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Abstract

Utilizing auxiliary outlier datasets to regularize the machine learning model has
demonstrated promise for out-of-distribution (OOD) detection and safe prediction.
Due to the labor intensity in data collection and cleaning, automating outlier data
generation has been a long-desired alternative. Despite the appeal, generating
photo-realistic outliers in the high dimensional pixel space has been an open
challenge for the field. To tackle the problem, this paper proposes a new framework
DREAM-OOD, which enables imagining photo-realistic outliers by way of diffusion
models, provided with only the in-distribution (ID) data and classes. Specifically,
DREAM-OOD learns a text-conditioned latent space based on ID data, and then
samples outliers in the low-likelihood region via the latent, which can be decoded
into images by the diffusion model. Different from prior works [1, 2], DREAM-OOD
enables visualizing and understanding the imagined outliers, directly in the pixel
space. We conduct comprehensive quantitative and qualitative studies to understand
the efficacy of DREAM-OOD, and show that training with the samples generated by
DREAM-OOD can benefit OOD detection performance. Code is publicly available
at https://github.com/deeplearning-wisc/dream-ood.

1 Introduction

Out-of-distribution (OOD) detection is critical for deploying machine learning models in the wild,
where samples from novel classes can naturally emerge and should be flagged for caution. Con-
cerningly, modern neural networks are shown to produce overconfident and therefore untrustworthy
predictions for unknown OOD inputs [3]. To mitigate the issue, recent works have explored training
with an auxiliary outlier dataset, where the model is regularized to learn a more conservative decision
boundary around in-distribution (ID) data [4–7]. These methods have demonstrated encouraging
OOD detection performance over the counterparts without auxiliary data.

Despite the promise, preparing auxiliary data can be labor-intensive and inflexible, and necessitates
careful human intervention, such as data cleaning, to ensure the auxiliary outlier data does not
overlap with the ID data. Automating outlier data generation has thus been a long-desired alternative.
Despite the appeal, generating photo-realistic outliers has been extremely challenging due to the high
dimensional space. Recent works including VOS and NPOS [1, 2] proposed sampling outliers in the
low-dimensional feature space and directly employed the latent-space outliers to regularize the model.
However, these latent-space methods do not allow us to understand the outliers in a human-compatible
way. Today, the field still lacks an automatic mechanism to generate high-resolution outliers in the
pixel space.

In this paper, we propose a new framework DREAM-OOD that enables imagining photo-realistic
outliers by way of diffusion models, provided with only ID data and classes (see Figure 1). Harnessing
the power of diffusion models for outlier imagination is non-trivial, since one cannot easily describe
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Figure 1: Top: Original ID training data in IMAGENET [8]. Bottom: Samples generated by our method
DREAM-OOD, which deviate from the ID data.

the exponentially many possibilities of outliers using text prompts. It can be particularly challenging
to characterize informative outliers that lie on the boundary of ID data, which have been shown to be
the most effective in regularizing the ID classifier and its decision boundary [7]. After all, it is almost
impossible to describe something in words without knowing what it looks like.

Our framework circumvents the above challenges by: (1) learning compact visual representations
for the ID data, conditioned on the textual latent space of the diffusion model (Section 3.1), and (2)
sampling new visual embeddings in the text-conditioned latent space, which are then decoded to
pixel-space images by the diffusion model (Section 3.2). Concretely, to learn the text-conditioned
latent space, we train an image classifier to produce image embeddings that have a higher probability
to be aligned with the corresponding class token embedding. The resulting feature embeddings
thus form a compact and informative distribution that encodes the ID data. Equipped with the
text-conditioned latent space, we sample new embeddings from the low-likelihood region, which can
be decoded into the images via the diffusion model. The rationale is if the sampled embedding is
distributionally far away from the in-distribution embeddings, the generated image will have a large
semantic discrepancy from the ID images and vice versa.

We demonstrate that our proposed framework creatively imagines OOD samples conditioned on a
given dataset, and as a result, helps improve the OOD detection performance. On IMAGENET dataset,
training with samples generated by DREAM-OOD improves the OOD detection on a comprehensive
suite of OOD datasets. Different from [1, 2], our method allows visualizing and understanding the
imagined outliers, covering a wide spectrum of near-OOD and far-OOD. Note that DREAM-OOD
enables leveraging off-the-shelf diffusion models for OOD detection, rather than modifying the
diffusion model (which is an actively studied area on its own [9]). In other words, this work’s core
contribution is to leverage generative modeling to improve discriminative learning, establishing
innovative connections between the diffusion model and outlier data generation.

Our key contributions are summarized as follows:
1. To the best of our knowledge, DREAM-OOD is the first to enable the generation of photo-

realistic high-resolution outliers for OOD detection. DREAM-OOD establishes promising
performance on common benchmarks and can benefit OOD detection.

2. We conduct comprehensive analyses to understand the efficacy of DREAM-OOD, both
quantitatively and qualitatively. The results provide insights into outlier imagination with
diffusion models.

3. As an extension, we show that our synthesis method can be used to automatically generate
ID samples, and as a result, improves the generalization performance of the ID task itself.

2 Preliminaries

We consider a training set D = {(xi, yi)}ni=1, drawn i.i.d. from the joint data distribution PXY . X
denotes the input space and Y ∈ {1, 2, ..., C} denotes the label space. Let Pin denote the marginal
distribution on X , which is also referred to as the in-distribution. Let fθ : X 7→ RC denote a
multi-class classifier, which predicts the label of an input sample with parameter θ. To obtain an
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Figure 2: Illustration of our proposed outlier imagination framework DREAM-OOD. DREAM-OOD first
learns a text-conditioned space to produce compact image embeddings aligned with the token embedding
T (y) of the diffusion model. It then samples new embeddings in the latent space, which can be decoded into
pixel-space outlier images xood by diffusion model. The newly generated samples can help improve OOD
detection. Best viewed in color.

optimal classifier f∗, a standard approach is to perform empirical risk minimization (ERM) [10]:
f∗ = argminf∈F

1
n

∑n
i=1 ℓ(f(xi), yi) where ℓ is the loss function and F is the hypothesis space.

