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Abstract

Discovering object-centric representations from images has the potential to greatly
improve the robustness, sample efficiency and interpretability of machine learning
algorithms. Current works on multi-object images typically follow a generative
approach that optimizes for input reconstruction and fail to scale to real-world
datasets despite significant increases in model capacity. We address this limitation
by proposing a novel method that leverages feature connectivity to cluster neighbor-
ing pixels likely to belong to the same object. We further design two object-centric
regularization terms to refine object representations in the latent space, enabling our
approach to scale to complex real-world images. Experimental results on simulated,
real-world, complex texture and common object images demonstrate a substan-
tial improvement in the quality of discovered objects compared to state-of-the-art
methods, as well as the sample efficiency and generalizability of our approach. We
also show that the discovered object-centric representations can accurately predict
key object properties in downstream tasks, highlighting the potential of our method
to advance the field of multi-object representation learning.

1 Introduction

Human understanding of the world relies on objects as compositional building blocks [24], and
emulating this through object-centric representations can improve robustness, sample efficiency,
generalization to out-of-domain distributions, and interpretability of machine learning algorithms
[18, 9]. Recent work utilizes a generative approach, optimizing pixel-based reconstruction to learn
object-centric representations [8, 17, 33, 4, 35, 12, 13, 11, 45, 46, 51]. This approach has limitations
as it prioritizes pixel accuracy over object discovery and functional feature extraction [30, 11]. This
may lead to the failure of discovering objects [35], or obtaining useful object features, such as position,
shape, or boundaries between overlapping objects [23]. Additionally, pixel-based reconstruction
tends to waste model capacity on less important visual features, such as complex backgrounds [25],
making scaling these methods to real-world images a challenge.

To address the fundamental limitations of pixel-based reconstruction, we propose a framework that
leverages feature connectivity and design two object-centric regularization terms to directly refine
object representations, ensuring sufficient separation and high disentanglement between dimensions.
Our method utilizes visual connectedness principles [38], where similar pixels that are connected
should belong to the same object, to guide object discovery. The two regularization terms promote
disentangled representations and prevent sub-optimal clustering.

We demonstrate that our approach outperforms state-of-the-art methods in discovering multiple
objects from simulated, real-world, complex texture and common object images in a fine-grained
manner without supervision. The proposed solution attains sample efficiency and is generalizable
to out-of-domain images. The learned object representations also accurately predict key object
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properties in downstream tasks. Our contributions include: (1) a framework that leverages feature
connectivity for fine-grained object discovery, (2) introduction of object-centric regularization terms
as an alternative to pixel-based reconstruction loss, (3) experimental validation of our solution’s
superior performance, and (4) demonstration of the usefulness of discovered object representations in
downstream tasks.

2 Related Work

Numerous works have demonstrated remarkable success in segmenting real-world images. Most
of these works focus on semantic segmentation and object detection by utilizing supervised signals
[19, 6]. In contrast, unsupervised approaches like SLIC [1] employ a modified k-means algorithm to
cluster pixels into superpixels, similar to Felzenszwalb’s algorithm [15] that relies on hand-crafted
features for clustering. However, these methods do not focus on learning useful representations for
the segmented components.

Various unsupervised methods for learning object-centric representations have been proposed, and
can be categorized into three main approaches: spatial attention, sequential attention, and iterative
attention. Spatial attention approach utilizes spatial transformer networks [21] to crop out rectangular
regions from an image and extract object attributes such as position and scale [14, 31, 8, 33]. They
rely on a fixed-size sampling grid which may not be suitable for scenes with varying object sizes, and
may compromise training when the sampling grid does not overlap with any object.

The sequential attention approach uses RNN-based models such as MONet [5] and GENESIS [12] to
sequentially attend to different regions in an image. These methods employ a deterministic network
to perform the attention process, which allows them to capture and represent objects in the scene.
However, these methods may neglect smaller objects as they tend to produce a weaker signal during
the attention process. This can lead to incomplete or biased representations of scenes with objects
of varying sizes. To overcome this, GENESIS-V2 [13] uses a stochastic stick-breaking process to
perform attention randomly.

In the iterative attention approach, a set of object representations is randomly initialized and then
iteratively refined to bind these objects to different regions of an image. IODINE [17] is a model
that can discover objects with disentangled representations. However, it requires long training times
and many samples. Slot Attention [35] introduces competition among the object representations by
utilizing cross-attention along the object dimension. While this method is fast, versatile and can be
extended to handle videos [29], it may fail to discover objects when the training set is diverse, and
the resulting representations are highly entangled.

EfficientMORL [11], SLATE [45], SysBinder [46] and BO-QSA [22] are recent developments in
the iterative attention approach aimed at addressing some limitations of earlier methods like Slot
Attention. EfficientMORL presents an hierarchical variational autoencoder and a lightweight iterative
refinement network to increase efficiency without sacrificing representation quality. SLATE increases
the non-linear interaction between the slots in Slot Attention with an autoregressive decoder that is
conditioned on the slots, resulting in improved reconstructions and object-centric representations.
SysBinder enhances the slots of Slot Attention with factor representations called block-slots, which
provides within-slot disentanglement between learned factors. BO-QSA initializes the slots of Slot
Attention as learnable embeddings instead of sampling from a Gaussian distribution and uses bi-level
optimization, resulting in more stable training. Despite the advancements, one drawback remains: the
number of clusters are fixed a priori which limits the applicability in real-world scenarios where the
number of objects or clusters is not known beforehand.

3 Methodology

Our proposed method OC-Net is designed to extract objects in an image without relying on labeled
data or specifying the number of objects present in the image. By not requiring the number of objects
to be specified beforehand, OC-Net can generalize better to real-world scenes with varying numbers
of objects and handle more complex scenarios.

Figure 1 shows the main components of OC-Net. The main idea behind OC-Net is to learn pixel
embeddings that can be clustered to discover objects and their respective object masks and object
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Figure 1: Overview of OC-Net.

representations. This is achieved by passing the input image through a 1 × 1 convolutional layer
to obtain a set of N pixel embeddings P = {p1, . . . ,pN} of D dimensions each. We leverage
on feature connectivity and iteratively cluster the embeddings of neighbouring pixels based on the
likelihood that they belong to the same object. The output is a set of objects O = {O1, . . . , OM}
where each object is a set of pixel embeddings. We derive the object mask mj of each object by
setting the pixel corresponding to the embedding in Oj :

mj [i] =

{
1 if pi ∈ Oj

0 otherwise
(1)

where mj [i] denotes the ith pixel value and i ∈ {1, . . . , N}.
With this, we obtain the matrix of object representations Z = [z1, . . . , zM ] where each zj is the sum
of extracted mask information and the average of the pixel embeddings in Oj :

zj [d] = (A ·mj)[d] +
1

|Oj |
∑

pi∈Oj

pi[d] (2)

where zj [d] denotes the dth value of vector zj , d ∈ {1, . . . , D}, A is the mask transformation matrix.

3.1 Object Discovery

The object discovery process iteratively clusters the pixel embeddings based on their feature connec-
tivity and similarity. LayerNorm [2] is applied to normalize all pixel embeddings, and positional
encodings are added to the pixel embeddings. The neighbors of a pixel embedding p are the set of
embeddings of the 8 neighbours in the input image. We use Dijkstra’s algorithm to compute the
shortest distance of a sampled pixel embedding to all other embeddings as follows.

Let U be the set of pixel embeddings that have not been assigned to an object yet. We uniformly
sample a pixel embedding pi ∈ U . The distance from pi to itself is set to zero, and the distance
to all the other pixels is set to infinity. We select an unvisited pixel embedding pm that has the
minimum distance to pi. Let pk be the embedding of a neighbour of the pixel corresponding to
pm. We compute the distance between a pair of neighbouring pixels as the similarity between their
corresponding embeddings given by:

sim(pm,pk) =

√√√√ D∑
d=1

(pm[d]− pk[d])2 (3)
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where pm[d] denotes the dth value of the embedding pm.

If the distance between pi and pk is shorter through pm, we update the shortest distance accordingly.
This ensures that we consider the most efficient path between pixel embeddings, leading to better
object discovery. We mark pm as visited and consider it to be part of the same object as pi according
to a threshold. The process is repeated for the next unvisited pixel embedding until all pixels have
been visited.

3.2 Object-Centric Regularization

We design two object-centric regularization terms Lsep and Lent to improve the quality of the learned
object representations for downstream generalization and object discovery. Given the matrix of object
representations Z = [z1, . . . , zM ] corresponding to the object training samples {(xi,yi)}Mi=1, we
quantify downstream generalization performance with the prediction error:

δZ =
1

M

M∑
i=1

||W · zi − yi|| (4)

where W is the minimum-norm solution of the downstream predictor.

