— Supplementary Materials —
InsActor: Instruction-driven Physics-based Characters

Contents
\ Simulation Eovi 2
B Diffusion Policy 2
[{CSkill Discovery| 2
[D_Baselines| 2
[D.1 Adapted DReCon| . . . . . . .. ... ... . 2
[D.2 Adapted PADL] . . . . . . . . . .. .. 2
[D.3 High-level Policy] . . . . ... ... ... . . . 2
[D.4 Low-level Policy| . . . . .. .. . . . 3
[E_Training and Inference time| 3
[ Qualitative Results| 3
IG_Video| 4
[H Comparison between our diffusion planner and MDM [33]| 5
(I More ablations on planning and tracking] 5
{J__Quantitative performance of low-level control| 5

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



A Simulation Environment

As mentioned in the main text, our experiments are mainly executed with Brax [2] for its differentia-
bility. Our character model, guided by DeepMimic [6], is a humanoid with 13 links and 34 degrees
of freedom, weighing 45 kg and measuring 1.62m in height. Contact is applied to all links with the
floor. Facilitated by GPU-accelerated environment simulations, the physics simulator runs at 480
FPS. To optimize gradient propagation, the character’s joint limits are eased. System configurations,
such as friction coefficients, align with DeepMimic’s parameters.

B Diffusion Policy

For the diffusion policy, we build up an 8-layer transformer as the motion decoder. As for the text
encoder, we first directly use the text encoder in the CLIP ViT-B/32 [7], and then add four more
transformer encoder layers. The latent dimension of the text encoder and the motion decoder are 256
and 512, respectively. As for the diffusion model, the number of diffusion steps 7" is 1000, and the
variances [3; are linearly increased from 0.0001 to 0.02. We opt for Adam [5] as the optimizer to
train the model with a 0.0002 learning rate. We use 4 NVIDIA A100 for the training, and there are
256 samples on each GPU, so the total batch size is 1024. The total number of iterations is 40K for
KIT-ML and 100K for HumanML3D.

C Skill Discovery

For the skill discovery, both the encoder and decoder are a 3-layered Multi-layer Perceptron (MLP),
each layer with 512 nodes. The dimension of the latent vector is 64. We choose the weight factor A
as 0.01 except for the ablation study of A. We opt for Adam as the optimizer to train the model with a
0.0003 learning rate. We use one NVIDIA A100 for the training, and the batch size is 300. The total
number of iterations is 10K.

D Baselines

Since there are no publicly available implementations of the two compared methods DReCon [1]] and
PADL [4], in this section, we elaborate on our implementation of the two compared approaches. In
addition, we will also detail the implementation of the high-level policy and the low-level policy used
in the hierarchical design ablation.

D.1 Adapted DReCon

For the kinematic controller, we directly use the pretrained diffusion planner as a replacement for
the Motion Matching. For the target state-conditioned policy, we use a three-layer MLP with 512
hidden units as the neural network. The target state is input to the networks together with the current
observation. The target state is normalized to be relative to the current state in the global frame. We
use the training method in DiffMimic [8] and the average evaluation pose error converges to below
0.02.

D.2 Adapted PADL

We use a three-layer MLP with 512 hidden units as the neural network. A clip embedding with 512
dimensions from ViT-B/32 is input to the neural net together with the current state observation. The
training follows the aforementioned procedures.

D.3 High-level Policy

We first train the skill discovery module as described above. Then, we rollout the skill discovery
module on all training motion sequences to collect skill trajectories. Following MocapAct [10],
we repeat the rollout 16 times with different random seeds. Then we train a diffuser on the joint
representation of state and skill, as described in Diffuser [3]. Finally, we let the diffuser generate both
the initial state and the following skills given a human instruction.



“a human walks and turns on the spot” “a person stomps his left foot”

I v ! \
4 u ‘ ) |
DReCon ﬁll ?‘“ = < # A

©

PADL J 4 3 3«

[
’

[ Ly ) 4 % %y
L / i 118 184 Y/ pA 4 " :ST
InsActor Wti "ﬁ ~ o 4 < N “1:{ Al Al NT #l & A

Figure 1: Quantatative comparison with corresponding instructions. Each row represents one method
and column correspond to the instruction.

Figure 2: Robustness test results. a) InsActor executes without perturbation. b) InsActor executes
with perturbation caused by 2kg box hitting the character.

D.4 Low-level Policy

We use the same encoder-decoder architecture as described in the skill discovery module. Additionally,
the language condition is encoded by a 512-dimensional CLIP ViT-B/32 embedding and input into
the encoder in replace of the target state.

E Training and Inference time

Training for the diffusion model on HumanML-3D takes approximately 16 hours on 4 NVIDIA
A100 GPUs. The training for the skill discovery module on HumanML-3D takes approximately 40
hours on a single NVIDIA A100 GPU. The inference time for the diffusion planner using DDIM [9]
generally takes less than a second to generate a 180-frame plan, and the skill mapping module takes
less than 3 seconds to execute the plan after Just In Time compilation. We show a demo interface that
runs on a single NVIDIA A100 GPU in the supplementary video for qualitative evaluation of the
inference speed.

F Qualitative Results

In this section, we present a detailed qualitative evaluation to further demonstrate the effectiveness of
InsActor.

Qualitative Comparison with Baselines. As shown in[Table 3] we conduct a qualitative comparison
of InsActor with two baselines introduced in the main text: DReCon [[1]] and PADL [4]]. The
comparison is derived from the results of two different instructions, “a human walks and turns on
the spot” and “person stomps his left foot”. In contrast to DReCon, which fails to comprehend the
high-level instructions, and PADL, which struggles to generate reliable control, InsActor exhibits the
ability to successfully execute the stipulated commands.

Qualitative Assessment of Robustness. In an effort to highlight the robustness of InsActor, we
showcase its performance under both perturbed and non-perturbed conditions in This
involves introducing a 2kg box to strike the character at random positions. Impressively, InsActor
maintains the ability to generate plausible animations under such perturbations, underscoring its
resilience and adaptability in a variety of unpredictable scenarios.



¢) InsActor
Figure 3: Waypoint results InsActor with corresponding waypoints. When compared with DReCon,
InsActor successfully reaches the waypoint without falling and effectively follows the planned motion.

Table 1: Quantitative results on the standard text-to-motion benchmark HumanML3D.

R Precisiont

Methods Multimodal FID]  Diversity?

Topl Top2 Top3 Dist]

MDM - - 0.611 5.566 0.544 9.559
MotionDiffuse 0.491 0.681 0.782 3.113 0.630 9.410

Qualitative Examination of Waypoint Heading. In addition to the aforementioned analyses,
we delve into a qualitative examination of waypoint heading. Compared with DReCon, InsActor
successfully reaches the waypoint without falling as planned, demonstrating the flexibility and
robustness of InsActor.

G Video

We show more qualitative results in the attached video. We list key timestamps as follows:

* Motion Plans - 0:45

* Random Skill Sampling - 1:04

e Comparative Study on Instruction-driven Generation - 1:11
* Robustness to Perturbations - 1:45

* Instruction-driven Waypoint Heading - 1:53

* Multiple-waypoint Following - 2:24

 Ablation on Weight Factor - 2:47

* Ablation on Hierarchical Design - 3:00

* Ablation on Instruction-driven Waypoint Heading - 3:18

* Demo Interface - 3:35



H Comparison between our diffusion planner and MDM [33]

We implemented our diffusion planner using the
open-source code of MotionDiffuse [40]. We
modified the feature dimensions to fit our state T KIT-ML
trajectories and changed the noise prediction
to xo prediction for training efficiency as de-
scribed in the main paper. Given that it is not
possible to directly compare our motion planner
to a pretrained MDM model as they have dif-
ferent generation space, we show a comparison
between MDM and our codebase MotionDiffuse
in where MotionDiffuse achieves com-
parable quantitative results than MDM on a stan-
dard text-to-motion benchmark. Qualitatively,
we do notice that our generated plans have more
jittering than motions generated by either MDM
or MotionDiffuse. This could be caused by the
fact that MotionDiffuse uses temporal smooth-
ing in the visualization but we did not smooth
our plans in our visualization. We show in the
following experiment that plan smoothing has a
minimal effect on the tracking result.

0.5 —— HumanML3D

e
N

o
w

Pose Error (m)

o
N

o
il

0 5 10 15 20 25
Wallclock Time (hour)

Figure 4: Wallclock training time versus pose
error for the InsActor skill mapping module
training. Blue dotted line denotes 0.05m pose
error, an average DiffMmimic [28] tracking error.

Table 2: Quantitative results on the HumanML3D test set. Real motions: the test dataset. Planner:
Our high-level planner. DReCon (Real motions): replace the generated plans with the test dataset.
DReCon (Real motions): replace the generated plans with plans smoothed following [40].

R Precisiont

Methods Multimodal FID]  Diversity?
Topl Top2 Top3 Dist]
(a) Real motions 0.428 0.603 0.694 1.556 0.000 4.586
(b) Planner 0.434 0.625 0.723 1.507 0.314 4.538
(c) InsActor 0.331 0497 0.598 1.971 0.566 4.165
(d) DReCon (Real motions) 0.343  0.494 0.578 2.009 0.086 4.441
(e) DReCon (Smooth) 0.268 0.391 0.463 2.594 1.271 4.092
(f) DReCon 0.265 0.391 0.470 2.570 1.244 4.070

I More ablations on planning and tracking

We show more ablation results in Note that results in this table are not comparable with
[Table 1]as they are in different generation spaces. 1) Compare (a) and (b), we observe that our diffusion
planner achieves a strong generation performance. Note that our R Precision and Multimodal Dist
are slightly higher than real motions since contrastive models can only give a rough estimation of the
text-motion alignment. 2) Compare (b) and (f), we observe that directly tracking the plan leads to a
drastic performance drop, where InsActor (c) greatly alleviates the issue. 3) Compare (d) and (f), we
observe that our motion tracker is significantly better at tracking real motions than tracking generated
plans, which verifies the performance of the DReCon motion tracker. 4) Compare (e) and (f), we
observe that although smoothing improves the visual quality of the plans, it has a minimal effect on
the final result.

J Quantitative performance of low-level control

For the InsActor skill mapping module, we plot is evaluation pose error versus wallclock training
time in[Figure 4] Single-clip motion tracking pose error in DiffMimic [28] ranges from 0.017m to
0.097m with an average value around 0.05m. Our low-level controller successfully achieves similar
control quality on large-scale motion databases.



References

[1] Kevin Bergamin, Simon Clavet, Daniel Holden, and James Richard Forbes. Drecon: Data-driven
responsive control of physics-based characters. ACM Trans. Graph., 38(6), November 2019.

[2] C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier
Bachem. Brax—a differentiable physics engine for large scale rigid body simulation. arXiv
preprint arXiv:2106.13281, 2021.

[3] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, 2022.

[4] Jordan Juravsky, Yunrong Guo, Sanja Fidler, and Xue Bin Peng. Padl: Language-directed
physics-based character control. Association for Computing Machinery, 2022.

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[6] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. Deepmimic: Example-
guided deep reinforcement learning of physics-based character skills. ACM Transactions On
Graphics (TOG), 2018.

[7] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. arXiv preprint arXiv:2103.00020, 2021.

[8] Jiawei Ren, Cunjun Yu, Siwei Chen, Xiao Ma, Liang Pan, and Ziwei Liu. Diffmimic: Efficient
motion mimicking with differentiable physics. ICLR, 2022.

[9] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

[10] Nolan Wagener, Andrey Kolobov, Felipe Vieira Frujeri, Ricky Loynd, Ching-An Cheng, and
Matthew Hausknecht. Mocapact: A multi-task dataset for simulated humanoid control. arXiv
preprint arXiv:2208.07363, 2022.



	Simulation Environment
	Diffusion Policy
	Skill Discovery
	Baselines
	Adapted DReCon
	Adapted PADL
	High-level Policy
	Low-level Policy

	Training and Inference time
	Qualitative Results
	Video
	Comparison between our diffusion planner and MDM [33]
	More ablations on planning and tracking
	Quantitative performance of low-level control