Out-of-distribution detection. When deploying a machine model in the real world, a reliable
classifier should not only accurately classify known in-distribution samples, but also identify OOD
input from unknown class y /∈ Y . This can be achieved by having an OOD detector, in tandem with
the classification model fθ. At its core, OOD detection can be formulated as a binary classification
problem. At test time, the goal is to decide whether a test-time input is from ID or not (OOD). We
denote gθ : X 7→ {in, out} as the function mapping for OOD detection.

Denoising diffusion models have emerged as a promising generative modeling framework, pushing
the state-of-the-art in image generation [11, 12]. Inspired by non-equilibrium thermodynamics,
diffusion probabilistic models [13–15] define a forward Gaussian Markov transition kernel of diffusion
steps to gradually corrupt training data until the data distribution is transformed into a simple noisy
distribution. The model then learns to reverse this process by learning a denoising transition kernel
parameterized by a neural network.

Diffusion models can be conditional, for example, on class labels or text descriptions [11, 16, 17].
In particular, Stable Diffusion [18] is a text-to-image model that enables synthesizing new images
guided by the text prompt. The model was trained on 5 billion pairs of images and captions taken
from LAION-5B [19], a publicly available dataset derived from Common Crawl data scraped from
the web. Given a class name y, the generation process can be mathematically denoted by:

x ∼ P (x|zy), (1)

where zy = T (y) is the textual representation of label y with prompting (e.g., “A high-quality photo
of a [y]”). In Stable Diffusion, T (·) is the text encoder of the CLIP model [20].

3 DREAM-OOD: Outlier Imagination with Diffusion Models

In this paper, we propose a novel framework that enables synthesizing photo-realistic outliers with
respect to a given ID dataset (see Figure 1). The synthesized outliers can be useful for regularizing
the ID classifier to be less confident in the OOD region. Recall that the vanilla diffusion generation
takes as input the textual representation. While it is easy to encode the ID classes y ∈ Y into textual
latent space via T (y), one cannot trivially generate text prompts for outliers. It can be particularly
challenging to characterize informative outliers that lie on the boundary of ID data, which have been
shown to be most effective in regularizing the ID classifier and its decision boundary [7]. After all, it
is almost impossible to concretely describe something in words without knowing what it looks like.

Overview. As illustrated in Figure 2, our framework circumvents the challenge by: (1) learning
compact visual representations for the ID data, conditioned on the textual latent space of the diffusion
model (Section 3.1), and (2) sampling new visual embeddings in the text-conditioned latent space,
which are then decoded into the images by diffusion model (Section 3.2). We demonstrate in Section 4
that, our proposed outlier synthesis framework produces meaningful out-of-distribution samples
conditioned on a given dataset, and as a result, significantly improves the OOD detection performance.
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3.1 Learning the Text-Conditioned Latent Space

Our key idea is to first train a classifier on ID data D that produces image embeddings, conditioned on
the token embeddings T (y), with y ∈ Y . To learn the text-conditioned visual latent space, we train
the image classifier to produce image embeddings that have a higher probability of being aligned
with the corresponding class token embedding, and vice versa.

(a) Learned feature embeddings
(b)     Synthesized outliers

Figure 3: TSNE visualization of learned
feature embeddings using L. Black dots in-
dicate token embeddings, one for each class.

Specifically, denote hθ : X 7→ Rm as a feature encoder
that maps an input x ∈ X to the image embedding hθ(x),
and T : Y 7→ Rm as the text encoder that takes a class
name y and outputs its token embedding T (y). Here T (·)
is a fixed text encoder of the diffusion model. Only the
image feature encoder needs to be trained, with learnable
parameters θ. Mathematically, the loss function for learn-
ing the visual representations is formulated as follows:

L = E(x,y)∼D[− log
exp

(
T (y)⊤z/t

)∑C
j=1 exp (T (yj)⊤z/t)

], (2)

where z = hθ(x)/∥hθ(x)∥2 is the L2-normalized image
embedding, and t is temperature.

Theoretical interpretation of loss. Formally, our loss
function directly promotes the class-conditional von Mises
Fisher (vMF) distribution [21–23]. vMF is analogous
to spherical Gaussian distributions for features with unit
norms (∥z∥2 = 1). The probability density function of z ∈ Rm in class c is:

pm(z;µc, κ) = Zm(κ) exp
(
κµ⊤

c z
)
, (3)

where µc is the class centroid with unit norm, κ ≥ 0 controls the extent of class concentration, and
Zm(κ) is the normalization factor detailed in the Appendix B. The probability of the feature vector z
belonging to class c is:

P (y = c|z; {κ,µj}Cj=1) =
Zm (κ) exp

(
κµ⊤

c z
)∑C

j=1 Zm (κ) exp
(
κµ⊤

j z
)

=
exp

(
µ⊤

c z/t
)∑C

j=1 exp
(
µ⊤

j z/t
) , (4)

where κ = 1
t . Therefore, by encouraging features to be aligned with its class token embedding, our

loss function L (Equation (2)) maximizes the log-likelihood of the class-conditional vMF distributions
and promotes compact clusters on the hypersphere (see Figure 3). The highly compact representations
can benefit the sampling of new embeddings, as we introduce next in Section 3.2.

3.2 Outlier Imagination via Text-Conditioned Latent

Given the well-trained compact representation space that encodes the information of Pin, we propose
to generate outliers by sampling new embeddings in the text-conditioned latent space, and then
decoding via diffusion model. The rationale is that if the sampled embeddings are distributionally far
away from the ID embeddings, the decoded images will have a large semantic discrepancy with the
ID images and vice versa.

Recent works [1, 2] proposed sampling outlier embeddings and directly employed the latent-space
outliers to regularize the model. In contrast, our method focuses on generating pixel-space photo-
realistic images, which allows us to directly inspect the generated outliers in a human-compatible
way. Despite the appeal, generating high-resolution outliers has been extremely challenging due to
the high dimensional space. To tackle the issue, our generation procedure constitutes two steps:

1. Sample OOD in the latent space: draw new embeddings v that are in the low-likelihood
region of the text-conditioned latent space.