Since labels yi are unknown in the unsupervised setting, δZ cannot be directly minimized. Theorem
3.1 below shows that we can minimize an upper bound of δZ by using the projection matrix PZ.
Proof of the theorem is provided in the supplementary material.
Theorem 3.1. Let Y be the matrix of training sample labels and PZ be the projection matrix of Z:

PZ = I− Z⊤(ΣZ)
†Z (5)

where I is the identity matrix, (.)† is the pseudoinverse and ΣZ = ZZ⊤ is the unnormalized
covariance matrix of Z. Let ||.||F be the Frobenius norm. Then, the following relation holds:

δZ ≤ ||PZ||F ||Y||F (6)

Since ||Y||F in Equation 6 is unknown but fixed, we can minimize δZ by minimizing ||PZ||F .
From the definition of PZ in Equation 5, ||PZ||F is minimized when the rank of ΣZ is maximized
[44, 3]. We achieve this by maximizing the diagonal entries of ΣZ with a separation term Lsep

while simultaneously minimizing its off-diagonal entries with an entanglement term Lent, in effect
regularizing ΣZ to be a diagonal matrix with a maximum number of nonzero entries.

Maximizing the diagonal entries of ΣZ via Lsep consequently maximizes the distance between object
representations in the latent space. This encourages the model to learn distinct and non-overlapping
object representations. Expanding the representation space also ensures that objects with varying
features and properties can be accurately represented and distinguished from one another, enhancing
both downstream generalization and fine-grained object discovery. We define Lsep as:

Lsep =
1

D

D∑
d=1

max(0, 1−
√
σd + τ) (7)

where σd is the variance of the dth dimension across the vectors z1, · · · , zM and τ is a small constant
to maintain numerical stability.

The entanglement term Lent minimizes the off-diagonal entries of ΣZ and consequently minimizes
the correlation between dimensions in the latent space Z, thereby achieves more disentangled object
representations. Such representations are easier to manipulate and analyze, as each dimension
captures a distinct object property, such as position, scale, or color. Lent is defined as follows:

Lent =
1

D × (M − 1)

∑
i ̸=j

ΣZ[i, j] (8)

4 Performance Study

We conduct experiments to evaluate the performance of OC-Net in terms of quality, sample efficiency
and generalizability. We use a diverse range of datasets to demonstrate its effectiveness across various
scenarios:

4



Table 1: Summary of dataset characteristics

Dataset Type Ground Truth Image Size # Samples

Multi-dSprites Simulated Pixel Mask 64× 64 1M
Tetrominoes-NM Simulated Pixel Mask 35× 35 1M

SVHN Real-World Bounding Box Varied 530K
IDRiD Real-World Pixel Mask 4288× 2848 81

CLEVRTEX Complex Texture Pixel Mask 128× 128 50K
CLEVRTEX-OOD Complex Texture Pixel Mask 128× 128 10K

Flowers Common Object Pixel Mask 128× 128 7K
Birds Common Object Pixel Mask 128× 128 11K

COCO Common Object Pixel Mask 128× 128 12K

1. Simulated datasets Multi-dSprites [23] and Tetrominoes-NM. The former consists of multi-
ple oval, heart or square-shaped sprites with some occlusions, while the latter is a subset
of the original Tetrominoes dataset [23] where images whose ground truth segmentation
requires knowledge of the object shapes are filtered out.

2. Real-world multi-object datasets SVHN [36] and IDRiD [40]. SVHN consists of street
view images of house numbers while IDRiD is the Indian Diabetic Retinopathy Image
Segmentation Dataset.

3. Complex texture datasets CLEVRTEX [26] and CLEVRTEX-OOD. CLEVRTEX features
scenes with diverse shapes, textures and photo-mapped materials while CLEVRTEX-OOD
is the CLEVRTEX out-of-distrbution test set with 25 new materials and 4 new shapes.

4. Common object datasets Flowers [37], Birds [48] and COCO [50]. The Flowers dataset
features 17 diverse flower classes with large variations viewpoint, scale, illumination and
background. Birds is the most widely-used CUB-200-2011 dataset for fine-grained visual
categorization. COCO is the variant of the Microsoft Common Objects in Context dataset
used for large-scale object segmentation [32].

Table 1 shows the dataset characteristics. Following [35, 11], we use the first 60K samples in Multi-
dSprites, Tetrominoes-NM and SVHN for training and hold out the next 320 samples for testing. For
IDRiD, we split this dataset into 54 images for training and 27 images for testing. For CLEVRTEX,
we use the first 40K samples for training and last 5K samples for testing. For CLEVRTEX-OOD,
we use 10K samples for testing. For Flowers, we use the first 6K samples for training and last 1K
samples for testing. For Birds, we use the first 10K samples for training and last 1K samples for
testing. For COCO, we use the first 10K samples for training and last 2K samples for testing.

We compare OC-Net with SLIC [1], Felzenszwalb [11], Slot Attention [35], EfficientMORL [11],
GENESIS-V2 [13], SLATE [45], SysBinder [46] and BO-QSA [22]. We train OC-Net for 1000
iterations with a batch size of 64 using Adam [28] with a learning rate of 1× 10−3. We carried out an
initial experiment to choose the clustering threshold. The results show that the value can range from
0.2 to 2.0 without affecting the performance of OC-Net. As such, we set the threshold to ϵ = 0.7 so
that two pixels will belong to the same object if their normalized feature similarity is more than 50%.
If a pixel is assigned to multiple objects, we assign it to the mask of the first object in that list and
ignore its membership in other objects. Training on 64-by-64 images from Multi-dSprites on a single
V100 GPU with 32GB of RAM takes about 10 minutes.

For all methods, we set the maximum number of foreground objects to 6 and 4 for Multi-dSprites
and Tetrominoes respectively. Training is carried out for 300,000 iterations with a batch size of 64,
using the Adam optimizer with a base learning rate of 4× 10−4. We set the size of the latent space
to be D = 64 for all models. For SVHN and COCO, the number of objects is set to 6. For IDRiD,
the number of objects is set to 20 and we train them for 100,000 iterations. For CLEVRTEX and
CLEVRTEX-OOD, the number of objects is set to 11. For Flowers and Birds, the number of objects
is set to 2.

We use the Adjusted Rand Index (ARI) to measure the quality of objects discovered [20]. The ARI is
a measure of similarity between two data clusterings that takes into account the permutation-invariant
nature of the predicted segmentation masks and their corresponding ground-truth masks. We also
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use the Dice similarity coefficient, along with the Intersection-over-Union (IoU) between the best
matching object masks X and Y as follows:

Dice(X,Y ) =
2|X ∩ Y |
|X|+ |Y |

; IoU(X,Y ) =
|X ∩ Y |
|X ∪ Y |

(9)

where X the set of object pixels extracted and Y is the set of annotated object pixels in the ground
truth. We compute the mean Dice and the mean IoU scores, denoted as mDice and mIoU respectively,
by averaging the individual Dice and IoU scores across all matches. For the complex textures dataset,
background discovery is included in the computation of the scores.

4.1 Experiments on Quality of Discovered Objects

We first evaluate the ability of OC-Net to discover objects from images with multiple objects. Table
2(a) shows the average ARI, mDice and mIoU scores based on the discovered foreground objects in
the simulated datasets after 3 runs. We observe that OC-Net outperforms all other methods by a large
margin in Multi-dSprites, and even achieves perfect score for all Tetrominoes-NM test samples.

Table 2(b) shows the results on the real-world multi-object image datasets. For SVHN, OC-Net
outperforms all methods, even when the ground truth is provided in the form of bounding boxes.
This implies that we need to expand the discovered object masks into their corresponding bounding
boxes which are often rough fits, and is the reason for the close difference in mDice and mIoU
scores between OC-Net and BO-QSA. For IDRiD, which contains multiple small objects, OC-Net
significantly improves the ARI scores and more than doubles the mDice and mIoU scores over all
methods, demonstrating its robustness in challenging object discovery tasks.

Table 2(c) shows the results on CLEVRTEX and CLEVRTEX-OOD, which contains complex textured
objects and backgrounds. Here, OC-Net again shows superior performance in all metrics, illustrating
its capability to effectively segment complex objects. Although a general decrease in performance
is observed across all methods in the CLEVRTEX-OOD test set, likely due to a change in data
distribution, OC-Net’s performance drop is slight and it still outperforms the closest baseline.

Finally, Table 2(d) shows the results on Flowers, Birds and COCO common object datasets. Here,
OC-Net again shows superior performance in all metrics, illustrating its capability to effectively
segment commonly seen natural objects. Notably, OC-Net outperforms all other methods by a large
margin in COCO, demonstrating its robustness in handling objects with highly varied appearances.

