
A Additional Implementation Details

A.1 Object Discovery Algorithm

We further describe the details of the object discovery process (see Algorithm 1). The input is the set
of pixel embeddings for an image. We apply LayerNorm [2] to normalize all pixel embeddings and
add positional encodings to the pixel embeddings (Line 3). We use Dijkstra’s algorithm to compute
the shortest path distance of a sampled pixel embedding to all other embeddings as follows. We
uniformly sample an unprocessed pixel embedding pi 2 U that has not been assigned to an object
(Line 6). We initialize the distance from pi to itself as zero and to all the other pixels as infinity (Lines
7-10). Then we select an unvisited pixel embedding pm that has the minimum distance to pi (Line
13). For each neighbour of the pixel corresponding to pm, let pk be its embedding (Lines 14-15).
Here, we consider the neighbours of a pixel to be the 8 surrounding pixels and the distance between a
pair of neighbouring pixels is the similarity measure between their corresponding embeddings given
by:

sim(pm,pk) =

vuut
DX

d=1

(pm[d]� pk[d])2, (10)

where pm[d] denotes the dth value of the embedding pm.

We update the shortest path distance between pi and pk if the distance is shorter through pm (Lines
16-18). We mark pm as visited (Line 20) and consider pm to be part of the same object as pi (Lines
21-23). We repeat the process for the next unvisited pixel embedding until all pixels have been visited
(Line 24). The discovered object Oc is added to the set of objects found thus far O (Line 25). The
entire process is repeated till all pixel embeddings have been assigned to some object (line 26).

Algorithm 1 Object Discovery Process.

1: Input: Set of pixel embeddings P = {p1, . . . ,pN}

2: Output: Set of objects O = {O1, . . . , OM}

3: P LayerNorm(P) + Position Enc.
4: U P; O ;; c 1 // Initialization
5: repeat
6: pi UniformSampling(U)
7: dist[i,i] 0
8: for j = 1 to N , j 6= i do
9: dist[i, j] 1

10: end for
11: Oc ;; V ; // Initialization
12: repeat
13: let pm 2 P � V be the pixel embedding with minimum distance to pi

14: for each neighbor of the pixel corresponding to the embedding pm do
15: let pk of be the embedding of the neighbour
16: if dist[i, k] > dist[i,m] + sim(pm,pk) then
17: dist[i, k] = dist[i,m] + sim(pm,pk)
18: end if
19: end for
20: V V [{pm}

21: if dist[i,m] < ✏ then
22: Oc Oc [{pm}; U U � {pm}

23: end if
24: until |V| == N
25: O O [{Oc}; c c+ 1
26: until |U| == ;

A.2 Positional Encodings

We add fixed positional encondings to the last two pixel embedding dimensions, where the encondings
have values from 0 to 1 according to the pixel embedding’s relative location to the top and left of the

14

image. The top-left pixel has positional encondings of values (0, 0), while the bottom-right pixel has
values (1, 1). All other postional encondings have uniformly spaced values between [0, 1] according
to the height and width of the image.

A.3 Clustering Threshold

We carried out initial experiments to choose the clustering threshold. Figure 4 shows the mIoU scores
on Multi-dSprites, SVHN and CLEVRTEX when we vary the negative exponent of the threshold
value. We see that the value can range from 20% (✏ = 1.6 to ✏ = 2.0) to 80% (about ✏ = 0.2) without
affecting the performance of OC-Net. As such, we set the threshold to ✏ = 0.7 so that two pixels will
belong to the same object if their normalized feature similarity is more than 50%.

(a) Multi-dSprites (b) SVHN (c) CLEVRTEX

Figure 4: mIoU scores with different values of clustering threshold.

A.4 Mask Information Extraction

We define the object representation as the sum of the extracted mask information and the average of
the pixel embeddings in Oj . We extract mask information by transforming the object mask mj by a
mask transformation matrix A. This extraction is performed in a positionally-invariant manner by
initializing the rows of A with a set of unit vectors which point from the object center to the border
pixels. After initialization, A is refined via gradient descent.