2. Image generation: decode v into a pixel-space OOD image via diffusion model.
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Algorithm 1 DREAM-OOD: Outlier Imagination with Diffusion Models
Input: In-distribution training data D = {(xi, yi)}ni=1, initial model parameters θ for learning the
text-conditioned latent space, diffusion model.
Output: Synthetic images xood.
Phases: Phase 1: Learning the Text-conditioned Latent Space. Phase 2: Outlier Imagination via
Text-Conditioned Latent.
while Phase 1 do

1. Extract token embeddings T (y) of the ID label y ∈ Y .
2. Learn the text-conditioned latent representation space by Equation (2).

end
while Phase 2 do

1. Sample a set of outlier embeddings Vi in the low-likelihood region of the text-conditioned
latent space as in Section 3.2.
2. Decode the outlier embeddings into the pixel-space OOD images via diffusion model by
Equation (6).

end

Sampling OOD embedding. Our goal here is to sample low-likelihood embeddings based on
the learned feature representations (see Figure 4). The sampling procedure can be instantiated by
different approaches. For example, a recent work by Tao et.al. [2] proposed a latent non-parametric
sampling method, which does not make any distributional assumption on the ID embeddings and
offers stronger flexibility compared to the parametric sampling approach [1]. Concretely, we can
select the boundary ID anchors by leveraging the non-parametric nearest neighbor distance, and then
draw new embeddings around that boundary point.

(a) Learned feature embeddings
(b)     Synthesized outliers

Figure 4: TSNE visualization of ID em-
beddings (purple) and the sampled outlier
embeddings (orange), for the class “hen" in
IMAGENET.

Denote the L2-normalized embedding set of training data
as Z = (z1, z2, ..., zn), where zi = hθ(xi)/∥hθ(xi)∥2.
For any embedding z′ ∈ Z, we calculate the k-NN dis-
tance w.r.t. Z:

dk(z
′,Z) = ∥z′ − z(k)∥2, (5)

where z(k) is the k-th nearest neighbor in Z. If an embed-
ding has a large k-NN distance, it is likely to be on the
boundary of the ID data and vice versa.

Given a boundary ID point, we then draw new embedding
sample v ∈ Rm from a Gaussian kernel1 centered at zi
with covariance σ2I: v ∼ N (zi, σ

2I). In addition, to
ensure that the outliers are sufficiently far away from the
ID data, we repeatedly sample multiple outlier embeddings
from the Gaussian kernel N (zi, σ

2I), which produces a
set Vi, and further perform a filtering process by selecting
the outlier embedding in Vi with the largest k-NN distance
w.r.t. Z. Detailed ablations on the sampling parameters
are provided in Section 4.2.

Outlier image generation. Lastly, to obtain the outlier images in the pixel space, we decode the
sampled outlier embeddings v via the diffusion model. In practice, this can be done by replacing
the original token embedding T (y) with the sampled new embedding v2. Different from the vanilla
prompt-based generation (c.f. Equation (1)) , our outlier imagination is mathematically reflected by:

xood ∼ P (x|v), (6)

where xood denotes the generated outliers in the pixel space. Importantly, v ∼ S ◦ hθ ◦ (Pin) is
dependent on the in-distribution data, which enables generating images that deviate from Pin. S(·)
denotes the sampling procedure. Our framework DREAM-OOD is summarized in Algorithm 1.

1The choice of kernel function form (e.g., Gaussian vs. Epanechnikov) is not influential, while the kernel
bandwidth parameter is [24].

2In the implementation, we re-scale v by multiplying the norm of the original token embedding to preserve
the magnitude.
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Methods

OOD Datasets

ID ACCINATURALIST PLACES SUN TEXTURES Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
MSP [25] 31.80 94.98 47.10 90.84 47.60 90.86 65.80 83.34 48.08 90.01 87.64
ODIN [26] 24.40 95.92 50.30 90.20 44.90 91.55 61.00 81.37 45.15 89.76 87.64

Mahalanobis [27] 91.60 75.16 96.70 60.87 97.40 62.23 36.50 91.43 80.55 72.42 87.64
Energy [6] 32.50 94.82 50.80 90.76 47.60 91.71 63.80 80.54 48.68 89.46 87.64

GODIN [28] 39.90 93.94 59.70 89.20 58.70 90.65 39.90 92.71 49.55 91.62 87.38
KNN [29] 28.67 95.57 65.83 88.72 58.08 90.17 12.92 90.37 41.38 91.20 87.64
ViM [30] 75.50 87.18 88.30 81.25 88.70 81.37 15.60 96.63 67.03 86.61 87.64

ReAct [31] 22.40 96.05 45.10 92.28 37.90 93.04 59.30 85.19 41.17 91.64 87.64
DICE [32] 37.30 92.51 53.80 87.75 45.60 89.21 50.00 83.27 46.67 88.19 87.64

Synthesis-based methods
GAN [33] 83.10 71.35 83.20 69.85 84.40 67.56 91.00 59.16 85.42 66.98 79.52
VOS [1] 43.00 93.77 47.60 91.77 39.40 93.17 66.10 81.42 49.02 90.03 87.50

NPOS [2] 53.84 86.52 59.66 83.50 53.54 87.99 8.98 98.13 44.00 89.04 85.37
DREAM-OOD (Ours) 24.10±0.2 96.10±0.1 39.87±0.1 93.11±0.3 36.88±0.4 93.31±0.4 53.99±0.6 85.56±0.9 38.76±0.2 92.02±0.4 87.54±0.1

Table 1: OOD detection results for IMAGENET-100 as the in-distribution data. We report standard deviations
estimated across 3 runs. Bold numbers are superior results.