Figure 2 visualizes the objects discovered by the various methods for sample images. OC-Net is
able to identify large and small objects in Multi-dSprites even when these objects are significantly
occluded. Moreover, in the Tetrominoes-NM dataset, despite the presence of shadow effects that
often confuse existing methods, OC-Net still manages to separate each tile. For SVHN, only OC-Net
is able to segment the character objects out in a fine-grained manner. EfficientMORL tend to group
all the characters together while the other methods segment the objects in a coarse-grained manner.
For IDRiD, OC-Net is able to segment out the optic disc and small lesions which other methods fail
to discover. For CLEVRTEX and CLEVRTEX-OOD, OC-Net is able to segment out the various
objects from the complex-textured backgrounds in a fine-grained manner. Finally, for Flowers, Birds,
and COCO, only OC-Net is able to segment out the complex-shaped and multi-part objects from the
backgrounds in a fine-grained manner.

4.2 Experiments on Sample Efficiency

One obstacle to unsupervised object discovery is the availability of a sufficiently large number of
suitable training samples. Sample efficiency refers to a model’s ability to learn effectively from a
relatively small number of examples. Figure 3 shows the mIoU scores as we decrease the number of
training samples in Multi-dSprites, SVHN and CLEVRTEX. OC-Net is able to achieve near-optimal
performance even with a significantly smaller training set (1,000 samples) compared to all the other
methods. The high sample efficiency of OC-Net reduces the need for large, potentially costly or
difficult-to-obtain datasets. This makes OC-Net a more practical solution for real-world applications.
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Table 2: Evaluation scores for the discovered foreground objects.

(a) Simulated datasets

Multi-dSprites Tetrominoes-NM

Method ARI mDice mIoU ARI mDice mIoU

SLIC 67.9±0.0 78.5±0.0 70.8±0.0 53.0±0.0 66.1±0.0 53.6±0.0
Felzenszwalb 97.4±0.0 98.6±0.0 95.0±0.0 95.0±0.0 98.0±0.0 96.9±0.0
Slot Attention 91.3±0.3 45.7±0.7 32.6±0.6 99.8±0.1 41.5±0.8 26.6±0.7

EfficientMORL 85.2±0.5 30.1±1.3 19.5±1.1 99.0±1.7 42.5±2.3 27.6±1.9
GENESIS-V2 85.0±1.3 81.5±1.9 72.2±1.4 97.6±0.5 47.1±1.1 31.0±0.8

SLATE 89.5±1.2 82.5±0.9 72.6±1.1 84.5±1.5 57.8±0.9 44.3±0.8
SysBinder 72.3±1.2 30.6±1.1 19.6±1.0 90.7±1.7 41.8±1.9 27.0±1.7
BO-QSA 90.4±1.1 91.6±1.1 88.0±1.2 99.3±0.3 40.9±1.4 25.8±1.2
OC-Net 99.8±0.0 99.5±0.0 99.1±0.0 100.0±0.0 100.0±0.0 100.0±0.0

(b) Real-world datasets

SVHN IDRiD

Method ARI mDice mIoU ARI mDice mIoU

SLIC 5.3±0.0 50.1±0.0 34.5±0.0 32.2±0.0 12.7±0.0 8.8±0.0
Felzenszwalb 31.7±0.0 51.6±0.0 39.8±0.0 14.7±0.0 19.0±0.0 15.4±0.0
Slot Attention 38.9±1.5 51.7±1.8 36.7±1.7 28.7±1.1 8.6±1.7 5.0±1.6

EfficientMORL 32.2±1.7 49.2±2.0 34.0±1.8 16.8±1.5 11.1±2.7 7.0±1.8
GENESIS-V2 28.6±1.4 60.8±1.5 45.9±1.4 18.3±1.6 8.8±1.9 5.4±1.6

SLATE 21.2±1.2 57.0±1.3 41.7±1.5 35.6±2.1 8.1±1.2 4.7±1.8
SysBinder 15.8±1.6 49.5±1.9 34.1±1.8 25.2±1.3 16.6±1.7 11.1±1.8
BO-QSA 24.3±1.2 62.0±1.6 48.3±1.3 27.7±2.0 7.0±1.9 4.5±1.7
OC-Net 39.7±0.1 64.6±0.1 49.9±0.1 39.0±0.4 38.1±0.2 31.2±0.2

(c) Complex textures dataset

CLEVRTEX CLEVRTEX-OOD

Method ARI mDice mIoU ARI mDice mIoU

SLIC 27.4±0.0 20.0±0.0 13.0±0.0 25.8±0.0 21.7±0.0 14.0±0.0
Felzenszwalb 57.3±0.0 33.6±0.0 26.8±0.0 44.6±0.0 29.6±0.0 23.4±0.0
Slot Attention 58.6±1.6 35.0±1.6 26.7±1.5 51.3±1.9 34.1±1.4 25.1±1.3

EfficientMORL 59.5±1.7 37.7±1.5 31.1±1.4 53.9±2.5 32.2±2.4 25.3±2.8
GENESIS-V2 65.6±1.8 36.9±1.4 30.4±1.4 67.6±1.6 34.2±1.5 27.6±1.9

SLATE 57.5±1.8 33.3±1.6 24.4±1.5 56.6±1.3 34.7±2.1 25.3±1.8
SysBinder 61.4±1.7 31.3±1.5 23.1±1.4 61.0±2.4 32.3±2.0 23.8±1.8
BO-QSA 70.9±1.9 42.9±1.8 34.7±1.7 66.1±1.3 42.8±1.4 33.9±1.3
OC-Net 70.7±0.9 45.1±0.9 37.5±0.7 69.8±0.8 43.5±0.7 35.0±0.6

(d) Common objects datasets

Flowers Birds COCO

Method Dice IoU Dice IoU mDice mIoU

SLIC 30.5±0.0 18.4±0.0 33.1±0.0 20.3±0.0 36.2±0.0 24.4±0.0
Felzenszwalb 43.7±0.0 30.4±0.0 34.3±0.0 23.0±0.0 36.6±0.0 27.1±0.0
Slot Attention 43.0±1.5 28.6±1.2 42.9±2.0 27.9±1.8 24.8±2.0 15.0±1.7

EfficientMORL 59.5±2.1 45.2±2.2 44.0±1.9 30.8±1.8 28.4±2.3 18.9±2.1
GENESIS-V2 63.7±2.2 50.2±2.2 41.4±1.7 27.7±1.5 25.1±2.1 16.1±1.7

SLATE 55.6±1.2 40.8±1.8 39.5±1.5 25.9±1.8 37.0±1.9 24.4±1.8
SysBinder 45.0±1.8 30.8±1.6 33.7±1.3 21.1±2.0 18.4±1.6 10.7±1.4
BO-QSA 65.8±1.9 51.7±1.9 44.6±1.7 30.3±1.5 34.9±1.1 23.6±0.9
OC-Net 67.2±0.2 54.4±0.2 47.8±0.2 33.5±0.2 48.2±0.2 35.6±0.2
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(a) Multi-dSprites

(b) Tetrominoes-NM

(c) SVHN

(d) IDRiD

(e) CLEVRTEX

(f) CLEVRTEX-OOD

(g) Flowers

(h) Birds

(i) COCO

Figure 2: Visualization of discovered objects.

4.3 Experiments on Model Generalizability

Ideally, an unsupervised object discovery model should be trained to understand common visual
appearances such as the difference between foreground vs background, so as to discover objects from
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(a) Multi-dSprites (b) SVHN (c) CLEVRTEX

Figure 3: mIoU scores vs decreasing number of training samples.

Table 3: mIoU scores for model generalizability after training on Multi-dSprites.

Method Tetrominoes-NM SVHN IDRiD CLEVRTEX CLEVRTEX-OOD

Slot Attention 21.8±3.5 19.5±3.8 7.5±2.5 12.2±2.2 12.3±2.2
EfficientMORL 21.2±3.8 23.4±2.8 6.5±2.6 12.7±3.2 15.2±2.0
GENESIS-V2 42.9±4.9 31.1±2.8 8.5±2.4 21.9±1.6 21.3±2.5

SLATE 51.4±1.6 21.1±2.0 10.0±1.7 12.7±2.2 12.9±1.8
SysBinder 28.5±1.8 23.8±1.1 13.9±1.8 10.6±1.5 11.6±1.9
BO-QSA 41.8±1.8 24.3±2.0 4.0±1.5 24.4±1.4 22.8±2.5
OC-Net 100.0±0.0 47.5±0.5 29.1±0.5 31.7±0.6 31.3±0.6

out-of-domain images. In this set of experiments, we compare the generalization ability of OC-Net
with the baselines by training the models on Multi-dSprites and testing them on the other datasets.

Table 3 shows the results. For Tetrominoes-NM, there is a decrease in performance for all methods
while OC-Net still obtains perfect score. For SVHN, CLEVRTEX and CLEVRTEX-OOD, the
performance of all models decrease due to the shift in data distribution. However, OC-Net experiences
the smallest drop in performance and still significantly surpasses the best performing method. For
IDRiD, the methods show improvement in performance. One possible reason is that the larger training
set in Multi-dSprites enables the circular shape of the optic disc to be better segmented. Despite this,
OC-Net remains the top performer.