Based on initial experiments shown in Table 6, when compared to random initialization (OC-Net
w/ random A init), we see that initializing A with unit vectors enhances the learned representation
especially in terms of object shape information.

Table 6: R2 scores for object property prediction on simulated datasets

Multi-dSprites Tetrominoes-NM

Method Color Position Shape Color Position Shape

OC-Net w/ random A init 97.7±0.8 98.0±0.1 77.1±0.0 100.0±0.0 99.1±0.2 89.6±0.0
OC-Net 98.0±0.6 98.3±0.1 78.1±0.0 100.0±0.0 99.4±0.1 98.7±0.0

A.5 Computational Resources

An 8X Tesla V100 (32GB) GPU server is used to train OC-Net and all comparison baselines for our
experiments.

B Datasets

1. Multi-dSprites [23] (Apache-2.0 License): This simulated dataset consists of sprites-based
images of 64⇥ 64 size with ground truth segmentation masks and sprite properties available
at https://github.com/deepmind/multi_object_datasets. Each image consists of multiple oval,
heart or square-shaped sprites with some occlusions. We use the variant where 2-5 randomly
colored sprites appear on a randomly sampled grayscale background.

15

https://github.com/deepmind/multi_object_datasets

2. Tetrominoes-NM [23] (Apache-2.0 License): This dataset is a subset of the origi-
nal simulated Tetrominoes dataset where each 35 ⇥ 35 image consists of 3 Tetris-
like shapes sampled from 6 colors and 17 shapes. We download the data from
https://github.com/deepmind/multi_object_datasets. Ground truth segmentation masks and
properties are provided. We filter out images whose ground truth segmentation requires
knowledge of the object shapes for testing.

Figure 5: Images in Tetrominoes dataset that require knowledge of object shapes for segmentation

3. Street View House Numbers (SVHN) [36] (CC0 Public Domain): This real-world
dataset consists of house numbers in Google Street View images with character level
ground truth bounding boxes. We use the dataset labeled as ‘extra’ [36], available at
http://ufldl.stanford.edu/housenumbers. All original images and their ground truths are
resized and cropped to size 64 ⇥ 64. The dimensions of the raw images in this set vary,
hence we resize all heights of the image to 64 pixels first before cropping the width to 64.
We modify the ground truth bounding boxes according to the same transformations. Since
bounding boxes are provided as ground truths, we expand the object masks predicted by
each method into their best-fit bounding boxes according to the masks’ convex hull before
computing the ARI, mDice and mIoU scores.

4. Indian Diabetic Retinopathy Image Segmentation Dataset (IDRiD) [40] (CC-BY 4.0): This
is a publicly available real-world dataset with 81 retinal images where each image retina
image has multiple red lesions (microaneurysms and hemorrhages) or yellow lesions (hard
exudates and soft exudates). We obtain the 81 images with fine-grained segmentation
ground truths from https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-
dataset-idrid. Each image has a manually labelled segmentation mask of the lesions and
also the optic disc. We filter out the red lesions and resize all raw images and their ground
truths to size 64⇥ 64. This dataset contains retina images which have more severe diabetic
retinopathy, hence the number of possible lesions to be detected is large. We filter out the
relatively smaller red lesions and focus the object discovery task on the optic disc and yellow
lesions. We cluster the ground truth pixel masks into connected regions as the different
objects to be discovered by the models.

5. CLEVRTEX [26] (CC-BY 4.0): This dataset features scenes with diverse shapes, textures
and photo-mapped materials, created using physically based rendering techniques. The
data is available at https://www.robots.ox.ac.uk/ vgg/data/clevrtex/. Each image contains
3-10 objects of 4 possible shapes randomly arranged on a background. The objects and
backgrounds can take materials from a total of 60 possible materials. The scenes contain
realistic reflections, highlights, shadows and lighting effects.