Learning with imagined outlier images. The generated synthetic OOD images xood can be used for
regularizing the training of the classification model [1]:

Lood = Exood

[
− log

1

1 + expϕ(E(fθ(xood)))

]
+ Ex∼Pin

[
− log

expϕ(E(fθ(x)))

1 + expϕ(E(fθ(x)))

]
, (7)

where ϕ(·) is a three-layer nonlinear MLP function with the same architecture as VOS [1], E(·)
denotes the energy function, and fθ(x) denotes the logit output of the classification model. In other
words, the loss function takes both the ID and generated OOD images, and learns to separate them
explicitly. The overall training objective combines the standard cross-entropy loss, along with an
additional loss in terms of OOD regularization LCE + β · Lood, where β is the weight of the OOD
regularization. LCE denotes the cross-entropy loss on the ID training data. In testing, we use the
output of the binary logistic classifier for OOD detection.

4 Experiments and Analysis

In this section, we present empirical evidence to validate the effectiveness of our proposed outlier
imagination framework. In what follows, we show that DREAM-OOD produces meaningful OOD
images, and as a result, significantly improves OOD detection (Section 4.1) performance. We provide
comprehensive ablations and qualitative studies in Section 4.2. In addition, we showcase an extension
of our framework for improving generalization by leveraging the synthesized inliers (Section 4.3).

4.1 Evaluation on OOD Detection Performance

Datasets. Following [2], we use the CIFAR-100 and the large-scale IMAGENET dataset [8] as
the ID training data. For CIFAR-100, we use a suite of natural image datasets as OOD including
TEXTURES [34], SVHN [35], PLACES365 [36], ISUN [37] & LSUN [38]. For IMAGENET-100, we
adopt the OOD test data as in [39], including subsets of INATURALIST [40], SUN [41], PLACES [36],
and TEXTURES [34]. For each OOD dataset, the categories are disjoint from the ID dataset. We
provide the details of the datasets and categories in Appendix A.

Training details. We use ResNet-34 [42] as the network architecture for both CIFAR-100 and
IMAGENET-100 datasets. We train the model using stochastic gradient descent for 100 epochs with
the cosine learning rate decay schedule, a momentum of 0.9, and a weight decay of 5e−4. The initial
learning rate is set to 0.1 and the batch size is set to 160. We generate 1, 000 OOD samples per class
using Stable Diffusion v1.4, which results in 100, 000 synthetic images in total. β is set to 1.0 for
IMAGENET-100 and 2.5 for CIFAR-100. To learn the feature encoder hθ, we set the temperature t in
Equation (2) to 0.1. Extensive ablations on hyperparameters σ, k and β are provided in Section 4.2.

Evaluation metrics. We report the following metrics: (1) the false positive rate (FPR95) of OOD
samples when the true positive rate of ID samples is 95%, (2) the area under the receiver operating
characteristic curve (AUROC), and (3) ID accuracy (ID ACC).

DREAM-OOD significantly improves the OOD detection performance. As shown in Table 1
and Table 3, we compare our method with the competitive baselines, including Maximum Softmax
Probability [25], ODIN score [26], Mahalanobis score [27], Energy score [6], Generalized ODIN [28],
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Methods

OOD Datasets

ID ACCSVHN PLACES365 LSUN ISUN TEXTURES Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
MSP [25] 87.35 69.08 81.65 76.71 76.40 80.12 76.00 78.90 79.35 77.43 80.15 76.45 79.04
ODIN [26] 90.95 64.36 79.30 74.87 75.60 78.04 53.10 87.40 72.60 79.82 74.31 76.90 79.04

Mahalanobis [27] 87.80 69.98 76.00 77.90 56.80 85.83 59.20 86.46 62.45 84.43 68.45 80.92 79.04
Energy [6] 84.90 70.90 82.05 76.00 81.75 78.36 73.55 81.20 78.70 78.87 80.19 77.07 79.04

GODIN [28] 63.95 88.98 80.65 77.19 60.65 88.36 51.60 92.07 71.75 85.02 65.72 86.32 76.34
KNN [29] 81.12 73.65 79.62 78.21 63.29 85.56 73.92 79.77 73.29 80.35 74.25 79.51 79.04
ViM [30] 81.20 77.24 79.20 77.81 43.10 90.43 74.55 83.02 61.85 85.57 67.98 82.81 79.04

ReAct [31] 82.85 70.12 81.75 76.25 80.70 83.03 67.40 83.28 74.60 81.61 77.46 78.86 79.04
DICE [32] 83.55 72.49 85.05 75.92 94.05 73.59 75.20 80.90 79.80 77.83 83.53 76.15 79.04

Synthesis-based methods
GAN [33] 89.45 66.95 88.75 66.76 82.35 75.87 83.45 73.49 92.80 62.99 87.36 69.21 70.12
VOS [1] 78.50 73.11 84.55 75.85 59.05 85.72 72.45 82.66 75.35 80.08 73.98 79.48 78.56

NPOS [2] 11.14 97.84 79.08 71.30 56.27 82.43 51.72 85.48 35.20 92.44 46.68 85.90 78.23
DREAM-OOD (Ours) 58.75±0.6 87.01±0.1 70.85±1.6 79.94±0.2 24.25±1.1 95.23±0.2 1.10±0.2 99.73±0.4 46.60±0.4 88.82±0.7 40.31±0.8 90.15±0.3 78.94

Table 3: OOD detection results for CIFAR-100 as the in-distribution data. We report standard deviations
estimated across 3 runs. Bold numbers are superior results.

KNN distance [29], ViM score [30], ReAct [31], and DICE [32]. Closely related to ours, we contrast
with three synthesis-based methods, including latent-based outlier synthesis (VOS [1] & NPOS [2]),
and GAN-based synthesis [33], showcasing the effectiveness of our approach. For example, DREAM-
OOD achieves an FPR95 of 39.87% on PLACES with the ID data of IMAGENET-100, which is a
19.79% improvement from the best baseline NPOS.