4.4 Ablation Studies

Next, we examine the effect of feature connectivity and regularization terms Lsep and Lent on the
performance of OC-Net. We implemented three variants of OC-Net: (a) w/o connectivity. Here,
we do not require that a path should exist between i and k when computing dist[i, k]; (b) w/o Lent.
This network is trained without the entanglement regularization term; (c) w/o Lsep. The separation
regularization term is not used in the training of OC-Net.

Table 4 shows the mIoU scores for all the datasets. Without feature connectivity, we observe a drop
in performance across all datasets since it is common for images to have multiple identical objects,
that is, same color and shape. As such, OC-Net w/o connectivity tend to cluster these blocks as a
single object.

Removing the entanglement term (OC-Net w/o Lent) leads to a slight decrease in the performance as
the object representations may still be separated even when the dimensions are entangled. The largest
performance drop in all datasets is seen when the object representation separation term is removed
(OC-Net w/o Lsep), indicating the importance of having a well-separated object representation space
for effective object discovery.
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Table 4: mIoU scores for variants of OC-Net.

Method Multi-dSprites Tetro-NM SVHN IDRiD CTEX CTEX-OOD

OC-Net 99.1±0.0 100.0±0.0 49.9±0.1 31.2±0.2 37.5±0.7 35.0±0.6
w/o connectivity 98.8±0.1 89.2±0.1 36.6±0.1 17.3±0.1 20.3±0.9 17.7±0.9

w/o Lent 98.7±0.3 99.6±0.1 48.8±0.1 25.8±0.2 26.4±0.8 18.9±0.4
w/o Lsep 49.3±0.3 51.2±0.2 35.0±0.2 4.0±0.1 18.5±0.6 11.0±0.4

5 Prediction based on Learned Object Representation

One characteristic of an effective object-centric representation is its ability to encode object properties
such as color, position and shape [42]. In this section, we show that the learned object representations
are disentangled and can be used to predict the values of these properties.

Given the representations and their corresponding ground truth values of a target object property,
we employ them as features to train a gradient boosted tree (GBT) [16]. To evaluate how well the
properties of unseen objects are predicted by the GBT, we use the coefficient of determination R2

[49]. We perform an experiment using the learned object representations from the simulated datasets
to predict the properties of object such as color, position and shape. We use the mIoU score to match
the discovered object to the ground truth object. We split the 320 test images equally into two sets,
one for training the GBT model for each object property, and the other for evaluation.

Table 5 shows the average R2 scores of the GBT models on the evaluation set. The GBT models
trained with OC-Net representations achieved the highest R2 scores compared to the models trained
using the representations from other methods. This suggests that the object representations learned
by OC-Net are effective in encoding the object properties.

Table 5: R2 scores for object property prediction on simulated datasets

Multi-dSprites Tetrominoes-NM

Method Color Position Shape Color Position Shape

Slot Attention 72.2±12 96.8±0.1 38.2±0.0 86.5±6.5 98.7±0.6 36.3±0.0
EfficientMORL 86.5±6.2 95.8±0.1 61.7±0.0 94.9±3.2 97.9±0.7 68.5±0.0
GENESIS-V2 78.1±7.5 97.1±0.7 75.8±0.0 88.1±5.8 94.6±2.6 37.9±0.0

SLATE 87.5±0.7 90.6±4.4 31.7±0.0 85.5±3.9 89.6±0.7 10.5±0.0
SysBinder 73.6±1.0 69.3±3.4 33.3±0.0 97.9±0.6 77.8±2.7 19.9±0.0
BO-QSA 96.3±1.6 97.4±0.1 75.2±0.0 98.1±0.7 98.9±0.2 52.5±0.0
OC-Net 98.0±0.6 98.3±0.1 78.1±0.0 100.0±0.0 99.4±0.1 98.7±0.0

6 Conclusion

In this work, we have described a framework called OC-Net that learns object-centric representations
in a fine-grained manner without supervision. OC-Net leverages on feature connectivity and two new
regularization terms to learn disentangled representations and to ensure the representations of different
objects are well-separated. From the results of experiments conducted on simulated, real-world,
complex texture and common object images, we have demonstrated the superior quality of the object
representations over current state-of-the-art. Moreover, we have highlighted the sample efficiency
and generalizability of OC-Net. Finally, we have shown how the discovered object representations
can be used to predict object properties in a downstream task, indicating its potential use for other
computer vision applications where samples and ground truth labels are limited.

There are still obstacles that have to be overcome for successful application of our framework to the
full visual complexity of the real world. A natural next step would be to extend OC-Net to handle
real-world scenes containing objects with more complex part-whole hierarchies. It is also promising
to explore explicit representation of the discovered objects into a dictionary of prototypes to better
handle occlusion between objects. Lastly, real-world scenes with multiple objects is still of higher
visual complexity than the datasets considered here and reliably bridging this gap is an open problem.

10



Acknowledgments and Disclosure of Funding

This research is supported by the National Research Foundation Singapore under its AI Singapore
Programme (Award Number: AISG-GC-2019-001-2A).

References
[1] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Süsstrunk, S. Slic superpixels

compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(11):2274–2282, 2012. doi: 10.1109/TPAMI.2012.120.

[2] Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization. Advances in NIPS 2016 Deep
Learning Symposium, 2016.

[3] Bardes, A., Ponce, J., and LeCun, Y. Vicreg: Variance-invariance-covariance regularization for
self-supervised learning. In The Tenth International Conference on Learning Representations,
ICLR, 2022.

[4] Bear, D., Fan, C., Mrowca, D., Li, Y., Alter, S., Nayebi, A., Schwartz, J., Fei-Fei, L. F., Wu, J.,
Tenenbaum, J., et al. Learning physical graph representations from visual scenes. Advances in
Neural Information Processing Systems, 33:6027–6039, 2020.

[5] Burgess, C. P., Matthey, L., Watters, N., Kabra, R., Higgins, I., Botvinick, M. M., and Lerchner,
A. Monet: Unsupervised scene decomposition and representation. CoRR, 1901.11390, 2019.

[6] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S. End-to-end
object detection with transformers. In European conference on computer vision, pp. 213–229.
Springer, 2020.

[7] Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., and Joulin, A. Emerging
properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 9650–9660, 2021.

[8] Crawford, E. and Pineau, J. Spatially invariant unsupervised object detection with convolutional
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pp. 3412–3420, 2019.

[9] Dittadi, A., Papa, S. S., Vita, M. D., Schölkopf, B., Winther, O., and Locatello, F. Generalization
and robustness implications in object-centric learning. In International Conference on Machine
Learning, ICML, 2022.

[10] Eastwood, C. and Williams, C. K. I. A framework for the quantitative evaluation of disentangled
representations. In International Conference on Learning Representations, 2018.

[11] Emami, P., He, P., Ranka, S., and Rangarajan, A. Efficient iterative amortized inference for
learning symmetric and disentangled multi-object representations. In International Conference
on Machine Learning, pp. 2970–2981, 2021.

[12] Engelcke, M., Kosiorek, A. R., Jones, O. P., and Posner, I. GENESIS: generative scene inference
and sampling with object-centric latent representations. In 8th International Conference on
Learning Representations, ICLR 2020, 2020.

[13] Engelcke, M., Parker Jones, O., and Posner, I. Genesis-v2: Inferring unordered object represen-
tations without iterative refinement. Advances in Neural Information Processing Systems, 34:
8085–8094, 2021.

[14] Eslami, S., Heess, N., Weber, T., Tassa, Y., Szepesvari, D., Hinton, G. E., et al. Attend, infer,
repeat: Fast scene understanding with generative models. Advances in Neural Information
Processing Systems, 29, 2016.

[15] Felzenszwalb, P. F. and Huttenlocher, D. P. Efficient graph-based image segmentation. Interna-
tional journal of computer vision, 59(2):167–181, 2004.

11



[16] Friedman, J. H. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189–1232, 2001.

[17] Greff, K., Kaufman, R. L., Kabra, R., Watters, N., Burgess, C., Zoran, D., Matthey, L., Botvinick,
M., and Lerchner, A. Multi-object representation learning with iterative variational inference.
In International Conference on Machine Learning, pp. 2424–2433, 2019.

[18] Greff, K., Van Steenkiste, S., and Schmidhuber, J. On the binding problem in artificial neural
networks. arXiv preprint arXiv:2012.05208, 2020.

[19] He, K., Gkioxari, G., Dollár, P., and Girshick, R. Mask r-cnn. In Proceedings of the IEEE
international conference on computer vision, pp. 2961–2969, 2017.

[20] Hubert, L. and Arabie, P. Comparing partitions. Journal of classification, 2(1):193–218, 1985.

