
On Optimal Caching and Model Multiplexing for
Large Model Inference

Banghua Zhu
Department of EECS

UC Berkeley
banghua@berkeley.edu

Ying Sheng
Computer Science Department

Stanford University
Ying.Sheng@stanford.edu

Lianmin Zheng
Department of EECS

UC Berkeley
lmzheng@berkeley.edu

Clark Barrett
Computer Science Department

Stanford University
barrett@cs.stanford.edu

Michael I. Jordan
Department of EECS

UC Berkeley
jordan@berkeley.edu

Jiantao Jiao
Department of EECS

UC Berkeley
jiantao@berkeley.edu

Abstract

Large Language Models (LLMs) and other large foundation models have achieved
noteworthy success, but their size exacerbates existing resource consumption and
latency challenges. In particular, the large-scale deployment of these models is
hindered by the significant resource requirements during inference. In this paper,
we study two approaches for mitigating these challenges: employing a cache to
store previous queries and learning a model multiplexer to choose from an ensemble
of models for query processing.
Theoretically, we provide an optimal algorithm for jointly optimizing both
approaches to reduce the inference cost in both offline and online tabular settings.
By combining a caching algorithm, namely Greedy Dual Size with Frequency
(GDSF) or Least Expected Cost (LEC), with a model multiplexer, we achieve
optimal rates in both offline and online settings. Empirically, simulations show
that the combination of our caching and model multiplexing algorithms greatly
improves over the baselines, with up to 50× improvement over the baseline when
the ratio between the maximum cost and minimum cost is 100. Experiments on
real datasets show a 4.3× improvement in FLOPs over the baseline when the ratio
for FLOPs is 10, and a 1.8× improvement in latency when the ratio for average
latency is 1.85.

1 Introduction

The recent emergence of Large Language Models (LLMs) and foundation models has significantly
increased the capabilities of AI systems (Bubeck et al., 2023; Nori et al., 2023; Ziegler et al., 2019;
Ouyang et al., 2022; OpenAI, 2023; Beeching et al., 2023; Chowdhery et al., 2022; Wei et al., 2022a;
Google, 2023). This progress comes at a cost, however, of increased resource consumption and
latency during both training and inference, presenting challenges not only in real-world deployment
but also in terms of environmental impact and energy usage (Sharir et al., 2020; Patterson et al., 2021;
Bommasani et al., 2022). For instance, LLM-based chatbots typically consist of large transformer-
based networks with parameter counts ranging from one to several hundred billion (Zhou et al.,
2023). Moreover, the auto-regressive nature of LLMs exacerbates the issue of latency and resource
consumption because the model can only generate one token at a time. Thus, compared to traditional
AI-powered services, language model inference costs are much higher and the latency is significantly

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

longer, making it nearly impossible to process each query using LLMs in high-throughput query
systems such as search engines.

In this paper, we explore two simple yet effective strategies to mitigate this problem: (1) employing
a caching system to store previous queries, and (2) developing a model multiplexer to choose the
most appropriate model from a set of models for processing the queries. The general workflow of our
proposed LLM-based inference system is shown in Figure 1: upon receiving a query or prompt, we
initially check if it can be retrieved from the cache. If the query is not found in the cache, we employ
the model multiplexer to determine which model should be used for processing it first, based on the
estimated cost for both models.

The choice of cost function and models can vary based on the goal. One measure of cost, for example,
could be floating point operations (FLOPs). Other alternatives could include the number of API calls
as a measure of resource consumption, latency as a measure of time consumption, or a score provided
by a user as a measure of user satisfaction. The cost could also be a weighted sum of multiple factors.
For the models, a natural choice would be to have a small and a large model, where the small model
costs less and is also less accurate, and the large model has a higher cost and also provides higher
accuracy. Another alternative would be to have models with expertise in different areas, i.e., each
model has high accuracy in its own area of expertise. We provide more discussion in Appendix A.

Cache

query

hit

miss

Multiplexer

Small Model

Large Model

Figure 1: A workflow for LLM-based inference with caching and model multiplexing.