6. CLEVRTEX-OOD [26] (CC-BY 4.0): For further evaluation, we use the CLEVRTEX-OOD
(out-of-distribution) test set containing 10K images with 25 new (unseen) materials and 4
new shapes (cone, torus, icosahedron, and a teapot) that are not part of CLEVRTEX. The
data is available at https://www.robots.ox.ac.uk/ vgg/data/clevrtex/.

7. Flowers [37] (CC0 Public Domain): The dataset has 17 flower classes (e.g. buttercup,
daffodil, iris, pansy), with photographs exhibiting typical (large) variations in viewpoint,
scale, illumination and background. Segmenting such photographs is challenging due
to both the variety of colours and the variety of shapes. We download the data from
https://www.robots.ox.ac.uk/ vgg/data/flowers/.

8. Birds [48] (CC0 Public Domain): The Caltech-UCSD Birds-200-2011 (CUB-200-2011)
dataset is the most widely-used dataset for fine-grained visual categorization task. It
contains 11,788 images of 200 subcategories belonging to birds. Each image has detailed

16

https://github.com/deepmind/multi_object_datasets
http://ufldl.stanford.edu/housenumbers/
https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid
https://ieee-dataport.org/open-access/indian-diabetic-retinopathy-image-dataset-idrid
https://www.robots.ox.ac.uk/~vgg/data/clevrtex/
https://www.robots.ox.ac.uk/~vgg/data/clevrtex/
https://www.robots.ox.ac.uk/~vgg/data/flowers/

annotations: 1 subcategory label, 15 part locations, 312 binary attributes and 1 bounding
box http://www.vision.caltech.edu/datasets/cub_200_2011/.

9. COCO [32] (CC-BY 4.0): This is the Microsoft Common Objects in Context
dataset used for large-scale object segmentation. We use the variant that focuses on
multi-object segmentation as proposed by [50], which we download from this link
https://www.dropbox.com/sh/u1p1d6hysjxqauy/AACgEh0K5ANipuIeDnmaC5mQa?dl=0

C Baseline Models

1. SLIC [1] is a clustering algorithm that clusters pixels into superpixels by using an efficient
adaptation of the k-means algorithm. We use the python implementation and for each dataset,
we perform a grid search for the optimal hyperparameters which produce the best results.
For example, for the Tetrominoes dataset, we set the optimal clustering threshold value as
10 and the initial number of clusters as 12.

2. Felzenszwalb’s Algorithm [11] is a graph-based segmentation algorithm that groups pixels
together through a hand-crafted boundary detection procedure. We use the python imple-
mentation and for each dataset, we perform a grid search for the optimal hyperparameters
which produce the best results. For example, for the Tetrominoes dataset, we set the optimal
clustering threshold 1000, the minimum cluster size as 10, and the image smoothening value
as 0.1.

3. Slot Attention [35] initializes a set of random object representations called slots which are
iteratively refined by slot-normalized cross-attention on the outputs of a simple convolutional
neural network (CNN). The slots are then decoded individually and combined to reconstruct
the input. All Slot Attention baselines are trained with 500,000 iterations. We use the default
training hyperparameters from the official reference implementation.

4. EfficientMORL [11] uses a hierarchical variational auto-encoder to extract disentangled
object representations and refine the representations by a lightweight network before re-
constructing the input. For all real-world and complex textures datasets, we fine-tune
the per-pixel GECO reconstruction target to -2.206 which significantly outperformed the
suggested settings in both the original paper and CLEVRTEX experiments[26].

5. GENESIS-V2 [13] obtains pixel embeddings through a U-Net which are then clustered
using a stochastic stick-breaking process. The clusters are then decoded to reconstruct the
input. We similarly fine-tune the model to use the output standard deviation of 0.7 and the
equivalent per-pixel GECO reconstruction target as EfficientMORL and achieved much
higher results than those reported in the CLEVRTEX paper [26].

6. SLATE [45] replaces the decoder in Slot Attention with a more expressive transformer-based
autoregressive decoder conditioned on the slots. The original model uses patch sizes of 4⇥4
pixels as inputs and obtains poor scores for the simulated Multi-dSprites and Tetrominoes
datasets which require fine-grained understanding of each pixel. Hence, we extend the
model to have 1⇥ 1 input for these datasets.

7. SysBinder [46] enhances the slots of Slot Attention with factor representations called block-
slots which provides within-slot disentanglement. Similar to SLATE, the original model
uses patch sizes of 4⇥ 4 pixels as inputs and obtains poor scores for the simulated datasets.
Hence, we extend the model to have 1⇥ 1 input for these datasets.

8. BO-QSA [22] initializes Slot Attention’s object representations as learnable embeddings
instead of sampling from a learnable Gaussian distribution and supplements the training
with bi-level optimization. All BO-QSA baselines are trained with 500,000 iterations. We
use the default training hyperparameters from the official reference implementation. We
train all datasets with both the mixture-based decoder and autoregressive transformer-based
decoder and report the highest scores.

D Upper Bound for Downstream Generalization Error

In this section, we present the proof of Theorem 3.1.

17

http://www.vision.caltech.edu/datasets/cub_200_2011/
https://www.dropbox.com/sh/u1p1d6hysjxqauy/AACgEh0K5ANipuIeDnmaC5mQa?dl=0

Proof. Let the matrix of object representations be Z = [z1, . . . , zM] 2 RD⇥M corresponding to the
object training samples {(xi,yi)}Mi=1, and let the matrix of unknown labels be Y = [y1, . . . ,yM]> 2
RM⇥R.

Recall that W = [w1, . . . ,wR]> 2 RR⇥D in Equation 4 is the minimum norm solution of the
downstream predictor:

W = minimize
W0

||W0
||F s.t. W0

2 argmin
Ŵ

1

M

MX

i=1

||Ŵ · zi � yi||
2. (11)

To solve for W, we first define the vectorization:

w = vec(W) =

2

664

w1

w2
...

wR

3

775 2 RDR. (12)

With this we can express:
Wzi = (z>

i
⌦ I)w = Z̃iw, (13)

where ⌦ is the Kronecker product, Z̃i = (z>
i
⌦ I) 2 RR⇥DR and IR 2 RR⇥R is the identity matrix.

Then, we obtain our optimization objective

f(W) =
MX

i=1

||W · zi � yi||
2 =

MX

i=1

||yi � Z̃iw||
2. (14)

Since f(W) is convex, setting its derivative to zero obtains the following equation:

0 = rW

MX

i=1

||yi � Z̃iw||
2 =

MX

i=1

2 · Z̃>
i
(yi � Z̃iw) =

MX

i=1

(Z̃>
i
yi � Z̃>

i
Z̃iw). (15)

From this equation we derive:
MX

i=1

Z̃>
i
yi =

MX

i=1

Z̃>
i
Z̃iw =) Z̃>y = Z̃>Z̃w, (16)

where

y =

2

664

y1

y2
...

yM

3

775 2 RMR and Z̃ =

2

6664

Z̃1

Z̃2
...

Z̃M

3

7775
2 RMR⇥DR, (17)

and taking the pseudoinverse (Z̃>Z̃)†, we obtain the solution:

w = (Z̃>Z̃)†Z̃>y. (18)

Since Z̃ = (Z>
⌦ IR) 2 RMR⇥DR, we substitute this in to equation 18 and use properties of the

Kronecker product to obtain:

vec(W) = w = ((Z>
⌦ IR)

>(Z>
⌦ IR))

†(Z>
⌦ IR)

>y

= ((Z>
⌦ IR)

>(Z>
⌦ IR))

†(Z>
⌦ IR)

>y

= (ZZ>
⌦ IR)

†(Z⌦ IR)y

= ((ZZ>)†Z⌦ IR)y

= vec(Y>Z>(ZZ>)†)

(19)

Therefore, denoting the unnormalized covariance as ⌃Z = ZZ>, we have:

W = Y>Z>(ZZ>)† = Y>Z>(⌃Z)
†. (20)

18

Substituting this into the downstream prediction error �Z = 1
M

P
M

i=1 ||W · zi � yi|| from equation
4, we have,

�Z =
1

M

MX

i=1

||W · zi � yi||

=
1

M

MX

i=1

vuut
RX

r=1

((W · zi)[r]� yi[r])2



vuut 1

M

MX

i=1

RX

r=1

((W · zi)[r]� yi[r])2

=
1
p
M

||WZ�Y>
S ||F

=
1
p
M

||Y>Z>(⌃Z)
†Z�Y>

S ||F [From Eqn (20)]

=
1
p
M

||Y>(Z>(⌃Z)
†Z� I)||F

=
1
p
M

||(I� Z>(⌃Z)
†Z)Y||F ,

(21)

where I 2 RM⇥M .

Defining the projection matrix PZ = I� Z>(⌃Z)†Z, we arrive at our upper bound:

�Z 
1
p
M

||(I� Z>(⌃Z)
†Z)Y||F


1
p
M

||PZY||F

 ||PZY||F  ||PZ||F ||Y||F .

(22)

Elaborating on section 3.2, we minimize �Z by minimizing the term ||PZ||F . Since M > D and Z is
a real matrix, ||PZ||F is minimized when the row rank of ⌃Z is maximized [44, 3]. We note that the
rank of a diagonal matrix is equal to the number of non-zero eigenvalues, and that the eigenvalues of
a diagonal matrix is its diagonal entries. From this, we maximize the rank of ⌃Z by maximizing the
values of its diagonal entries with a separation term Lsep while regularizing it to be a diagonal matrix
by minimizing its off-diagonal terms with an entanglement term Lent. In this work, we demonstrate
the benefits of these object-centric regularization terms as an alternative to reconstruction loss for
multi-object representation learning.

E Object Property Prediction based on Learned Object Representation

Additional Scores. In Table 7, we show the additional results of the object property prediction task
on the CLEVRTEX dataset.

Informativeness Scores. In Table 8, we show the detailed results of the object property prediction
task on Multi-dSprites and Tetrominoes-NM.

Disentanglement and Completeness Estimates. To further evaluate the quality of the obtained
object representations, we follow [34, 11] and estimate the disentanglement and completeness scores
[10]. Given K properties and D object representation dimensions, we use features learned by the
GBT to derive an importance matrix I of K rows and D columns, where every row denotes the
importance of each dimension of the input object representation in predicting the property. We use
this to compute the entropy of predictive importance of each dimension across all properties and

19

Table 7: R2 scores for object property prediction on CLEVRTEX

CLEVRTEX

Method Position Shape

Slot Attention 47.5±19.6 30.6
EfficientMORL 21.8±2.0 18.5
GENESIS-V2 79.8±8.0 35.2

SLATE 62.0±8.0 30.5
SysBinder 38.2±3.1 29.6
BO-QSA 66.5±0.3 28.7
OC-Net 80.7±2.4 36.1

Table 8: Detailed R2 scores for object property prediction on simulated datasets

(a) Multi-dSprites
Method Red Green Blue X-coord Y-coord Shape

Slot Attention 62.06 68.44 86.19 96.73 96.95 38.20
EfficientMORL 84.13 81.79 93.53 95.90 95.77 61.67
GENESIS-V2 86.40 76.08 71.73 97.57 96.55 75.82

SLATE 86.85 88.17 87.60 87.47 93.63 31.74
SysBinder 73.87 72.54 74.42 71.73 66.89 33.33
BO-QSA 97.64 94.54 96.62 97.63 97.17 75.20
OC-Net 98.71 97.82 97.47 98.33 98.29 78.07

(b) Tetrominoes-NM
Method Red Green Blue X-coord Y-coord Shape

Slot Attention 85.00 80.83 93.54 99.15 98.32 36.25
EfficientMORL 91.45 95.20 97.91 98.35 97.38 68.54
GENESIS-V2 84.58 94.79 84.79 96.38 92.77 37.92