In particular, DREAM-OOD advances both VOS and NPOS by allowing us to understand the syn-
thesized outliers in a human-compatible way, which was infeasible for the feature-based outlier
sampling in VOS and NPOS. Compared with the feature-based synthesis approaches, DREAM-OOD
can generate high-resolution outliers in the pixel space. The higher-dimensional pixel space offers
much more knowledge about the unknowns, which provides the model with high variability and
fine-grained details for the unknowns that are missing in VOS and NPOS. Since DREAM-OOD is
more photo-realistic and better for humans, the generated images can be naturally better constrained
for neural networks (for example, things may be more on the natural image manifolds). We provide
comprehensive qualitative results (Section 4.2) to facilitate the understanding of generated outliers.
As we will show in Figure 5, the generated outliers are more precise in characterizing OOD data and
thus improve the empirical performance.

Method FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑
IMAGENET-100 as ID CIFAR-100 as ID

(I) Add gaussian noise 41.35 89.91 45.33 88.83
(II) Add learnable noise 42.48 91.45 48.05 87.72

(III) Interpolate embeddings 41.35 90.82 43.36 87.09
(IV) Disjont class names 43.55 87.84 49.89 85.87

DREAM-OOD (ours) 38.76 92.02 40.31 90.15

Table 2: Comparison of DREAM-OOD with different outlier em-
bedding synthesis methods using diffusion models.

Comparison with other outlier syn-
thesis approaches. We compare
DREAM-OOD with different outlier
embedding synthesis approaches in
Table 2: (I) synthesizing outlier em-
beddings by adding multivariate Gaus-
sian noise N (0, σ2

1I) to the token em-
beddings, (II) adding learnable noise
to the token embeddings where the
noise is trained to push the outliers away from ID features, (III) interpolating token embeddings from
different classes by αT (y1)+(1−α)T (y2), and (IV) generating outlier images by using embeddings
of new class names outside ID classes. For (I), we set the optimal variance values σ2

1 to 0.03 by
sweeping from {0.01, 0.02, 0.03, ..., 0.10}. For (III), we choose the interpolation factor α to be 0.5
from {0.1, 0.2, ..., 0.9}. For (IV), we use the remaining 900 classes in IMAGENET-1K (exclude the
100 classes in IMAGENET-100) as the disjoint class names for outlier generation. We generate the
same amount of images as ours for all the variants to ensure a fair comparison.

The result shows that DREAM-OOD outperforms all the alternative synthesis approaches by a consid-
erable margin. Though adding noise to the token embedding is relatively simple, it cannot explicitly
sample textual embeddings from the low-likelihood region as DREAM-OOD does, which are near
the ID boundary and thus demonstrate stronger effectiveness to regularize the model (Section 3.2).
Visualization is provided in Appendix E. Interpolating the token embeddings will easily generate
images that are still ID (Appendix D), which is also observed in Liew et.al. [43].

4.2 Ablation Studies

In this section, we provide additional ablations to understand DREAM-OOD for OOD generation. For
all the ablations, we use the high resolution IMAGENET-100 dataset as the ID data.
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Figure 5: Visualization of the imagined outliers w.r.t. jellyfish, ladybug class under different variance σ2.

Ablation on the regularization weight β. In Figure 7 (a), we ablate the effect of weight β of the
regularization loss Lood for OOD detection (Section 3.2) on the OOD detection performance. Using
a mild weighting, such as β = 1.0, achieves the best OOD detection performance. Too excessive
regularization using synthesized OOD images ultimately degrades the performance.

Ablation on the variance value σ2. We show in Figure 7 (b) the effect of σ2 — the number of the
variance value for the Gaussian kernel (Section 3.2). We vary σ2 ∈ {0.02, 0.03, 0.04, 0.05, 0.06, 0.2}.
Using a mild variance value σ2 generates meaningful synthetic OOD images for model regularization.
Too large of variance (e.g., σ2 = 0.2) produces far-OOD, which does not help learn a compact
decision boundary between ID and OOD.

Ablation on k in calculating k-NN distance. In Figure 7 (c), we analyze the effect of k, i.e.,
the number of nearest neighbors for non-parametric sampling in the latent space. We vary k =
{100, 200, 300, 400, 500} and observe that our method is not sensitive to this hyperparameter.

Visualization of the generated outliers. Figure 5 illustrates the generated outlier images under
different variance σ2. Mathematically, a larger variance translates into outliers that are more deviated
from ID data. We confirm this in our visualization too. The synthetic OOD images gradually become
semantically different from ID classes “jellyfish” and “ladybug”, as the variance increases. More
visualization results are in Appendix C.

4.3 Extension: From DREAM-OOD to DREAM-ID

Figure 6: TSNE visualization
of ID embeddings (purple) and
the synthesized inlier embeddings
(orange), for class “hen” in IMA-
GENET.

Our framework can be easily extended to generate ID data. Specifi-
cally, we can select the ID point with small k-NN distances w.r.t. the
training data (Equation (5)) and sample inliers from the Gaussian
kernel with small variance σ2 in the text-conditioned embedding
space (Figure 6). Then we decode the inlier embeddings via the
diffusion model for ID generation (Visualization provided in Ap-
pendix G). For the synthesized ID images, we let the semantic label
be the same as the anchor ID point. Here we term our extension as
DREAM-ID instead.

Datasets. We use the same IMAGENET-100 as the training data.
We measure the generalization performance on both the original
IMAGENET test data (for ID generalization) and variants with dis-
tribution shifts (for OOD generalization). For OOD generalization,
we evaluate on (1) IMAGENET-A [44] consisting of real-world, un-
modified, and naturally occurring examples that are misclassified by
ResNet models; (2) IMAGENET-V2 [45], which is created from the
Flickr dataset with natural distribution shifts. We provide the experimental details in Appendix H.
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Figure 7: (a) Ablation study on the regularization weight β on Lood. (b) Ablation on the variance σ2 for
synthesizing outliers in Section 3.2. (c) Ablation on the k for the k-NN distance. The numbers are AUROC. The
ID training dataset is IMAGENET-100.