There is a long history of existing literature on caching algorithms, with prominent applications
including computer architecture and web retrieval (Smith, 1982; Wang, 1999; Kumar and Singh,
2016). Existing caching algorithms deal with queries with different frequencies and cost, and must
also provide guidelines for choosing the cache size. In addition to these well-known difficulties, the
use of caching for LLMs raises new challenges, including:

• The need for fuzzy search. Since the prompt lies in a discrete space that is exponentially
large with respect to the token size, it is impossible to match and save all distinct queries.
Thus, to be at all useful, approximate matching and grouping is required when retrieving
queries saved in the cache.

• The randomness of the cost. The cost for processing each query is a random variable
that depends on the query and has a large variance due to the auto-regressive generation
procedure and the difference in the length and quality of generated responses. When
combined with the long-tailed distribution of the query frequency, the estimation of the cost
requires a non-trivial algorithm design.

• The effect of model multiplexing. When the cache system is combined with the model
multiplexer, the estimation of cost must change accordingly to take into consideration the
different costs induced by various models.

For the fuzzy search problem, semantic search or vector-embedding-based ideas provide a systematic
solution that includes embedding extraction and matching algorithms (Bast et al., 2016; Chang et al.,
2020; Kamalloo et al., 2023). To simplify the problem, we assume that there exists some semantic
search oracle that can group the prompts with the same semantic meaning and that the total cache
size is limited by the number of queries, ignoring the difference in cache size between each individual
query and response.

The remainder of this paper is organized as follows. In Section 2, we formally define the pipeline of
caching and model multiplexing. In Section 3, we study the optimality of the Least Expected Cost
(LEC) caching strategy, which estimates the frequency and cost of processing each query, and evicts
the one with the least estimated expected cost when there is only one model to call. In section 4, we

2

consider the case when we have access to two models, and jointly design optimal caching and model
multiplexer. In both sections, we start by assuming there are infinite samples and then analyze the
offline and online learning cases where the cost and frequency need to be learned from data. The
experimental results are presented in Section 5. We discuss the potential choices of cost, model, and
output in the real world in Appendix A. We provide a brief discussion of the generalization to variable
cache sizes in Appendix B and of the generalization to multi-model multiplexing in Appendix C.

1.1 Related work

Cache replacement algorithms Traditional cache replacement algorithms investigate optimal ways
to cache queries with different frequencies, costs, and cache sizes. To address varying frequencies,
a standard approach is to use a Least Frequently Used (LFU) or Least Recently Used (LRU) cache
eviction strategy (Lee et al., 2001). These have been proven to be optimal for both adversarial and
stochastic queries (Stallings and Paul, 2012; Bura et al., 2021). Caching has also been combined
with machine learning advice and online learning analysis in the literature (Chang et al., 2018;
Shuja et al., 2021; Jiang et al., 2019; He et al., 2017; Mukhopadhyay and Sinha, 2021; Faizal et al.,
2023). When varying costs and varying frequencies exist simultaneously, Jin and Bestavros (2000);
Arlitt et al. (2000) propose and study the Greedy Dual-Size with Frequency (GDSF) replacement
algorithm, which takes both frequency and cost into consideration. Bahn (2005) proposes the Least
Expected Cost (LEC) algorithm, which is similar to GDSF, except that it estimates frequency from
data. Our work extends this idea by attempting to learn a model for both frequency and cost from
data. Moreover we explore the statistical optimality of these algorithms in both offline and online
settings. We also investigate combining caching algorithms with model multiplexing in order to boost
performance.

Acceleration of LLM inference Much effort has been devoted to reducing the cost and latency of
LLMs during inference. For example, post-training quantization-based approaches aim to compress
the model size by using lower-precision arithmetic without losing too much accuracy (Gholami et al.,
2021; Frantar et al., 2023). Early-exit frameworks aim to utilize the output in the middle decoder
blocks so that only a small fraction of decoder blocks are called when processing a query (Bakhtiarnia
et al., 2022; Schuster et al., 2022). The Mixture of Experts approach designs a gating function that
only assigns a small fraction of the network for each query (Fedus et al., 2022). Embedding recycling
caches activations from an intermediate layer of a pre-trained model to accelerate the training and
inference procedure (Du et al., 2020; Wei et al., 2022b; Saad-Falcon et al., 2023). LLM cascade starts
with the smallest model and continues to call larger models if the output is not acceptable (Chen
et al., 2023b). The big little transformer decoder framework uses a smaller model to generate a draft
response and calls the large model to identify the unreliable tokens and perform correction (Kim
et al., 2023). Similar ideas have been combined with speculative sampling to guarantee that the
output remains the same in distribution as that of the large models (Chen et al., 2023a; Leviathan
et al., 2022).

