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1 Introductory Video1

We have attached a video introducing our work, with real-world demonstrations in the last.2

2 More Details on Simulation and Settings3

Following Where2Act [5], we design our interactive simulation environment based on SAPIEN,4

using the same set of simulation parameters for all interaction trials.5

For general simulation settings, we use frame rate 500 fps, tolerance length 0.001, tolerance speed6

0.005, solver iterations 20 (for constraint solvers related to joints and contacts), with Persistent7

Contact Manifold (PCM) disabled (for better simulation stability), with disabled sleeping mode (i.e.8

no locking for presumably still rigid bodies in simulation), and all the other settings as default in9

SAPIEN release.10

For physical simulation, we use the standard gravity 9.81, static friction coefficient 4.0, dynamic11

friction coefficient 4.0, and restitution coefficient 0.01. For the object articulation dynamics simulation,12

we use stiffness 0 and damping 10.13

For the rendering, we use OpenGL-based rasterization rendering for the fast speed of simulation. We14

set three point lights around the object (one at the front, one from back-left and one from back-right)15

for lighting the scene, with mild ambient lighting as well. The camera is set to have near plane 0.1,16

far plane 100, resolution 448, and field of view 35◦.17

For 3D partial point cloud scan inputs, we back-project the depth image into a foreground point18

cloud, by rejecting the far-away background depth pixels, and then perform furthest point sampling19

to get a 10K-size point cloud scan.20

For robot arm movement, we use RRT Planner [7, 2, 4] equipped with PID controller to generate21

and execute a certain path towards the target.22

For an interaction trial to be considered successful, it not only needs to cause considerable part23

motion along intended direction. To avoid the extreme data unbalance in pulling data, we manually24

set handle mask on our simulator and assign half of the interactions on the handles. To simplify the25

consideration of different interaction directions’ impact on affordance, we set every interaction to26

move along the normal direction of the target point.27
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3 More Data Details and Visualization28

In Table 1, we summarize our data statistics. In Fig. 1, we visualize our simulation assets from29

ShapeNet [1] and PartNet [6] that we use in this work.30
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Figure 1: Our simulation assets from ShapeNet [1] and PartNet [6].

Train-Cats All Basket Bottle Bowl Box Bucket Chair Pot TrashCan

Train-Data 367 77 16 128 17 27 61 16 25
Test-Data 128 31 4 44 5 9 20 5 10

Test-Cats All Dispenser Jar Kettle FoldingChair

Test-Data 589 9 528 26 26

Table 1: Occluder Dataset Statistics. We use 1,084 different shapes in ShapeNet [1] and PartNet-
Mobility [6], covering 12 commonly seen indoor occluder categories. We use 8 training categories
(split into 367 training shapes and 128 test shapes), and 4 test categories with 589 shapes networks
have never seen in training.

4 More Training Details31

4.1 Hyper-parameters32

We set the batch size to 30, and use Adam Optimizer [3] with 0.001 as the initial learning rate.33

We use const 2.00 as the boundary constant in α contrastive learning, and 1.00 as the balancing34

coefficient λCL in the total loss.35
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4.2 Computing Resources36

We use PyTorch as our Deep Learning framework, and RTX GeForce 3090 (20GB GPU) for training37

and inference.38

4.3 Error Bar39

We run an experiment three times and report the average result.40

5 More Results and Analysis41

Fig. 2 3 4 5 demonstrate comparions with baselines and ablations. Fig. 6 shows the whole occlusion42

fields. Fig. 7 shows real-world demonstrations with analysis in the caption.43

W2A ConW2A M-O2O Ours

Figure 2: More Qualitative Comparisons between Our Method and Baselines in Pushing.
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Figure 3: More Qualitative Comparisons between Our Method and Ablations in Pushing.
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W2A W2A-R O2O-M Ours

Figure 4: More Qualitative Comparisons between Our Method and Baselines in Pulling.

OursOurs w/o OF Ours w/o CL
Figure 5: More Qualitative Comparisons between Our Method and Ablations in Pulling.
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Figure 6: Visualization of the whole Occlusion Fields.
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Figure 7: Real-World Demonstrations of Manipulation Policy Guided by Object-Centric Af-
fordance and Our Proposed Environment-Aware Affordance. It is clear that environment-aware
affordance can help avoid out-of-reach situations and collisions with other self-parts or objects.

6 Future Work on Robot-Target Conditioned Contrastive Learning44

Limited to simulator configuration, our contrastive learning method only considers a limited aug-45

mentation distribution A(· | x̄) for each anchor scene x̄ ∈ X while the marginal distribution46

A(·) = Ex̄A(· | x̄) is complete. The augmentation distribution A(· | x̄) only includes one more47

occluder at the edge of x̄, and neglects the potential augmentation methods by choosing similar target48

points. Future methods can be applied with a better similarity metric of comparing different things49

and improve our self-supervised learning paradigm. Nevertheless, our current implementation version50

is already simple and efficient with good performance, and the above discussion is just the direction51

worth future study.52

7 Code53

We will release our code upon acceptance.54
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