DREAM-ID improves the generalization performance. As shown in Table 4, we compare DREAM-
ID with competitive data augmentation and test-time adaptation methods. For a fair comparison, all the
methods are trained using the same network architecture, under the same configuration. Specifically,
our baselines include: the original model without any data augmentation, RandAugment [46],
AutoAugment [47], CutMix [48], AugMix [49], DeepAugment [50] and MEMO [51]. These methods
are shown in the literature to help improve generalization. The results demonstrate that our approach
outperforms all the baselines that use data augmentation for training in both ID generalization and
generalization under natural distribution shifts (↑0.74% vs. the best on IMAGENET-A, ↑0.70% vs. the
best on IMAGENET-V2). Implementation details of the baselines are in Appendix I.

Methods IMAGENET IMAGENET-A IMAGENET-V2
Original (no aug) 87.28 8.69 77.80

RandAugment 88.10 11.39 78.90
AutoAugment 88.00 10.85 79.70

CutMix 87.98 9.67 79.70
AugMix 87.74 10.96 79.20

DeepAugment 86.86 10.79 78.30
MEMO 88.00 10.85 78.60

Generic Prompts 87.74 11.18 79.20
DREAM-ID (Ours) 88.46±0.1 12.13±0.1 80.40±0.1

Table 4: Model generalization performance (accuracy, in %), using
IMAGENET-100 as the training data. We report standard deviations
estimated across 3 runs.

In addition, we compare our method
with using generic prompts (i.e., “A
high-quality photo of a [y]”) for data
generation. For a fair comparison, we
synthesize the same amount of images
(i.e., 1000 per class) for both methods.
The result shows that DREAM-ID out-
performs the baseline by 0.72% on
IMAGENET test set and 0.95%, 1.20%
on IMAGENET-A and IMAGENET-V2,
respectively.

5 Related Work

Diffusion models have recently seen wide success in image generation [9, 52–54], which can
outperform GANs in fidelity and diversity, without training instability and mode collapse issues [55].
Recent research efforts have mostly focused on efficient sampling schedulers [14, 56, 57], architecture
design [58], score-based modeling [59, 60], large-scale text-to-image generation [12, 11], diffusion
personalization [61–63], and extensions to other domains [64–66].

Recent research efforts mainly utilized diffusion models for data augmentation, such as for im-
age classification [67–75], object detection [76–78], spurious correlation [79] and medical image
analysis [80–82] while we focus on synthesizing outliers for OOD detection. Graham et.al. [83]
and Liu et.al. [84] utilized diffusion models for OOD detection, which applied the reconstruction
error as the OOD score, and therefore is different from the discriminative approach in our paper.
Liu et.al. [85] jointly trained a small-scale diffusion model and a classifier while regarding the inter-
polation between the ID data and its noisy version as outliers, which is different from the synthesis
approach in DREAM-OOD. Meanwhile, our method does not require training the diffusion model at
all. Kirchheim et.al. [86] modulated the variance in BigGAN [87] to generate outliers rather than
using diffusion models. Franco et.al. [88] proposed denoising diffusion smoothing for certifying
the robustness of OOD detection. Sehwag et.al. [89] modified the sampling process to guide the
diffusion models towards low-density regions but simultaneously maintained the fidelity of synthetic
data belonging to the ID classes. Several works employed diffusion models for anomaly segmentation
on medical data [90–92], which is different from the task considered in our paper.

OOD detection has attracted a surge of interest in recent years [93–101]. One line of work performed
OOD detection by devising scoring functions, including confidence-based methods [25, 26, 102],
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energy-based score [6, 103, 104], distance-based approaches [21, 23, 27, 29, 105–108], gradient-
based score [109], and Bayesian approaches [110–115]. Another promising line of work addressed
OOD detection by training-time regularization [116–125]. For example, the model is regularized to
produce lower confidence [4, 33] or higher energy [5, 6, 126] on the outlier data. Most regularization
methods require the availability of auxiliary OOD data. [127, 128] enhanced OOD detection from the
perspective of ID distribution. Several recent works [1, 2] synthesized virtual outliers in the feature
space, and regularizes the model’s decision boundary between ID and OOD data during training. In
contrast, DREAM-OOD synthesizes photo-realistic outliers in pixel space, which enables visually
inspecting and understanding synthetic outliers in a human-compatible way.

Recently, there has been growing interest in multi-modal OOD detection that utilizes textual informa-
tion for visual OOD detection. Fort et.al. [129] proposed a scheme where pretrained CLIP models are
provided with candidate OOD labels for each target dataset, and show that the output probabilities
summed over the OOD labels effectively capture OOD uncertainty. Esmaeilpour et.al. [130] proposed
to train a label generator based on the visual encoder of CLIP and use the generated labels for OOD
detection. Ming et.al. [98, 99] alleviates the need for prior information on OOD by investigating
pre-trained CLIP models and parameter-efficient fine-tuning methods for OOD detection. [131] uti-
lized textual outlier exposure with vision-language models to enhance the neural network’s capability
to distinguish between ID and OOD data. In contrast, DREAM-OOD generates the outlier visual
embeddings by training a classifier conditioned on the ID texts and then uses the diffusion model for
outlier image synthesis.

6 Conclusion

In this paper, we propose a novel learning framework DREAM-OOD, which imagines photo-realistic
outliers in the pixel space by way of diffusion models. DREAM-OOD mitigates the key shortcomings
of training with auxiliary outlier datasets, which typically require label-intensive human intervention
for data preparation. DREAM-OOD learns a text-conditioned latent space based on ID data, and
then samples outliers in the low-likelihood region via the latent. We then generate outlier images
by decoding the outlier embeddings with the diffusion model. The empirical result shows that
training with the outlier images helps establish competitive performance on common OOD detection
benchmarks. Our in-depth quantitative and qualitative ablations provide further insights on the
efficacy of DREAM-OOD. We hope our work will inspire future research on automatic outlier
synthesis in the pixel space.

7 Broader Impact

Our project aims to improve the reliability and safety of modern machine learning models. Our
study on using diffusion models to synthesize outliers can lead to direct benefits and societal impacts,
particularly when auxiliary outlier datasets are costly to obtain, such as in safety-critical applications.
Nowadays, research on diffusion models is prevalent, which provides various promising opportunities
for exploring the off-the-shelf large models for our research. Our study does not involve any violation
of legal compliance. Through our study and release of code, we hope to raise stronger research
and societal awareness towards the problem of data synthesis for out-of-distribution detection in
real-world settings.
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Dream the Impossible:
Outlier Imagination with Diffusion Models (Appendix)

A Details of datasets

ImageNet-100. We randomly sample 100 classes from IMAGENET-1K [8] to create IMAGENET-100.
The dataset contains the following categories: n01498041, n01514859, n01582220, n01608432, n01616318, n01687978,

n01776313, n01806567, n01833805, n01882714, n01910747, n01944390, n01985128, n02007558, n02071294, n02085620, n02114855,

n02123045, n02128385, n02129165, n02129604, n02165456, n02190166, n02219486, n02226429, n02279972, n02317335, n02326432,

n02342885, n02363005, n02391049, n02395406, n02403003, n02422699, n02442845, n02444819, n02480855, n02510455, n02640242,

n02672831, n02687172, n02701002, n02730930, n02769748, n02782093, n02787622, n02793495, n02799071, n02802426, n02814860,

n02840245, n02906734, n02948072, n02980441, n02999410, n03014705, n03028079, n03032252, n03125729, n03160309, n03179701,

n03220513, n03249569, n03291819, n03384352, n03388043, n03450230, n03481172, n03594734, n03594945, n03627232, n03642806,

n03649909, n03661043, n03676483, n03724870, n03733281, n03759954, n03761084, n03773504, n03804744, n03916031, n03938244,

n04004767, n04026417, n04090263, n04133789, n04153751, n04296562, n04330267, n04371774, n04404412, n04465501, n04485082,

n04507155, n04536866, n04579432, n04606251, n07714990, n07745940.

OOD datasets. Huang et.al. [39] curated a diverse collection of subsets from iNaturalist [40],
SUN [41], Places [36], and Texture [34] as large-scale OOD datasets for IMAGENET-1K, where the
classes of the test sets do not overlap with IMAGENET-1K. We provide a brief introduction for each
dataset as follows.

iNaturalist contains images of natural world [40]. It has 13 super-categories and 5,089 sub-categories
covering plants, insects, birds, mammals, and so on. We use the subset that contains 110 plant classes
which do not overlap with IMAGENET-1K.

SUN stands for the Scene UNderstanding Dataset [41]. SUN contains 899 categories that cover more
than indoor, urban, and natural places with or without human beings appearing in them. We use the
subset which contains 50 natural objects not in IMAGENET-1K.

Places is a large scene photographs dataset [36]. It contains photos that are labeled with scene
semantic categories from three macro-classes: Indoor, Nature, and Urban. The subset we use contains
50 categories that are not present in IMAGENET-1K.

Texture stands for the Describable Textures Dataset [34]. It contains images of textures and abstracted
patterns. As no categories overlap with IMAGENET-1K, we use the entire dataset as in [39].

ImageNet-A contains 7,501 images from 200 classes, which are obtained by collecting new data and
keeping only those images that ResNet-50 models fail to correctly classify [44]. In our paper, we
evaluate on the 41 overlapping classes with IMAGENET-100 which consist of a total of 1,852 images.

ImageNet-v2 used in our paper is sampled to match the MTurk selection frequency distribution of the
original IMAGENET validation set for each class [45]. The dataset contains 10,000 images from 1,000
classes. During testing, we evaluate on the 100 overlapping classes with a total of 1,000 images.

B Formulation of Zm(κ)

The normalization factor Zm(κ) in Equation (3) is defined as:

Zm(κ) =
κm/2−1

(2π)m/2Im/2−1(κ)
, (8)

where Iv is the modified Bessel function of the first kind with order v. Zm(κ) can be calculated in
closed form based on κ and the feature dimensionality m.

C Additional Visualization of the Imagined Outliers

In addition to Section 4.2, we provide additional visualizations on the imagined outliers under different
variance σ2 in Figure 8. We observe that a larger variance consistently translates into outliers that
are more deviated from ID data. Using a mild variance value σ2 = 0.03 generates both empirically
(Figure 7 (b)) and visually meaningful outliers for model regularization on IMAGENET-100.
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Figure 8: Visualization of the imageined outliers for the beaver, apron, strawberry class with different
variance values σ2.

D Visualization of Outlier Generation by Embedding Interpolation

We visualize the generated outlier images by interpolating token embeddings from different classes
in Figure 9. The result shows that interpolating different class token embeddings tends to generate
images that are still in-distribution rather than images with semantically mixed or novel concepts,
which is aligned with the observations in Liew et. al. [43]. Therefore, regularizing the model using
such images is not effective for OOD detection (Table 2).
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Figure 9: Visualization of the generated outlier images by interpolating token embeddings from different
classes. We show the results with different interpolation weights α.

E Visualization of the Outlier Generation by Adding Noise

As in Table 2 in the main paper, we visualize the generated outlier images by adding Gaussian and
learnable noise to the token embeddings in Figure 10. We observe that adding Gaussian noise tends
to generate either ID images or images that are far away from the given ID class. In addition, adding
learnable noise to the token embeddings will generate images that completely deviate from the ID
data. Both of them are less effective in regularizing the model’s decision boundary.

F Comparison with Training w/ real Outlier Data.

We compare with training using real outlier data on CIFAR-100, i.e., 300K Random Images [4], which
contains 300K preprocessed images that do not belong to CIFAR-100 classes. The result shows that
DREAM-OOD (FPR95: 40.31%, AUROC: 90.15%) can match or even outperform outlier exposure
with real OOD images (FPR95: 54.32%, AUROC: 91.34%) under the same training configuration
while using fewer synthetic OOD images for OOD regularization (100K in total).
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(a) Generated outliers by adding Gaussian noise 
                          for ID class Beaver

(b)     Generated outliers by adding Gaussian noise 
                                for ID class Apron

(c)     Generated outliers by adding Gaussian noise 
                        for ID class Strawberry

(d)   Generated outliers by adding learnable noise 
                          for ID class Beaver

(e)   Generated outliers by adding learnable noise 
                                for ID class Apron

(f)    Generated outliers by adding learnable noise 
                        for ID class Strawberry

Figure 10: Visualization of the generated outlier images by adding Gaussian and learnable noise to the token
embeddings from different classes.

G Visualization of Generated Inlier Images

We show in Figure 11 the visual comparison among the original IMAGENET images, the generated
images by our DREAM-ID, and the generated ID images using generic prompts "A high-quality photo
of a [cls]" where "[cls]" denotes the class name. Interestingly, we observe that the prompt-based
generation produces object-centric and distributionally dissimilar images from the original dataset.
In contrast, our approach DREAM-ID generates inlier images that can resemble the original ID data,
which helps model generalization.

H Experimental Details for Model Generalization

We provide experimental details for Section 4.3 in the main paper. We use ResNet-34 [42] as the
network architecture, trained with the standard cross-entropy loss. For both the CIFAR-100 and
IMAGENET-100 datasets, we train the model for 100 epochs, using stochastic gradient descent with
the cosine learning rate decay schedule, a momentum of 0.9, and a weight decay of 5e−4. The initial
learning rate is set to 0.1 and the batch size is set to 160. We generate 1, 000 new ID samples per class
using Stable Diffusion v1.4, which result in 100, 000 synthetic images. For both the baselines and
our method, we train on a combination of the original IMAGENET/CIFAR samples and synthesized
ones. To learn the feature encoder hθ, we set the temperature t in Equation (2) to 0.1. Extensive
ablations on hyperparameters σ and k are provided in Appendix J.

I Implementation Details of Baselines for Model Generalization

For a fair comparison, we implement all the data augmentation baselines by appending the original
IMAGENET-100 dataset with the same amount of augmented images (i.e., 100k) generated from
different augmentation techniques. We follow the default hyperparameter setting as in their original
papers.
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Figure 11: Visual comparison between our DREAM-ID vs. prompt-based image generation on four
different classes.

• For RandAugment [46], we set the number of augmentation transformations to apply
sequentially to 2. The magnitude for all the transformations is set to 9.

• For AutoAugment [47], we set the augmentation policy as the best one searched on IMA-
GENET.

• For CutMix [48], we use a CutMix probability of 1.0 and set β in the Beta distribution to
1.0 for the label mixup.

• For AugMix [49], we randomly sample 3 augmentation chains and set α = 1 for the
Dirichlet distribution to mix the images.
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• For DeepAugment [50], we directly use the corrupted images for data augmentation provided
in their Github repo 3.

• For MEMO [51], we follow the original paper and use the marginal entropy objective
for test-time adaptation, which disentangles two distinct self-supervised learning signals:
encouraging invariant predictions across different augmentations of the test point and
encouraging confidence via entropy minimization.

Methods IMAGENET IMAGENET-A IMAGENET-V2
Original (no aug) 87.28 8.69 77.80

RandAugment 87.56 11.07 79.20
AutoAugment 87.40 10.37 79.00

CutMix 87.64 11.33 79.70
AugMix 87.22 9.39 77.80

DREAM-ID (Ours) 88.46±0.1 12.13±0.1 80.40±0.1

Table 5: Model generalization performance (accuracy, in %), using IMAGENET-100 as the training data.
The baselines are implemented by directly applying the augmentations on IMAGENET-100.

We also provide the comparison in Table 5 with baselines that are directly trained by applying the
augmentations on IMAGENET without appending the original images. The model trained with the
images generated by DREAM-ID can still outperform all the baselines by a considerable margin.

J Ablation Studies on Model Generalization

In this section, we provide additional analysis of the hyperparameters and designs of DREAM-ID for
ID generation and data augmentation. For all the ablations, we use the IMAGENET-100 dataset as the
in-distribution training data.

Ablation on the variance value σ2. We show in Table 6 the effect of σ2 — the number of the
variance value for the Gaussian kernel (Section 3.2). We vary σ2 ∈ {0.005, 0.01, 0.02, 0.03}. A
small-mild variance value σ2 is more beneficial for model generalization.

σ2 IMAGENET IMAGENET-A IMAGENET-V2

0.005 87.62 11.39 78.50
0.01 88.46 12.13 80.40
0.02 87.72 10.85 77.70
0.03 87.28 10.91 78.20

Table 6: Ablation study on the variance value σ2 in the Gaussian kernel for model generalization.

Ablation on k in calculating k-NN distance. In Table 7, we analyze the effect of k, i.e., the
number of nearest neighbors for non-parametric sampling in the latent space. In particular, we vary
k = {100, 200, 300, 400, 500}. We observe that our method is not sensitive to this hyperparameter,
as k varies from 100 to 500.

k IMAGENET IMAGENET-A IMAGENET-V2

100 88.51 12.11 79.92
200 88.35 12.04 80.01
300 88.46 12.13 80.40
400 88.43 12.01 80.12
500 87.72 11.78 80.29

Table 7: Ablation study on the k for k-NN distance for model generalization.

3https://github.com/hendrycks/imagenet-r/blob/master/DeepAugment
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K Computational Cost

We summarize the computational cost of DREAM-OOD and different baselines on IMAGENET-100 as
follows. The post hoc OOD detection methods require training a classification model on the ID data
(∼8.2 h). The outlier synthesis baselines, such as VOS (∼8.2 h), NPOS (∼8.4 h), and GAN (∼13.4
h) incorporate the training-time regularization with the synthetic outliers. Our DREAM-OOD involves
learning the text-conditioned latent space (∼8.2 h), image generation with diffusion models (∼10.1 h
for 100K images), and training with the generated outliers (∼8.5 h).

L Software and hardware

We run all experiments with Python 3.8.5 and PyTorch 1.13.1, using NVIDIA GeForce RTX 2080Ti
GPUs.
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