[21] Jaderberg, M., Simonyan, K., Zisserman, A., et al. Spatial transformer networks. Advances in
neural information processing systems, 28, 2015.

[22] Jia, B., Liu, Y., and Huang, S. Improving object-centric learning with query optimization. In
The Eleventh International Conference on Learning Representations, 2023.

[23] Kabra, R., Burgess, C., Matthey, L., Kaufman, R. L., Greff, K., Reynolds, M., and Lerchner, A.
Multi-object datasets. https://github.com/deepmind/multi-object-datasets/, 2019.

[24] Kahneman, D., Treisman, A., and Gibbs, B. J. The reviewing of object files: Object-specific
integration of information. Cognitive psychology, 24(2):175–219, 1992.

[25] Karazija, L., Laina, I., and Rupprecht, C. Clevrtex: A texture-rich benchmark for unsupervised
multi-object segmentation. In Proceedings of the Neural Information Processing Systems, 2021.

[26] Karazija, L., Laina, I., and Rupprecht, C. Clevrtex: A texture-rich benchmark for unsupervised
multi-object segmentation. In Vanschoren, J. and Yeung, S. (eds.), Proceedings of the Neural
Information Processing Systems Track on Datasets and Benchmarks. Curran, 2021.

[27] Kim, J., Choi, J., Choi, H.-J., and Kim, S. J. Shepherding slots to objects: Towards stable and
robust object-centric learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 19198–19207, 2023.

[28] Kingma Diederik, P. and Adam, J. B. A method for stochastic optimization. International
Conference on Learning Representations ICLR, 2015.

[29] Kipf, T., Elsayed, G. F., Mahendran, A., Stone, A., Sabour, S., Heigold, G., Jonschkowski,
R., Dosovitskiy, A., and Greff, K. Conditional Object-Centric Learning from Video. In
International Conference on Learning Representations (ICLR), 2022.

[30] Kipf, T. N., van der Pol, E., and Welling, M. Contrastive learning of structured world models.
In 8th International Conference on Learning Representations, ICLR, 2020.

[31] Kosiorek, A., Kim, H., Teh, Y. W., and Posner, I. Sequential attend, infer, repeat: Generative
modelling of moving objects. Advances in Neural Information Processing Systems, 31, 2018.

[32] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick,
C. L. Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th
European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pp.
740–755. Springer, 2014.

[33] Lin, Z., Wu, Y., Peri, S. V., Sun, W., Singh, G., Deng, F., Jiang, J., and Ahn, S. SPACE:
unsupervised object-oriented scene representation via spatial attention and decomposition. In
8th International Conference on Learning Representations, ICLR 2020, 2020.

[34] Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., and Bachem, O.
Challenging common assumptions in the unsupervised learning of disentangled representations.
In international conference on machine learning, pp. 4114–4124. PMLR, 2019.

12



[35] Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G., Uszkoreit, J.,
Dosovitskiy, A., and Kipf, T. Object-centric learning with slot attention. Advances in Neural
Information Processing Systems, 33:11525–11538, 2020.

[36] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. Reading digits in
natural images with unsupervised feature learning. NIPS Workshop on Deep Learning and
Unsupervised Feature Learning, 2011.

[37] Nilsback, M.-E. and Zisserman, A. Delving deeper into the whorl of flower segmentation.
Image and Vision Computing, 28(6):1049–1062, 2010.

[38] Palmer, S. and Rock, I. Rethinking perceptual organization: The role of uniform connectedness.
Psychonomic bulletin & review, 1(1):29–55, 1994.

[39] Paszke, A. e. a. Pytorch: An imperative style, high-performance deep learning library. Advances
in Neural Information Processing Systems, 2019.

[40] Porwal, P., Pachade, S., Kamble, R., Kokare, M., Deshmukh, G., Sahasrabuddhe, V., and
Meriaudeau, F. Indian diabetic retinopathy image dataset (idrid), 2018.

[41] Rezende, D. J. and Viola, F. Taming vaes. ArXiv, abs/1810.00597, 2018.

[42] Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., and Bengio, Y.
Toward causal representation learning. Proceedings of the IEEE, 109(5):612–634, 2021. doi:
10.1109/JPROC.2021.3058954.

[43] Shi, J. and Malik, J. Normalized cuts and image segmentation. IEEE Transactions on pattern
analysis and machine intelligence, 22(8):888–905, 2000.

[44] Shwartz-Ziv, R., Balestriero, R., Kawaguchi, K., Rudner, T. G., and LeCun, Y. An
information-theoretic perspective on variance-invariance-covariance regularization. arXiv
preprint arXiv:2303.00633, 2023.

[45] Singh, G., Deng, F., and Ahn, S. Illiterate dall-e learns to compose. In International Conference
on Learning Representations, 2021.

[46] Singh, G., Kim, Y., and Ahn, S. Neural systematic binder. In The Eleventh International
Conference on Learning Representations, 2023.

[47] Wang, X., Girdhar, R., Yu, S. X., and Misra, I. Cut and learn for unsupervised object detection
and instance segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 3124–3134, 2023.

[48] Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., and Perona, P. Caltech-
ucsd birds 200. 2010.

[49] Wright, S. Correlation and causation. Journal of agricultural research, 1921.

[50] Yang, Y. and Yang, B. Promising or elusive? unsupervised object segmentation from real-world
single images. Advances in Neural Information Processing Systems, 35:4722–4735, 2022.

[51] Yuan, J., Chen, T., Li, B., and Xue, X. Compositional scene representation learning via
reconstruction: A survey. arXiv preprint arXiv:2202.07135, 2022.

13



A Additional Implementation Details

A.1 Object Discovery Algorithm

We further describe the details of the object discovery process (see Algorithm 1). The input is the set
of pixel embeddings for an image. We apply LayerNorm [2] to normalize all pixel embeddings and
add positional encodings to the pixel embeddings (Line 3). We use Dijkstra’s algorithm to compute
the shortest path distance of a sampled pixel embedding to all other embeddings as follows. We
uniformly sample an unprocessed pixel embedding pi ∈ U that has not been assigned to an object
(Line 6). We initialize the distance from pi to itself as zero and to all the other pixels as infinity (Lines
7-10). Then we select an unvisited pixel embedding pm that has the minimum distance to pi (Line
13). For each neighbour of the pixel corresponding to pm, let pk be its embedding (Lines 14-15).
Here, we consider the neighbours of a pixel to be the 8 surrounding pixels and the distance between a
pair of neighbouring pixels is the similarity measure between their corresponding embeddings given
by:

sim(pm,pk) =

√√√√ D∑
d=1

(pm[d]− pk[d])2, (10)

where pm[d] denotes the dth value of the embedding pm.

We update the shortest path distance between pi and pk if the distance is shorter through pm (Lines
16-18). We mark pm as visited (Line 20) and consider pm to be part of the same object as pi (Lines
21-23). We repeat the process for the next unvisited pixel embedding until all pixels have been visited
(Line 24). The discovered object Oc is added to the set of objects found thus far O (Line 25). The
entire process is repeated till all pixel embeddings have been assigned to some object (line 26).

Algorithm 1 Object Discovery Process.

1: Input: Set of pixel embeddings P = {p1, . . . ,pN}
2: Output: Set of objects O = {O1, . . . , OM}
3: P ← LayerNorm(P) + Position Enc.
4: U ← P; O ← ∅; c← 1 // Initialization
5: repeat
6: pi ← UniformSampling(U)
7: dist[i,i]← 0
8: for j = 1 to N , j ̸= i do
9: dist[i, j]←∞

10: end for
11: Oc ← ∅; V ← ∅ // Initialization
12: repeat
13: let pm ∈ P − V be the pixel embedding with minimum distance to pi

14: for each neighbor of the pixel corresponding to the embedding pm do
15: let pk of be the embedding of the neighbour
16: if dist[i, k] > dist[i,m] + sim(pm,pk) then
17: dist[i, k] = dist[i,m] + sim(pm,pk)
18: end if
19: end for
20: V ← V ∪ {pm}
21: if dist[i,m] < ϵ then
22: Oc ← Oc ∪ {pm}; U ← U − {pm}
23: end if
24: until |V| == N
25: O ← O ∪ {Oc}; c← c+ 1
26: until |U| == ∅

A.2 Positional Encodings

We add fixed positional encondings to the last two pixel embedding dimensions, where the encondings
have values from 0 to 1 according to the pixel embedding’s relative location to the top and left of the
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image. The top-left pixel has positional encondings of values (0, 0), while the bottom-right pixel has
values (1, 1). All other postional encondings have uniformly spaced values between [0, 1] according
to the height and width of the image.