2 Formulation

We formalize the workflow in Figure 1. Consider the set of (finite) prompts / queries Q ⊂ Rd. In the
t-th round, a query qt ∈ Q is sampled from a fixed population distribution P ∈ ∆(Q). We maintain
a small set of cache Lt ⊂ Q with |Lt| ≤ L. We say the query hits the cache if the query satisfies
qt ∈ Lt. When the query hits the cache, the incurred cost is zero. When the query does not hit the
cache, we choose among the existing models to process the query.

In the processing stage, we first describe the setting of caching without model multiplexing, and
extend it to the case of caching with model multiplexing.

2.1 Caching without model multiplexing

In the case when we only have one model, let Cl(q) denote the random variable of the cost when
processing the query with the model. Assume that Cl(q) is supported on [B1, B2] with B2 > B1 > 0
being the upper and lower bounds for the cost. Let c⋆l (q) = E[Cl(q)] be the expected true cost of

3

processing the query q. The cost for a given query q and cache L can be written as:

cost(q,L) = 1(q ̸∈ L)E[Cl(q)] = 1(q ̸∈ L)c⋆l (q).

By taking the expectation over the distribution q, we have the expected cost as

cost(L) =
∑
q

P (q)1(q ̸∈ L)c⋆l (q).

In the offline learning setting, we collect an offline dataset and hope to learn a caching policy L̂ such
that cost(L̂) is minimized.

In the online setting, the query comes in a streaming fashion. At the beginning of each round, we
receive a query qt. If the query misses the current cache Lt, we let the model process the query and
receive a cost ct ∼ PCl

. Then we can choose to update the cache Lt by adding the current query and
response to the cache, and replacing one of the existing cached items if the cache Lt is full. If the
query hits the cache qt ∈ Lt, then the cost for this round is set to zero with no more observations.
In this case, we are interested in characterizing the average difference in the cost throughout the
execution of the online learning process. This can be characterized by the regret:

Regretcache(T) =
T∑

t=1

E[cost(qt,Lt)− cost(qt,L⋆)].

2.2 Caching with model multiplexing

For the simplicity of the notation, we focus on the case of selecting from a small model and a large
model,1 and discuss how it can be generalized to the case of selecting from multiple models in
Appendix C. Let Cs(q) denote the random variable of the cost when processing the query with the
small model, and Cl(q) denote the random variable of the cost when processing the query with the
large model. We assume that both random variables are supported on [B1, B2]. We observe i.i.d.
draws of the random variables Cs(q) when executing the small model, and Cl(q) when executing the
large model. Denote the expected cost as c⋆s(q) = E[Cs(q)] and c⋆l (q) = E[Cl(q)].

Let π : Q 7→ [0, 1] be the (possibly random) model multiplexing policy that maps the query q to
values in [0, 1], where π(q) = 1 represents that the query is always sent to the small model, and
π(q) = 0 represents the query is always sent to the large model. The randomness in the policy π is
independent of the cost Cs(q), Cl(q). The total cost can be written as the following function of the
query q, cache L and policy π:

cost(q,L, π) = 1(q ̸∈ L)E[Cs(q)π(q) + Cl(q)(1− π(q))]

= 1(q ̸∈ L)(c⋆s(q)π(q) + c⋆l (q)(1− π(q))).

By taking the expectation over q, we have the expected cost as

cost(L, π) =
∑
q

P (q)1(q ̸∈ L)(c⋆s(q)π(q) + c⋆l (q)(1− π(q))).

In the offline learning setting, we collect an offline dataset and hope to learn a caching policy L̂ and a
multiplexer π̂ such that cost(L̂, π̂) is minimized. In the online setting, we get to update the cache in
each round by adding the current query into the cache and evicting the ones in the cache if full. When
the query qt misses the cache in round t, we will observe a sample from Cs(qt) if it is processed
by the small model, or a sample from Cl(qt) if it is processed by the large model. There will be no
observations of cost if qt hits the cache. We aim at minimizing the regret:

Regretsel(T) =
T∑

t=1

E[cost(qt,Lt, πt)− cost(qt,L⋆, π⋆)].

1Note that although we name the models as small and large models, we do not impose any assumption on the
relationship between their costs. Moreover, the model size and cost function can be arbitrary for both models.

4

3 Optimal Caching without Model multiplexing

3.1 Population setting

We start with the population setting where the probability distribution P and the cost c⋆l are both
known. In the case with only one model, the optimal caching strategy is the Least Expected Cost
(LEC) or Greedy Dual Size with Frequency (GDSF) algorithm:

L⋆ = LLEC = argmin
L:|L|≤L

cost(L) = argmin
L:|L|≤L

∑
q∈Q

P (q)1(q ̸∈ L)c⋆l (q).

The traditional frequency-based caching strategy, including Least Recent Used (LRU) and Least
Frequently Used (LFU), aims at caching the most frequent queries:

LLFU = argmin
L:|L|≤L

∑
q∈Q

P (q)1(q ̸∈ L).

We show in Appendix D that the ratio between the cost of LFU and LEC can be as high as maxq∈Q c⋆l (q)
minq∈Q c⋆l (q)

in the worst case, which shows that LFU can be highly suboptimal when the cost varies significantly.

3.2 Finite sample setting: Offline learning

The previous section characterizes the optimal caching strategy in the population setting. We now
consider the finite-sample offline learning setting, where we hope to produce a cache L based on prior
data such that the introduced cost is minimized. Denote DN = {(q1, c1), · · · , (qN , cN)}, where qi is
sampled from the distribution P (·), and ci is a sample from random variable Cl(qi). We consider
estimating P, c⋆l from oracles P̂ = DenEstOracle(q1, · · · , qN), ĉl(q) = RegressionOracle(DN). In
practice, one may remove the last layer of the pre-trained language model and concatenate it with a
linear head and fine-tune the model as the estimator. For theoretical analysis, we focus on the tabular
case, where we set both P̂ and ĉl(q) to be the plug-in estimator:

P̂ (q) =

∑N
i=1 1(qi = q)

N
, (1)

ĉl(q) =

{∑N
i=1 1(qi=q)ci∑N
i=1 1(qi=q)

, if
∑N

i=1 1(qi = q) > 0

B1, if
∑N

i=1 1(qi = q) = 0.
(2)

In practice, the distribution of q may have a long tail. Although the estimation of P (q) is uniformly
good for all q, the estimation of c⋆(q) can be bad for the queries that are visited less. To select
the maximum L elements from the imbalanced samples, we compensate the plug-in estimator by
introducing pessimism (Rashidinejad et al., 2021; Jin et al., 2021)2. As we show in Lemma 1, the
true frequency for any query q ∈ L⋆ is lower bounded by some constant that depends on B1, B2, |Q|.
Thus the pessimism helps eliminate those less visited queries in the long tail of the distribution and
encourages caching the queries in L⋆. The lower-confidence-bound based estimator is:

L̂ = argmin
L:|L|≤L

∑
q∈Q

1(q ̸∈ L)P̂ (q) ·max

(
B1,

(
ĉl(q)− (B2 −B1)

√
log(6N |Q|/δ)

2
∑N

n=1 1(qn = q)

))
.

We show how the cost for the caching from the empirical estimate differs from the optimal cost.

Theorem 1. Assume that N ≥ 8B2|Q| log(3L/δ)
B1

and taking δ = 1/N . We have

E[cost(L̂)− cost(L⋆)] ≤ C(B2 −B1)L ·

√
B2|Q| log(N |Q|)

NB1
.

The proof is deferred to Appendix E, where we prove a stronger high-probability bound rather than a
bound in expectation. From the theorem, we know that the cost of the finite-sample caching policy
converges to the cost of the optimal policy at a rate of 1/

√
N , which achieves the optimal dependence

on N . The insights from the tabular case also indicate that the cost needs to be estimated in a
conservative fashion when considered for the cache replacement algorithm.

2If we impose a uniform lower bound on the probability P (q), then the pessimism can be replaced with the
plug-in estimator. However, it is usually not the case in practice since P (q) usually comes with a long tail.

5

3.3 Finite sample setting: Online learning

We summarize the caching algorithm pipeline in 1, which relies on the two estimation oracles,
DenEstOracle and RegressionOracle, which estimate both the frequency and cost of models from
data.

Algorithm 1 Caching in Online Learning

1: Initialize the set of cache L1 = {}, past observations H1 = {}, ĉl,0(q) = B1,∀q ∈ Q.
2: For iteration t = 1, 2 · · · , T
3: Receive query qt.
4: Update the density estimation P̂t = DenEstOracle(q1, · · · , qt).
5: If qt ∈ Lt:
6: Output the cached result, set ĉl,t = ĉl,t−1, update the past observation Ht = Ht−1

⋃
(qt,×),

and continue.
7: Use the large model to process the query, and observe a cost ct ∼ PCl(q).
8: Update the past observation Ht = Ht−1

⋃
(qt, ct).

9: Update ĉl,t = RegressionOracle(Ht).
10: If |Lt| < L:
11: Let Lt+1 be the union of Lt and qt.
12: Else if P̂t(qt) · ĉl,t(qt) > minq∈Lt P̂t(q) · ĉl,t(q) :
13: Replace the minimizer element of P̂t(q) · ĉl,t(q) in the cache Lt with qt to get Lt+1.

For theoretical analysis, we focus on the tabular case and define the oracles as follows:

P̂t(q) =

∑t
i=1 1(qi = q)

t
, (3)

ĉl,t(q) =

{
B1, if

∑t
i=1 1(ci ̸= ×, qi = q) = 0,

max
(
B1,

∑t
i=1 1(ci ̸=×,qi=q)ci∑t
i=1 1(ci ̸=×,qi=q)

− (B2 −B1)
√

log(6T |Q|/δ)
2
∑t

i=1 1(ci ̸=×,qi=q)

)
, otherwise

(4)

For the estimation of density, we use plug-in estimator since there is no imbalance in the sampling
process. For the estimation of the cost, we subtract the confidence bound to include pessimism. We
have the following regret guarantee.

Theorem 2. When substituting the DenEstOracle and RegressionOracle with Equation (3) and (4)
and set δ = 1/T , we have for some universal constant C:

Regretcache(T) ≤
CL(B2 −B1)B2|Q|L log2(T |Q|)

B1
·
√
T .

On the other hand, for any caching policy {Lt}Tt=1, there exist some cases of P (q), c⋆l (q) such that
for some universal constant C ′,

Regretcache(T) ≥ C ′
√
T .

The proof is deferred to Appendix F. Different from the offline case, one interesting feature of the
online case is the partial observation phenomenon: when the query hits the cache, it will not be
processed by the model, and thus we cannot observe the sample from Cl(q) in this round. This is
different from the traditional bandit literature where the selected arm is always observed in each
round. Thus the partial observation thus requires new upper and lower bound analysis.

4 Optimal Caching and Model multiplexing

4.1 Population setting

In the case when we have access to two models, we need to design a good caching and model
multiplexing strategy jointly. We can compute the optimal caching and model multiplexing policy as

6

L⋆, π⋆ = argminL,π cost(L, π), which gives the following solution:

π⋆(q) = 1(c⋆s(q) ≤ c⋆l (q)),

L⋆ = argmin
L:|L|≤L

∑
q∈Q

P (q)1(q ̸∈ L)min (c⋆s(q), c
⋆
l (q)) .

Such optimal strategies are straightforward: π⋆ always assigns the query to the model with a smaller
cost, and L⋆ saves the L queries with the largest P (q) ·min (c⋆s(q), c

⋆
l (q)).

For the model multiplexing algorithm, we consider two baselines: (a) one always uses large model
πl(q) ≡ 0; (b) one always uses the small model πs(q) ≡ 0. This is related to the LLM cascade idea
in the concurrent work of Chen et al. (2023b). We provide more discussion in Appendix A, and
present comparisons between baselines and π⋆ in Appendix D.

4.2 Finite sample setting: Offline learning

We now consider the finite sample case. Let DN = {(q1, cs,1, cl,1), · · · , (qN , cs,N , cl,N)}, where
cs,n is a sample from random variable Cs(qn), the observed cost for processing query qn with the
small model in round n. And cl,n is a sample from random variable Cl(qn), the observed cost for
processing query qn with the large model in round n. We consider estimating P, c⋆s, c

⋆
t with some

oracles P̂ = DenEstOracle(q1, · · · , qN), ĉs(q), ĉt(q) = RegressionOracle(DN). We focus on the
tabular case for theoretical analysis, where we set P̂ , ĉs(q) and ĉl(q) to be the plug-in estimator:

P̂ (q) =

∑N
i=1 1(qi = q)

N
, ĉl(q) =

{∑N
i=1 1(qi=q)cl,i∑N

i=1 1(qi=q)
, if

∑N
i=1 1(qi = q) > 0

B1, if
∑N

i=1 1(qi = q) = 0,

ĉs(q) =

{∑N
i=1 1(qi=q)cs,i∑N

i=1 1(qi=q)
, if

∑N
i=1 1(qi = q) > 0

B1, if
∑N

i=1 1(qi = q) = 0.

Similar to the case of caching without model multiplexing, for a long-tailed distribution P (q), the
estimation of c⋆s(q), c

⋆
l (q) can be bad for the queries that are visited less. To select the maximum L

elements from the plug-in estimator, we introduce pessimism to the estimate of ĉl and ĉs. This leads
to the following design of caching and model multiplexer L̂ and π̂:
π̂(q) = 1(ĉs(q) ≤ ĉl(q)),

L̂ = argmin
L:|L|≤L

∑
q∈Q

1(q ̸∈ L)P̂ (q)max

(
B1,min(ĉs(q), ĉl(q))− (B2 −B1)

√
log(8|Q|/δ)

2
∑N

n=1 1(qn = q)

)
.

We now show the cost for the caching and model multiplexer obtained from the empirical estimate is
close to the optimal cost. The proof is deferred to Appendix G.

Theorem 3. Assume that N ≥ 8B2|Q| log(4L/δ)
B1

and take δ = 1/N . We have

E[cost(L̂, π̂)− cost(L⋆, π⋆)] ≤ CL(B2 −B1) ·

√
B2|Q| log(8|Q|N)

B1N
.

4.3 Finite sample setting: Online learning

We turn to the online case. We first propose a meta-algorithm in Algorithm 2. We provide a theoretical
analysis of the meta-algorithm for the tabular case, with DenEstOracle P̂t(q) =

∑t
i=1 1(qi=q)

t , and
the RegressionOracle defined as follows:

ĉl,t(q) =

{
B1, if

∑t
i=1 1(si = 0, qi = q) = 0

max
(
B1,

∑t
i=1 1(si=0,qi=q)cl,i∑t

i=1 1(si=0,qi=q)
− (B2 −B1)

√
log(8T |Q|/δ)

2
∑t

i=1 1(si=0,qi=q)

)
, otherwise,

ĉs,t(q) =

{
B1, if

∑t
i=1 1(si = 1, qi = q) = 0,

max
(
B1,

∑t
i=1 1(si=1,qi=q)cs,i∑t

i=1 1(si=1,qi=q)
− (B2 −B1)

√
log(8T |Q|/δ)

2
∑t

i=1 1(si=1,qi=q)

)
, otherwise.

We provide the following theorem on the regret of the overall algorithm.

7

Algorithm 2 Joint Design of Caching and Model multiplexing

1: Initialize the set of cache L1 = {}, past observations H1 = {}, ĉl,0(q) = B1, ĉs,0(q) = B1,
model multiplexing policy π0(q) = 1,∀q ∈ Q.

2: For iteration t = 1, 2 · · · , T
3: Receive query qt.
4: Update the density estimation P̂t = DenEstOracle(q1, · · · , qt).
5: If qt ∈ Lt: output the cached result, set ĉs,t = ĉs,t−1, ĉl,t = ĉl,t−1, πt = πt−1, update the

past observation Ht = Ht−1

⋃
(qt,×,×), and continue.

6: Select the models according to st = πt(qt).
7: Update the past observation Ht = Ht−1

⋃
(qt, st, ct).

8: Update ĉl,t, ĉs,t = RegressionOracle(Ht). Set πt+1(q) = 1(ĉs,t(q) < ĉl,t(q)).
9: If |Lt| < L: let Lt+1 be the union of Lt and qt.

10: Else if P̂t(qt) ·min (ĉs,t(qt), ĉl,t(qt)) > minq∈Lt P̂t(q) ·min (ĉs,t(q), ĉl,t(q)):
11: replace the minimizer element in the cache Lt on the RHS with qt to get Lt+1.

Theorem 4. Substituting the oracles in Algorithm 2 with the oracles above and δ = 1/T , we have

Regretsel(T) ≤
CL(B2 −B1)B2|Q|L log2(T |Q|)

B1
·
√
T .

The proof is deferred to Appendix H. Compared with the lower bound in Theorem 2, we see that
the dependency on T is tight. The pessimism plays two different roles here: on the one hand, it
encourages the exploration for model multiplexing to choose the ones with more uncertainty in the
cost; on the other hand, it encourages the exploitation to be conservative about which query to save
into the cache.

For the model multiplexer to work well, one needs to have a small yet accurate model multiplexer.
In the case when the model multiplexer is not accurate, the small model always comes with a much
smaller cost, and we are allowed to regenerate the responses and make corrections for the output, one
may combine LEC with cascade (Chen et al., 2023b) to achieve better performance.

5 Experiments

We conduct both simulations and real-world experiments with our proposed methods. The code is
available at https://github.com/Ying1123/llm-caching-multiplexing.

5.1 Simulations for algorithm analysis

We conduct synthetic online and offline experiments for joint optimization of caching and model
switching. In Figure 2, we plot the cumulative cost and regret in online learning for LFU and LEC
caching algorithms. For LFU, we consider model switchers which always select the small or large
models as the baselines. We consider 20 distinct prompts and set the cache size to be 10. We
set the frequency distribution as power distribution with α = 0.9. The ground truth cost for each
query processed by both models is set as a sample from 100X + 1, where X is a random variable
generated from a Bernoulli distribution with the parameter 0.5. We repeat the simulation 100 times
and plot the mean and standard deviation in the figure. Our simulation suggests that LEC with model
switcher greatly improves the two baselines by a factor of 50× when the cost ratio is 100. We include
additional results on the synthetic datasets for both online and offline settings with different α values,
cost ratios, and switcher accuracy in Appendix I.1.

5.2 Experiments on real datasets

We evaluate our algorithms on two tasks: next-token prediction on the Lambada (Paperno et al., 2016)
dataset and chat assistant on the OpenAssistant (Köpf et al., 2023) dataset.

For the next-token prediction task, we run the offline algorithm with two models: OPT-1.3B and
OPT-13B (Zhang et al., 2022) and use FLOPs as the cost. The target performance metric is the
number of correct tokens predicted, where we get the ground-truth token from the Lambada dataset.

8

https://github.com/Ying1123/llm-caching-multiplexing

100 101 102 103 104

steps

10 2

10 1

100

101

102

103

104

105

Cu
m

ul
at

iv
e

Co
st

LFU+small
LFU+large
LEC+selector
Optimal

100 101 102 103 104

steps

101

102

103

104

105

Cu
m

ul
at

iv
e

Re
gr

et

LFU+small
LFU+large
LEC+selector

Figure 2: Comparisons between LFU with either small or large model switching and LEC with
model switcher. Both the x-axis and y-axis are logarithmic scales. The shaded regime represents the
standard deviation calculated from the repeated experiments.

For a given query, an algorithm can choose to run the small model or the large model. If the small
model is chosen but its result is wrong, the large model must be run and it will incur an additional
penalty. We fine-tune a BERT base model with 2000 samples as the model switcher by predicting
whether the small model can give the correct result and achieve 80.2% accuracy. We work with
100 unseen distinct prompts in the offline setting with total queries 10000 and cache size 40. We
compare our offline caching and switcher algorithms against LFU, large-model-only, and cascade
(which always calls the small model first). As shown in Table 1, LEC is better than LFU in all cases.
Combining LEC and switcher brings up to 4.3× cost reduction compared to the baseline “LFU +
Large.” However, as the predictor accuracy is limited, the model switcher may not be as good as the
cascade algorithm in some cases. We leave the training of a better switcher as future work.

On the chat assistant task, we run the online algorithm with two models: FastChat-T5-3B and
Vicuna-13B (Chiang et al., 2023), and use the inference latency as the cost. The quality of response is
evaluated by GPT4 evaluation (Liu et al., 2023). We say a response is satisfying if the score is larger
than 6 out of 10, and unsatisfying otherwise. If the response from the small model is unsatisfying, we
will call the large model again and incur an additional cost in latency. The ratio between the average
latency of the large model and the small model is 1.85. We work with 100 distinct prompts in the
online setting with total queries 10000 and cache size 40. After a sufficient number of online learning
steps, the switcher learns the accurate costs of two models on this finite prompts set, so “LEC +
switcher” outperforms other algorithms in all cases on Table 2 with up to 1.8× latency reduction
compared to "LFU + large" baseline.

α selector
accuracy

LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 80% 3.49 3.81 2.60 3.44 1.50 2.00
0.8 80% 10.81 11.80 8.06 10.36 4.11 4.76

0.2 100% 3.49 3.81 1.91 3.44 1.50 0.99
0.8 100% 10.81 11.80 5.90 10.36 4.11 2.50

Table 1: Evaluation of offline algorithms on the Lambada dataset with OPT-1.3B and OPT-13B,
100 distinct prompts, total query size 10000 and cache size 40. α is the parameter of the power
distribution of the prompts. The table lists cumulative costs (103) for different algorithms.

We provide more experiments in Appendix I, where we evaluate both FLOPs and latency for both
offline and online setting on both synthetic and real dataset, with varying cache size, query size and
distinct prompts.

9

α LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 9.31 13.88 7.24 8.74 8.82 5.93
0.5 20.04 29.88 15.11 18.68 16.90 11.87
0.8 28.24 42.12 21.14 26.07 20.31 15.49

Table 2: Evaluation of online algorithms on the OpenAssistant dataset with FastChat-T5-3B and
Vicuna-13B, 100 distinct prompts, total query size 10000 and cache size 40. α is the parameter of
the power distribution of the prompts. The table lists cumulative costs (103) for different algorithms.

6 Conclusions

We have studied the joint optimization of caching and model multiplexing and proposed an optimal
algorithm for the tabular case. There are a variety of further work that can be pursued in this vein,
including:

• Designing the optimal caching and model multiplexing algorithm when there is a query
queue, such that the query arrives at a random interval rather than a fixed interval. A more
complicated serving pattern also needs to take batching strategies into consideration.

• Understanding the scaling law of the predictors. We hope to use a small yet accurate model
for prediction to reduce overhead introduced by the predictor. It is important to understand
the trade-off between prediction accuracy, model size, and training data size.

• Designing optimal caching algorithm when the responses generated in each round have
diverse qualities.

Acknowledgements

Banghua and Jiantao are partially supported by NSF IIS-1901252, CIF-1909499 and CIF-2211209.
Michael I. Jordan is partially supported by NSF IIS-1901252. Ying Sheng and Clark Barrett are
supported in part by NSF-2110397 and the Stanford Center for Automated Reasoning.

References
M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin. Evaluating content management

techniques for web proxy caches. ACM SIGMETRICS Performance Evaluation Review, 27(4):
3–11, 2000.

H. Bahn. Web cache management based on the expected cost of web objects. Information and
Software Technology, 47(9):609–621, 2005.

A. Bakhtiarnia, Q. Zhang, and A. Iosifidis. Single-layer vision transformers for more accurate early
exits with less overhead, 2022.

H. Bast, B. Buchhold, E. Haussmann, et al. Semantic search on text and knowledge bases. Foundations
and Trends® in Information Retrieval, 10(2-3):119–271, 2016.

E. Beeching, Y. Belkada, K. Rasul, L. Tunstall, L. von Werra, N. Rajani, and N. Lambert.
StackLLaMA: An RL fine-tuned LLaMA model for Stack Exchange question and answering, 2023.
URL https://huggingface.co/blog/stackllama.

R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein,
J. Bohg, A. Bosselut, E. Brunskill, E. Brynjolfsson, S. Buch, D. Card, R. Castellon, N. Chatterji,
A. Chen, K. Creel, J. Q. Davis, D. Demszky, C. Donahue, M. Doumbouya, E. Durmus, S. Ermon,
J. Etchemendy, K. Ethayarajh, L. Fei-Fei, C. Finn, T. Gale, L. Gillespie, K. Goel, N. Goodman,
S. Grossman, N. Guha, T. Hashimoto, P. Henderson, J. Hewitt, D. E. Ho, J. Hong, K. Hsu, J. Huang,
T. Icard, S. Jain, D. Jurafsky, P. Kalluri, S. Karamcheti, G. Keeling, F. Khani, O. Khattab, P. W. Koh,
M. Krass, R. Krishna, R. Kuditipudi, A. Kumar, F. Ladhak, M. Lee, T. Lee, J. Leskovec, I. Levent,

10

https://huggingface.co/blog/stackllama

X. L. Li, X. Li, T. Ma, A. Malik, C. D. