppy, gazania, azalea,
water lily, lotus, toad lily,

clematis, columbine, tree mallow , magnolia,
cyclamen, watercress, hippeastrum, mallow,

bromelia, blanket flower, trumpet creeper

RESICS45 railway station, snowberg, palace, beach, commercial area,
mountain, parking lot, dense residential, sparse residential, rectangular farmland,

railway, island, tennis court,
baseball diamond, thermal power station, industrial area,

golf course, meadow, ground track field, storage tank, circular farmland,
forest, bridge, harbor, river, freeway, sea ice

airplane, airport, roundabout,
basketball court, runway, ship,

chaparral, church, stadium,
cloud, terrace, desert,

wetland, intersection, lake,
medium residential, mobile home park, overpass

FGVC-Aircraft A321, MD-80, 737-200, DC-8, Falcon 900, Saab 340, 767-200,
F-A-18, DC-6, SR-20, DC-3, Saab 2000,

Fokker 70, 747-400, 737-700, A340-300, A310, A319, A380, 737-800, C-47, Dornier 328,
737-300, Eurofighter Typhoon, Cessna 208, Challenger 600, 737-600,

Yak-42, Hawk T1, Fokker 100, DHC-8-100, Gulfstream IV,
Model B200, Embraer Legacy 600, CRJ-900, A330-200, 767-400,

DC-9-30, DR-400, Falcon 2000, 727-200, DHC-8-300,
C-130, Boeing 717, 737-400, 757-300, 767-300, Beechcraft 1900, BAE 146-300, 737-500, PA-28, DHC-6,

707-320, An-12, A330-300, CRJ-700, 747-200, ATR-42, A318, DC-10, 747-100, A340-500

737-900, 747-300, 757-200, 777-200,
777-300, A300B4, A320, A340-200, A340-600,
ATR-72, BAE 146-200, BAE-125, Cessna 172,

Cessna 525, Cessna 560, CRJ-200,
DH-82, DHC-1, E-170,

E-190, E-195, EMB-120, ERJ 135, ERJ 145,
F-16A-B, Fokker 50, Global Express,

Gulfstream V, Il-76, L-1011, MD-11, MD-87, MD-90,
Metroliner, Spitfire, Tornado, Tu-134, Tu-154

MNIST 2, 8, 4, 9, 1, 6 0, 3, 5, 7

EuroSAT brushland or shrubland, river, industrial buildings or commercial buildings,
lake or sea, forest, permanent crop land

annual crop land, highway or road,
pasture land, residential buildings or homes or apartments

DTD pitted, scaly, polka-dotted, bumpy, honeycombed, fibrous, veined, porous, lined, dotted,
perforated, potholed, pleated, waffled, braided, wrinkled, paisley, gauzy, meshed, grid,

studded, knitted, swirly, crosshatched, freckled, chequered, grooved, smeared, frilly

banded, blotchy, bubbly, spiralled, sprinkled, cobwebbed,
cracked, stained, crystalline, stratified, striped, flecked,
woven, zigzagged, interlaced, lacelike, marbled, matted

Split 3
Flowers102 oxeye daisy, canterbury bells, clematis, siam tulip,

cape flower, black-eyed susan, air plant, californian poppy, globe thistle, giant white arum lily, cyclamen,
snapdragon, frangipani, buttercup, common dandelion,

hippeastrum, columbine, spring crocus, bolero deep blue, spear thistle, barbeton daisy,
poinsettia, peruvian lily, alpine sea holly, artichoke, sunflower,

tiger lily, toad lily, magnolia, lenten rose, great masterwort,
camellia, mallow, morning glory, lotus, sweet william,

thorn apple, carnation, daffodil, corn poppy, cautleya spicata,
marigold, hibiscus, tree poppy, balloon flower, osteospermum,

english marigold, king protea, azalea, foxglove, watercress,
blackberry lily, bearded iris, monkshood, mexican aster, orange dahlia,

water lily, mexican petunia, sweet pea, pink primrose,
primula, silverbush, pincushion flower

hard-leaved pocket orchid, moon orchid, bird of paradise ,
colt’s foot, yellow iris, globe flower,
purple coneflower, fire lily, fritillary,

red ginger, grape hyacinth, prince of wales feathers,
stemless gentian, garden phlox, love in the mist,

ruby-lipped cattleya,
sword lily, wallflower, petunia,

wild pansy, pelargonium, bishop of llandaff,
gaura, geranium, pink and yellow dahlia,

japanese anemone, windflower,
gazania, rose, passion flower,

anthurium, desert-rose, tree mallow, canna lily, bee balm,
bougainvillea, bromelia, blanket flower, trumpet creeper

RESICS45 railway, parking lot, wetland, meadow, harbor,
island, mobile home park, storage tank, industrial area, bridge,

baseball diamond, sea ice, runway, airplane, thermal power station,
circular farmland, basketball court, roundabout, commercial area,

railway station, terrace, forest, rectangular farmland, lake,
medium residential, snowberg, river

airport, beach, ship,
chaparral, church, sparse residential,

cloud, stadium, dense residential,
desert, tennis court, freeway,

golf course, ground track field, intersection,
mountain, overpass, palace

FGVC-Aircraft An-12, 737-200, F-16A-B, BAE 146-200, MD-80, E-170, Gulfstream IV, DR-400, 737-900, 777-200,
Boeing 717, 747-100, Saab 340, Cessna 525,

Challenger 600, MD-90, DHC-8-100, Cessna 172, C-47, 747-400,
BAE-125, MD-11, 767-300, Cessna 560, A330-300, E-195, 737-500, Fokker 50, ATR-72,

BAE 146-300, Fokker 70, Falcon 900,
Falcon 2000, Spitfire, A340-200, DC-3, A340-300, Beechcraft 1900,

A320, Hawk T1, E-190, Gulfstream V, Tu-134, 767-400, CRJ-200, 737-400, 747-300, Eurofighter Typhoon,
PA-28, MD-87, Yak-42, DHC-1, 737-800, A380, Model B200, ERJ 135, SR-20, 737-300,

707-320, DC-10, Dornier 328, A300B4

727-200, 737-600, 737-700,
747-200, 757-200, 757-300, 767-200,
777-300, A310, A318, A319, A321,

A330-200, A340-500, A340-600,
ATR-42, C-130, Cessna 208, CRJ-700, CRJ-900,

DC-6, DC-8, DC-9-30, DH-82, DHC-6, DHC-8-300, EMB-120,
Embraer Legacy 600, ERJ 145, F-A-18, Fokker 100,

Global Express, Il-76,
L-1011, Metroliner, Saab 2000, Tornado, Tu-154

MNIST 8, 3, 5, 6, 1, 7 0, 9, 2, 4

EuroSAT river, highway or road, pasture land, permanent crop land,
forest, residential buildings or homes or apartments

annual crop land, lake or sea,
brushland or shrubland, industrial buildings or commercial buildings

DTD pitted, pleated, polka-dotted, sprinkled, grooved, knitted, matted, wrinkled, honeycombed, chequered,
braided, zigzagged, spiralled, banded, waffled, crosshatched, bubbly, smeared, dotted, porous,

woven, freckled, lined, potholed, lacelike, marbled, stratified, scaly, studded

blotchy, bumpy, stained, cobwebbed,
cracked, striped, crystalline, swirly, fibrous, flecked, veined,

frilly, gauzy, grid, interlaced, meshed, paisley, perforated

Table 9: For each dataset, we report the class names of seen and unseen classes in each of the splits
used for TRZSL.
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