A.3 Clustering Threshold

We carried out initial experiments to choose the clustering threshold. Figure 4 shows the mIoU scores
on Multi-dSprites, SVHN and CLEVRTEX when we vary the negative exponent of the threshold
value. We see that the value can range from 20% (ϵ = 1.6 to ϵ = 2.0) to 80% (about ϵ = 0.2) without
affecting the performance of OC-Net. As such, we set the threshold to ϵ = 0.7 so that two pixels will
belong to the same object if their normalized feature similarity is more than 50%.

(a) Multi-dSprites (b) SVHN (c) CLEVRTEX

Figure 4: mIoU scores with different values of clustering threshold.

A.4 Mask Information Extraction

We define the object representation as the sum of the extracted mask information and the average of
the pixel embeddings in Oj . We extract mask information by transforming the object mask mj by a
mask transformation matrix A. This extraction is performed in a positionally-invariant manner by
initializing the rows of A with a set of unit vectors which point from the object center to the border
pixels. After initialization, A is refined via gradient descent.

Based on initial experiments shown in Table 6, when compared to random initialization (OC-Net
w/ random A init), we see that initializing A with unit vectors enhances the learned representation
especially in terms of object shape information.

Table 6: R2 scores for object property prediction on simulated datasets

Multi-dSprites Tetrominoes-NM

Method Color Position Shape Color Position Shape

OC-Net w/ random A init 97.7±0.8 98.0±0.1 77.1±0.0 100.0±0.0 99.1±0.2 89.6±0.0
OC-Net 98.0±0.6 98.3±0.1 78.1±0.0 100.0±0.0 99.4±0.1 98.7±0.0

A.5 Computational Resources

An 8X Tesla V100 (32GB) GPU server is used to train OC-Net and all comparison baselines for our
experiments.

B Datasets

1. Multi-dSprites [23] (Apache-2.0 License): This simulated dataset consists of sprites-based
images of 64× 64 size with ground truth segmentation masks and sprite properties available
at https://github.com/deepmind/multi_object_datasets. Each image consists of multiple oval,
heart or square-shaped sprites with some occlusions. We use the variant where 2-5 randomly
colored sprites appear on a randomly sampled grayscale background.
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2. Tetrominoes-NM [23] (Apache-2.0 License): This dataset is a subset of the origi-
nal simulated Tetrominoes dataset where each 35 × 35 image consists of 3 Tetris-
like shapes sampled from 6 colors and 17 shapes. We download the data from
https://github.com/deepmind/multi_object_datasets. Ground truth segmentation masks and
properties are provided. We filter out images whose ground truth segmentation requires
knowledge of the object shapes for testing.

Figure 5: Images in Tetrominoes dataset that require knowledge of object shapes for segmentation

3. Street View House Numbers (SVHN) [36] (CC0 Public Domain): This real-world
dataset consists of house numbers in Google Street View images with character level
ground truth bounding boxes. We use the dataset labeled as ‘extra’ [36], available at
http://ufldl.stanford.edu/housenumbers. All original images and their ground truths are
resized and cropped to size 64 × 64. The dimensions of the raw images in this set vary,
hence we resize all heights of the image to 64 pixels first before cropping the width to 64.
We modify the ground truth bounding boxes according to the same transformations. Since
bounding boxes are provided as ground truths, we expand the object masks predicted by
each method into their best-fit bounding boxes according to the masks’ convex hull before
computing the ARI, mDice and mIoU scores.

4. Indian Diabetic Retinopathy Image Segmentation Dataset (IDRiD) [40] (CC-BY 4.0): This
is a publicly available real-world dataset with 81 retinal images where each image retina
image has multiple red lesions (microaneurysms and hemorrhages) or yellow lesions (hard
exudates and soft exudates). We obtain the 81 images with fine-grained segmentation
ground truths from https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-
dataset-idrid. Each image has a manually labelled segmentation mask of the lesions and
also the optic disc. We filter out the red lesions and resize all raw images and their ground
truths to size 64× 64. This dataset contains retina images which have more severe diabetic
retinopathy, hence the number of possible lesions to be detected is large. We filter out the
relatively smaller red lesions and focus the object discovery task on the optic disc and yellow
lesions. We cluster the ground truth pixel masks into connected regions as the different
objects to be discovered by the models.

5. CLEVRTEX [26] (CC-BY 4.0): This dataset features scenes with diverse shapes, textures
and photo-mapped materials, created using physically based rendering techniques. The
data is available at https://www.robots.ox.ac.uk/ vgg/data/clevrtex/. Each image contains
3-10 objects of 4 possible shapes randomly arranged on a background. The objects and
backgrounds can take materials from a total of 60 possible materials. The scenes contain
realistic reflections, highlights, shadows and lighting effects.

6. CLEVRTEX-OOD [26] (CC-BY 4.0): For further evaluation, we use the CLEVRTEX-OOD
(out-of-distribution) test set containing 10K images with 25 new (unseen) materials and 4
new shapes (cone, torus, icosahedron, and a teapot) that are not part of CLEVRTEX. The
data is available at https://www.robots.ox.ac.uk/ vgg/data/clevrtex/.

7. Flowers [37] (CC0 Public Domain): The dataset has 17 flower classes (e.g. buttercup,
daffodil, iris, pansy), with photographs exhibiting typical (large) variations in viewpoint,
scale, illumination and background. Segmenting such photographs is challenging due
to both the variety of colours and the variety of shapes. We download the data from
https://www.robots.ox.ac.uk/ vgg/data/flowers/.

8. Birds [48] (CC0 Public Domain): The Caltech-UCSD Birds-200-2011 (CUB-200-2011)
dataset is the most widely-used dataset for fine-grained visual categorization task. It
contains 11,788 images of 200 subcategories belonging to birds. Each image has detailed
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annotations: 1 subcategory label, 15 part locations, 312 binary attributes and 1 bounding
box http://www.vision.caltech.edu/datasets/cub_200_2011/.

9. COCO [32] (CC-BY 4.0): This is the Microsoft Common Objects in Context
dataset used for large-scale object segmentation. We use the variant that focuses on
multi-object segmentation as proposed by [50], which we download from this link
https://www.dropbox.com/sh/u1p1d6hysjxqauy/AACgEh0K5ANipuIeDnmaC5mQa?dl=0

C Baseline Models

1. SLIC [1] is a clustering algorithm that clusters pixels into superpixels by using an efficient
adaptation of the k-means algorithm. We use the python implementation and for each dataset,
we perform a grid search for the optimal hyperparameters which produce the best results.
For example, for the Tetrominoes dataset, we set the optimal clustering threshold value as
10 and the initial number of clusters as 12.

2. Felzenszwalb’s Algorithm [11] is a graph-based segmentation algorithm that groups pixels
together through a hand-crafted boundary detection procedure. We use the python imple-
mentation and for each dataset, we perform a grid search for the optimal hyperparameters
which produce the best results. For example, for the Tetrominoes dataset, we set the optimal
clustering threshold 1000, the minimum cluster size as 10, and the image smoothening value
as 0.1.

3. Slot Attention [35] initializes a set of random object representations called slots which are
iteratively refined by slot-normalized cross-attention on the outputs of a simple convolutional
neural network (CNN). The slots are then decoded individually and combined to reconstruct
the input. All Slot Attention baselines are trained with 500,000 iterations. We use the default
training hyperparameters from the official reference implementation.

4. EfficientMORL [11] uses a hierarchical variational auto-encoder to extract disentangled
object representations and refine the representations by a lightweight network before re-
constructing the input. For all real-world and complex textures datasets, we fine-tune
the per-pixel GECO reconstruction target to -2.206 which significantly outperformed the
suggested settings in both the original paper and CLEVRTEX experiments[26].

5. GENESIS-V2 [13] obtains pixel embeddings through a U-Net which are then clustered
using a stochastic stick-breaking process. The clusters are then decoded to reconstruct the
input. We similarly fine-tune the model to use the output standard deviation of 0.7 and the
equivalent per-pixel GECO reconstruction target as EfficientMORL and achieved much
higher results than those reported in the CLEVRTEX paper [26].

6. SLATE [45] replaces the decoder in Slot Attention with a more expressive transformer-based
autoregressive decoder conditioned on the slots. The original model uses patch sizes of 4×4
pixels as inputs and obtains poor scores for the simulated Multi-dSprites and Tetrominoes
datasets which require fine-grained understanding of each pixel. Hence, we extend the
model to have 1× 1 input for these datasets.

7. SysBinder [46] enhances the slots of Slot Attention with factor representations called block-
slots which provides within-slot disentanglement. Similar to SLATE, the original model
uses patch sizes of 4× 4 pixels as inputs and obtains poor scores for the simulated datasets.
Hence, we extend the model to have 1× 1 input for these datasets.

8. BO-QSA [22] initializes Slot Attention’s object representations as learnable embeddings
instead of sampling from a learnable Gaussian distribution and supplements the training
with bi-level optimization. All BO-QSA baselines are trained with 500,000 iterations. We
use the default training hyperparameters from the official reference implementation. We
train all datasets with both the mixture-based decoder and autoregressive transformer-based
decoder and report the highest scores.