SLATE 81.24 86.50 88.79 89.13 90.13 10.5
SysBinder 97.30 98.43 97.98 75.88 79.71 19.94
BO-QSA 97.30 98.43 98.65 98.79 99.03 52.46
OC-Net 100.0 100.0 100.0 99.50 99.34 98.65

define the disentanglement value as the weighted sum:

DIS(I) =
DX

d=1

wd(1� H(I[1, d], . . . , I[K, d])), (23)

where H(.) is the entropy and wd =
PK

k=1 I[k,d]PD
d=1

PK
k=1 I[k,d]

is the weight of d. Conversely, we compute the
entropy of the rate that each property is captured by a dimension and define the completeness value
as:

COM(I) =
KX

k=1

wk(1� H(I[k, 1], . . . , I[k,D])), (24)

where wk =
PD

d=1 I[k,d]PD
d=1

PK
k=1 I[k,d]

.

We show the results in Table 9. We find that the object representations obtained by OC-Net achieve
both higher disentanglement and completeness than all baselines.

20

Table 9: Disentanglement and completeness scores for object representations

Multi-dSprites Tetrominoes-NM

Method Disentanglement Completeness Disentanglement Completeness

Slot Attention 68.97 49.40 56.52 44.44
EfficientMORL 60.97 67.94 54.47 61.59
GENESIS-V2 71.59 64.70 39.58 54.13

SLATE 84.06 55.57 52.10 31.61
SysBinder 80.12 51.45 66.40 61.74
BO-QSA 90.05 77.01 69.47 59.89
OC-Net 93.99 86.36 99.22 77.00

F Additional Experiments

F.1 Additional Experiments on Quality of Discovered Objects

We further evaluate OC-Net against additional works that that explore image segmentation by
modelling a graph on top of hand-crafted features and learned features.

The Normalized Cut (Ncut) algorithm [43] performs unsupervised image segmentation by treating
image segmentation as a graph partitioning problem and uses a hand-crafted criterion to measure both
the total dissimilarity between the different groups as well as the total similarity within the groups in
order to determine the final segmentation groups.

MaskCut [47] was recently proposed to perform unsupervised image segmentation by leveraging on
a pre-trained model. MaskCut first extracts learned features of the input image by using the DINO
model, which was pre-trained on the ImageNet dataset using self-supervised learning techniques[7],
before applying the Ncut algorithm on the extracted features to determine the segmentation.

The mIoU results in Table 10 below show that OC-Net significantly outperforms all other graph-based
methods:

Table 10: mIoU scores for discovered foreground objects

Method Multi-dSprites Tetro-NM SVHN IDRiD CTEX CTEX-OOD

Felzenszwalb 95.0±0.0 96.9±0.0 39.8±0.0 15.4±0.0 26.8±0.0 23.4±0.0
Ncut 58.9±0.0 57.4±0.0 32.2±0.0 4.3±0.0 22.9±0.0 18.6±0.0

MaskCut 47.1±0.0 69.3±0.0 31.7±0.0 7.8±0.0 33.5±0.0 34.1±0.0
OC-Net 99.1±0.0 100.0±0.0 49.9±0.1 31.2±0.2 37.5±0.7 35.0±0.6

F.2 Experiments on Model Speed

We perform additional experiments to evaluate the speed of OC-Net. Table 11 shows the average
time per iteration and the total training time of the various methods on the Multi-dSprites dataset. We
train all models on an 8X Tesla V100 (32GB) GPU server.

G Additional Visualizations

G.1 Object Discovery

We visualize the results of additional samples from simulated datasets in Figure 6, real-world datasets
in Figure 7, complex texture datasets in Figure 8 and common object datasets in Figure 9. For the
common object datasets, we perform additional comparison with SLASH [27].

21

Table 11: Processing speed and training time across various methods on Multi-dSprites

Multi-dSprites

Method Time / Iteration (ms) Training Time (hours)

Slot Attention 75 5.26
EfficientMORL 139 11.60
GENESIS-V2 132 11.07

SLATE 385 21.4
SysBinder 235 13.06
BO-QSA 66 4.63
OC-Net 137 0.17

(a) Multi-dSprites

(b) Tetrominoes-NM

Figure 6: Supplementary visualization of discovered objects on simulated datasets.