D Upper Bound for Downstream Generalization Error

In this section, we present the proof of Theorem 3.1.
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Proof. Let the matrix of object representations be Z = [z1, . . . , zM ] ∈ RD×M corresponding to the
object training samples {(xi,yi)}Mi=1, and let the matrix of unknown labels be Y = [y1, . . . ,yM ]⊤ ∈
RM×R.

Recall that W = [w1, . . . ,wR]
⊤ ∈ RR×D in Equation 4 is the minimum norm solution of the

downstream predictor:

W = minimize
W′

||W′||F s.t. W′ ∈ argmin
Ŵ

1

M

M∑
i=1

||Ŵ · zi − yi||2. (11)

To solve for W, we first define the vectorization:

w = vec(W) =


w1

w2

...
wR

 ∈ RDR. (12)

With this we can express:
Wzi = (z⊤i ⊗ I)w = Z̃iw, (13)

where ⊗ is the Kronecker product, Z̃i = (z⊤i ⊗ I) ∈ RR×DR and IR ∈ RR×R is the identity matrix.
Then, we obtain our optimization objective

f(W) =

M∑
i=1

||W · zi − yi||2 =

M∑
i=1

||yi − Z̃iw||2. (14)

Since f(W) is convex, setting its derivative to zero obtains the following equation:

0 = ∇W

M∑
i=1

||yi − Z̃iw||2 =

M∑
i=1

2 · Z̃⊤
i (yi − Z̃iw) =

M∑
i=1

(Z̃⊤
i yi − Z̃⊤

i Z̃iw). (15)

From this equation we derive:

M∑
i=1

Z̃⊤
i yi =

M∑
i=1

Z̃⊤
i Z̃iw =⇒ Z̃⊤y = Z̃⊤Z̃w, (16)

where

y =


y1

y2

...
yM

 ∈ RMR and Z̃ =


Z̃1

Z̃2

...
Z̃M

 ∈ RMR×DR, (17)

and taking the pseudoinverse (Z̃⊤Z̃)†, we obtain the solution:

w = (Z̃⊤Z̃)†Z̃⊤y. (18)

Since Z̃ = (Z⊤ ⊗ IR) ∈ RMR×DR, we substitute this in to equation 18 and use properties of the
Kronecker product to obtain:

vec(W) = w = ((Z⊤ ⊗ IR)
⊤(Z⊤ ⊗ IR))

†(Z⊤ ⊗ IR)
⊤y

= ((Z⊤ ⊗ IR)
⊤(Z⊤ ⊗ IR))

†(Z⊤ ⊗ IR)
⊤y

= (ZZ⊤ ⊗ IR)
†(Z⊗ IR)y

= ((ZZ⊤)†Z⊗ IR)y

= vec(Y⊤Z⊤(ZZ⊤)†)

(19)

Therefore, denoting the unnormalized covariance as ΣZ = ZZ⊤, we have:

W = Y⊤Z⊤(ZZ⊤)† = Y⊤Z⊤(ΣZ)
†. (20)
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Substituting this into the downstream prediction error δZ = 1
M

∑M
i=1 ||W · zi − yi|| from equation

4, we have,

δZ =
1

M

M∑
i=1

||W · zi − yi||

=
1

M

M∑
i=1

√√√√ R∑
r=1

((W · zi)[r]− yi[r])2

≤

√√√√ 1

M

M∑
i=1

R∑
r=1

((W · zi)[r]− yi[r])2

=
1√
M
||WZ−Y⊤

S ||F

=
1√
M
||Y⊤Z⊤(ΣZ)

†Z−Y⊤
S ||F [From Eqn (20)]

=
1√
M
||Y⊤(Z⊤(ΣZ)

†Z− I)||F

=
1√
M
||(I− Z⊤(ΣZ)

†Z)Y||F ,

(21)

where I ∈ RM×M .

Defining the projection matrix PZ = I− Z⊤(ΣZ)
†Z, we arrive at our upper bound:

δZ ≤
1√
M
||(I− Z⊤(ΣZ)

†Z)Y||F

≤ 1√
M
||PZY||F

≤ ||PZY||F ≤ ||PZ||F ||Y||F .

(22)

Elaborating on section 3.2, we minimize δZ by minimizing the term ||PZ||F . Since M > D and Z is
a real matrix, ||PZ||F is minimized when the row rank of ΣZ is maximized [44, 3]. We note that the
rank of a diagonal matrix is equal to the number of non-zero eigenvalues, and that the eigenvalues of
a diagonal matrix is its diagonal entries. From this, we maximize the rank of ΣZ by maximizing the
values of its diagonal entries with a separation term Lsep while regularizing it to be a diagonal matrix
by minimizing its off-diagonal terms with an entanglement term Lent. In this work, we demonstrate
the benefits of these object-centric regularization terms as an alternative to reconstruction loss for
multi-object representation learning.

E Object Property Prediction based on Learned Object Representation

Additional Scores. In Table 7, we show the additional results of the object property prediction task
on the CLEVRTEX dataset.

Informativeness Scores. In Table 8, we show the detailed results of the object property prediction
task on Multi-dSprites and Tetrominoes-NM.

Disentanglement and Completeness Estimates. To further evaluate the quality of the obtained
object representations, we follow [34, 11] and estimate the disentanglement and completeness scores
[10]. Given K properties and D object representation dimensions, we use features learned by the
GBT to derive an importance matrix I of K rows and D columns, where every row denotes the
importance of each dimension of the input object representation in predicting the property. We use
this to compute the entropy of predictive importance of each dimension across all properties and
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Table 7: R2 scores for object property prediction on CLEVRTEX

CLEVRTEX

Method Position Shape

Slot Attention 47.5±19.6 30.6
EfficientMORL 21.8±2.0 18.5
GENESIS-V2 79.8±8.0 35.2

SLATE 62.0±8.0 30.5
SysBinder 38.2±3.1 29.6
BO-QSA 66.5±0.3 28.7
OC-Net 80.7±2.4 36.1

Table 8: Detailed R2 scores for object property prediction on simulated datasets

(a) Multi-dSprites

Method Red Green Blue X-coord Y-coord Shape

Slot Attention 62.06 68.44 86.19 96.73 96.95 38.20
EfficientMORL 84.13 81.79 93.53 95.90 95.77 61.67
GENESIS-V2 86.40 76.08 71.73 97.57 96.55 75.82

SLATE 86.85 88.17 87.60 87.47 93.63 31.74
SysBinder 73.87 72.54 74.42 71.73 66.89 33.33
BO-QSA 97.64 94.54 96.62 97.63 97.17 75.20
OC-Net 98.71 97.82 97.47 98.33 98.29 78.07

(b) Tetrominoes-NM
Method Red Green Blue X-coord Y-coord Shape

Slot Attention 85.00 80.83 93.54 99.15 98.32 36.25
EfficientMORL 91.45 95.20 97.91 98.35 97.38 68.54
GENESIS-V2 84.58 94.79 84.79 96.38 92.77 37.92

SLATE 81.24 86.50 88.79 89.13 90.13 10.5
SysBinder 97.30 98.43 97.98 75.88 79.71 19.94
BO-QSA 97.30 98.43 98.65 98.79 99.03 52.46
OC-Net 100.0 100.0 100.0 99.50 99.34 98.65

define the disentanglement value as the weighted sum:

DIS(I) =
D∑

d=1

wd(1− H(I[1, d], . . . , I[K, d])), (23)

where H(.) is the entropy and wd =
∑K

k=1 I[k,d]∑D
d=1

∑K
k=1 I[k,d]

is the weight of d. Conversely, we compute the
entropy of the rate that each property is captured by a dimension and define the completeness value
as:

COM(I) =

K∑
k=1

wk(1− H(I[k, 1], . . . , I[k,D])), (24)

where wk =
∑D

d=1 I[k,d]∑D
d=1

∑K
k=1 I[k,d]

.

We show the results in Table 9. We find that the object representations obtained by OC-Net achieve
both higher disentanglement and completeness than all baselines.
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Table 9: Disentanglement and completeness scores for object representations

Multi-dSprites Tetrominoes-NM

Method Disentanglement Completeness Disentanglement Completeness

Slot Attention 68.97 49.40 56.52 44.44
EfficientMORL 60.97 67.94 54.47 61.59
GENESIS-V2 71.59 64.70 39.58 54.13

SLATE 84.06 55.57 52.10 31.61
SysBinder 80.12 51.45 66.40 61.74
BO-QSA 90.05 77.01 69.47 59.89
OC-Net 93.99 86.36 99.22 77.00

F Additional Experiments

F.1 Additional Experiments on Quality of Discovered Objects

We further evaluate OC-Net against additional works that that explore image segmentation by
modelling a graph on top of hand-crafted features and learned features.