22

(a) SVHN

(b) IDRiD

Figure 7: Supplementary visualization of discovered objects on real-world datasets.

(a) CLEVRTEX

(b) CLEVRTEX-OOD

Figure 8: Supplementary visualization of discovered objects on complex texture datasets.

23

(a) Flowers

(b) Birds

(c) COCO

Figure 9: Supplementary visualization of discovered objects on common object datasets.

24

G.2 Model Generalizability

We visualize the results of training on Multi-dSprites and testing on Tetrominoes-NM in Figure 10,
IDRiD in Figure 11, SVHN in Figure 12, CLEVRTEX in Figure 13 and CLEVRTEX-OOD in Figure
14.

Figure 10: Visualization of model generalizability on Tetrominoes-NM after training on Multi-
dSprites.

Figure 11: Visualization of model generalizability on IDRiD after training on Multi-dSprites.

Figure 12: Visualization of model generalizability on SVHN after training on Multi-dSprites.

25

Figure 13: Visualization of model generalizability on CLEVRTEX after training on Multi-dSprites.

Figure 14: Visualization of model generalizability on CLEVRTEX-OOD after training on Multi-
dSprites.

H Additional Discussions and Limitations

H.1 Preservation of Pixel Information for Fine-Grained Object Discovery

OC-Net uses a single 1⇥ 1 convolutional layer to obtain pixel embeddings which are individually
refined and clustered before the groups of pixel embeddings are processed into object representations.
In contrast, existing state-of-the-art methods such as Slot Attention, GENESIS-V2 and Efficient-
MORL all use encoder networks with multiple larger sized 3 ⇥ 3 or 5 ⇥ 5 convolutions. Larger
sized convolutions are very popular in general computer vision where they are typically used for
edge detection especially in the early layers of a deep neural network. For fine-grained segmentation
without labels, however, we show the superiority of using paths between pixels to perform both
edge/border detection and also segmentation of image components whose borders stretch outside of
the image, such as backgrounds. Considering that almost all state-of-the-art methods in multi-object
representation learning use larger-sized convolutions as the default, we hypothesize that further
exploration of these insights will prove useful to the advancement of this field.

H.2 Generative vs Latent-Space Regularization Approach for Object-Centric Learning

In contrast to the majority of existing methods, in this work we consider a regularization-based
approach and focus on the object discovery process instead of optimizing for component-based image
reconstruction.

Optimizing for reconstruction demands much more training samples and runtime to ensure that
suitable distributions are learned for precise reconstruction. If we assume the usual input image of
size H⇥W and having 3 channels for Red, Green and Blue, this amounts to a reconstruction objective
with at least H ⇥W ⇥ 3⇥ 255 possible permutations. When H = W = 64, this amounts to more

26

than 3 million possible outputs. Early works suggested that component-based reconstruction offered
an efficient alternative to full-scene image generation if a common repeating structure across samples
could be exploited [5]. Inspired by this, existing state-of-the-art works such as EfficientMORL and
GENESIS-V2 attempted to handle the large generation space via a combination of component-based
reconstruction and constraints such as defining a learnable Gaussian distribution for generated pixels,
and use the Generalized ELBO with Constrained Optimization (GECO) objective [41] to assist in
stable convergence for multiple initialization seeds, since GECO reformulates the ELBO to allow
the Kullback–Leibler (KL) divergence to grow large so that a predefined reconstruction threshold
can first be attained. While these tactics are often effective in stabilizing the training of generative
networks, they present fundamental limitations for the task of object discovery since the optimization
objective primarily aims to reconstruct the input, which may often cause the components that make
up the reconstructed image to be simply the most efficient image partitioning instead of semantically
meaningful segments [35, 9].

To address these fundamental limitations, we instead proposed a regularization-based approach where
feature connectivity guides the discovery of objects and two regularization terms that refine the
representation space of the discovered objects. Such regularization-based techniques have been
explored in the self-supervised learning domain [3]. We show that by focusing on the quality of
objects discovered and their respective representations, such a regularization-based approach can
better handle the diversity in real-world scenes in the task of object discovery.

H.3 Limitation: Memorization of Object Shapes

The original Tetrominoes dataset [23] includes samples that require the knowledge of object shapes
in order to accurately separate the objects. This reveals a key limitation to our approach especially in
cases where the task requires explicit memorization of objects, such as by requesting for a precise
generation of an object that was seen previously. One straightforward solution could be to extend
OC-Net with a dictionary of object prototypes in order to bridge this gap [51]. However, as discussed
in [25] and as demonstrated in this work, demanding the memorization of object shapes in a model
could be a barrier to generalizable scene decompositions outside of the training distribution, and
hence in this work we decided to focus on generalizable object discovery. Further, state-of-the-art
methods follow an implicit memorization approach by attempting to learn patterns within the data
distribution during training, which proves to be a fundamental limitation when facing the diversity of
image distributions in the real-world. Therefore, there remains fundamental challenges related to the
successful design of a visual memory module which can handle both the complexity of real-world
images and the complex part-whole hierarchy of objects, which we leave for future work.

27

I Ethics Statement

Our analysis, which is focused on publicly available multi-object simulated, real-world and complex
texture data has no immediate impact on general society. To the best of our knowledge, none of the
datasets used in this study contain personally identifiable information or offensive content. As with
any model that performs scene understanding, applications with potential negative societal impact
such as in the area of surveillance cannot be fully excluded upon future research in this area. At this
point in time, however, there remains challenging open questions that need to be reliably addressed
before enabling the deployment of OC-Net and its counterparts to real-world settings, and hence a
direct application of this method for malicious purposes is currently unlikely.

J Third-Party Assets

OC-Net is implemented using PyTorch [39].In addition to various open-sourced Python packages,
we make use of the following third-party assets:

• Locatello et al. [35] (Apache-2.0 license): Implementation of Slot Attention1,
• Emami et al. [11] (MIT license): Implementation of EfficientMORL2,
• Engelcke et al. [13] (GPL-3.0 license): Implementation of GENESIS-V23,
• Singh et al. [45] (MIT license): Implementation of SLATE4,
• Singh et al. [46] (MIT license): Implementation of SysBinder5.
• Jia et al. [22]: Implementation of BO-QSA6.

1https://github.com/google-research/google-research/tree/master/slot_attention
2https://github.com/pemami4911/EfficientMORL
3https://github.com/applied-ai-lab/genesis
4https://github.com/singhgautam/slate
5https://github.com/singhgautam/sysbinder
6https://github.com/YuLiu-LY/BO-QSA

28

https://github.com/google-research/google-research/tree/master/slot_attention
https://github.com/pemami4911/EfficientMORL
https://github.com/applied-ai-lab/genesis
https://github.com/singhgautam/slate
https://github.com/singhgautam/sysbinder
https://github.com/YuLiu-LY/BO-QSA

	Introduction
	Related Work
	Methodology
	Object Discovery
	Object-Centric Regularization

	Performance Study
	Experiments on Quality of Discovered Objects
	Experiments on Sample Efficiency
	Experiments on Model Generalizability
	Ablation Studies

	Prediction based on Learned Object Representation
	Conclusion
	Additional Implementation Details
	Object Discovery Algorithm
	Positional Encodings
	Clustering Threshold
	Mask Information Extraction
	Computational Resources

	Datasets
	Baseline Models
	Upper Bound for Downstream Generalization Error
	Object Property Prediction based on Learned Object Representation
	Additional Experiments
	Additional Experiments on Quality of Discovered Objects
	Experiments on Model Speed

	Additional Visualizations
	Object Discovery
	Model Generalizability

	Additional Discussions and Limitations
	Preservation of Pixel Information for Fine-Grained Object Discovery
	Generative vs Latent-Space Regularization Approach for Object-Centric Learning
	Limitation: Memorization of Object Shapes

	Ethics Statement
	Third-Party Assets