The Normalized Cut (Ncut) algorithm [43] performs unsupervised image segmentation by treating
image segmentation as a graph partitioning problem and uses a hand-crafted criterion to measure both
the total dissimilarity between the different groups as well as the total similarity within the groups in
order to determine the final segmentation groups.

MaskCut [47] was recently proposed to perform unsupervised image segmentation by leveraging on
a pre-trained model. MaskCut first extracts learned features of the input image by using the DINO
model, which was pre-trained on the ImageNet dataset using self-supervised learning techniques[7],
before applying the Ncut algorithm on the extracted features to determine the segmentation.

The mIoU results in Table 10 below show that OC-Net significantly outperforms all other graph-based
methods:

Table 10: mIoU scores for discovered foreground objects

Method Multi-dSprites Tetro-NM SVHN IDRiD CTEX CTEX-OOD

Felzenszwalb 95.0±0.0 96.9±0.0 39.8±0.0 15.4±0.0 26.8±0.0 23.4±0.0
Ncut 58.9±0.0 57.4±0.0 32.2±0.0 4.3±0.0 22.9±0.0 18.6±0.0

MaskCut 47.1±0.0 69.3±0.0 31.7±0.0 7.8±0.0 33.5±0.0 34.1±0.0
OC-Net 99.1±0.0 100.0±0.0 49.9±0.1 31.2±0.2 37.5±0.7 35.0±0.6

F.2 Experiments on Model Speed

We perform additional experiments to evaluate the speed of OC-Net. Table 11 shows the average
time per iteration and the total training time of the various methods on the Multi-dSprites dataset. We
train all models on an 8X Tesla V100 (32GB) GPU server.

G Additional Visualizations

G.1 Object Discovery

We visualize the results of additional samples from simulated datasets in Figure 6, real-world datasets
in Figure 7, complex texture datasets in Figure 8 and common object datasets in Figure 9. For the
common object datasets, we perform additional comparison with SLASH [27].
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Table 11: Processing speed and training time across various methods on Multi-dSprites

Multi-dSprites

Method Time / Iteration (ms) Training Time (hours)

Slot Attention 75 5.26
EfficientMORL 139 11.60
GENESIS-V2 132 11.07

SLATE 385 21.4
SysBinder 235 13.06
BO-QSA 66 4.63
OC-Net 137 0.17

(a) Multi-dSprites

(b) Tetrominoes-NM

Figure 6: Supplementary visualization of discovered objects on simulated datasets.
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(a) SVHN

(b) IDRiD

Figure 7: Supplementary visualization of discovered objects on real-world datasets.

(a) CLEVRTEX

(b) CLEVRTEX-OOD

Figure 8: Supplementary visualization of discovered objects on complex texture datasets.
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(a) Flowers

(b) Birds

(c) COCO

Figure 9: Supplementary visualization of discovered objects on common object datasets.
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G.2 Model Generalizability

We visualize the results of training on Multi-dSprites and testing on Tetrominoes-NM in Figure 10,
IDRiD in Figure 11, SVHN in Figure 12, CLEVRTEX in Figure 13 and CLEVRTEX-OOD in Figure
14.

Figure 10: Visualization of model generalizability on Tetrominoes-NM after training on Multi-
dSprites.

Figure 11: Visualization of model generalizability on IDRiD after training on Multi-dSprites.

Figure 12: Visualization of model generalizability on SVHN after training on Multi-dSprites.
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Figure 13: Visualization of model generalizability on CLEVRTEX after training on Multi-dSprites.

Figure 14: Visualization of model generalizability on CLEVRTEX-OOD after training on Multi-
dSprites.

H Additional Discussions and Limitations

H.1 Preservation of Pixel Information for Fine-Grained Object Discovery

OC-Net uses a single 1× 1 convolutional layer to obtain pixel embeddings which are individually
refined and clustered before the groups of pixel embeddings are processed into object representations.
In contrast, existing state-of-the-art methods such as Slot Attention, GENESIS-V2 and Efficient-
MORL all use encoder networks with multiple larger sized 3 × 3 or 5 × 5 convolutions. Larger
sized convolutions are very popular in general computer vision where they are typically used for
edge detection especially in the early layers of a deep neural network. For fine-grained segmentation
without labels, however, we show the superiority of using paths between pixels to perform both
edge/border detection and also segmentation of image components whose borders stretch outside of
the image, such as backgrounds. Considering that almost all state-of-the-art methods in multi-object
representation learning use larger-sized convolutions as the default, we hypothesize that further
exploration of these insights will prove useful to the advancement of this field.

H.2 Generative vs Latent-Space Regularization Approach for Object-Centric Learning

In contrast to the majority of existing methods, in this work we consider a regularization-based
approach and focus on the object discovery process instead of optimizing for component-based image
reconstruction.

Optimizing for reconstruction demands much more training samples and runtime to ensure that
suitable distributions are learned for precise reconstruction. If we assume the usual input image of
size H×W and having 3 channels for Red, Green and Blue, this amounts to a reconstruction objective
with at least H ×W × 3× 255 possible permutations. When H = W = 64, this amounts to more
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than 3 million possible outputs. Early works suggested that component-based reconstruction offered
an efficient alternative to full-scene image generation if a common repeating structure across samples
could be exploited [5]. Inspired by this, existing state-of-the-art works such as EfficientMORL and
GENESIS-V2 attempted to handle the large generation space via a combination of component-based
reconstruction and constraints such as defining a learnable Gaussian distribution for generated pixels,
and use the Generalized ELBO with Constrained Optimization (GECO) objective [41] to assist in
stable convergence for multiple initialization seeds, since GECO reformulates the ELBO to allow
the Kullback–Leibler (KL) divergence to grow large so that a predefined reconstruction threshold
can first be attained. While these tactics are often effective in stabilizing the training of generative
networks, they present fundamental limitations for the task of object discovery since the optimization
objective primarily aims to reconstruct the input, which may often cause the components that make
up the reconstructed image to be simply the most efficient image partitioning instead of semantically
meaningful segments [35, 9].

To address these fundamental limitations, we instead proposed a regularization-based approach where
feature connectivity guides the discovery of objects and two regularization terms that refine the
representation space of the discovered objects. Such regularization-based techniques have been
explored in the self-supervised learning domain [3]. We show that by focusing on the quality of
objects discovered and their respective representations, such a regularization-based approach can
better handle the diversity in real-world scenes in the task of object discovery.

H.3 Limitation: Memorization of Object Shapes

The original Tetrominoes dataset [23] includes samples that require the knowledge of object shapes
in order to accurately separate the objects. This reveals a key limitation to our approach especially in
cases where the task requires explicit memorization of objects, such as by requesting for a precise
generation of an object that was seen previously. One straightforward solution could be to extend
OC-Net with a dictionary of object prototypes in order to bridge this gap [51]. However, as discussed
in [25] and as demonstrated in this work, demanding the memorization of object shapes in a model
could be a barrier to generalizable scene decompositions outside of the training distribution, and
hence in this work we decided to focus on generalizable object discovery. Further, state-of-the-art
methods follow an implicit memorization approach by attempting to learn patterns within the data
distribution during training, which proves to be a fundamental limitation when facing the diversity of
image distributions in the real-world. Therefore, there remains fundamental challenges related to the
successful design of a visual memory module which can handle both the complexity of real-world
images and the complex part-whole hierarchy of objects, which we leave for future work.
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I Ethics Statement

Our analysis, which is focused on publicly available multi-object simulated, real-world and complex
texture data has no immediate impact on general society. To the best of our knowledge, none of the
datasets used in this study contain personally identifiable information or offensive content. As with
any model that performs scene understanding, applications with potential negative societal impact
such as in the area of surveillance cannot be fully excluded upon future research in this area. At this
point in time, however, there remains challenging open questions that need to be reliably addressed
before enabling the deployment of OC-Net and its counterparts to real-world settings, and hence a
direct application of this method for malicious purposes is currently unlikely.

J Third-Party Assets

OC-Net is implemented using PyTorch [39].In addition to various open-sourced Python packages,
we make use of the following third-party assets:

• Locatello et al. [35] (Apache-2.0 license): Implementation of Slot Attention1,
• Emami et al. [11] (MIT license): Implementation of EfficientMORL2,
• Engelcke et al. [13] (GPL-3.0 license): Implementation of GENESIS-V23,
• Singh et al. [45] (MIT license): Implementation of SLATE4,
• Singh et al. [46] (MIT license): Implementation of SysBinder5.
• Jia et al. [22]: Implementation of BO-QSA6.

1https://github.com/google-research/google-research/tree/master/slot_attention
2https://github.com/pemami4911/EfficientMORL
3https://github.com/applied-ai-lab/genesis
4https://github.com/singhgautam/slate
5https://github.com/singhgautam/sysbinder
6https://github.com/YuLiu-LY/BO-QSA
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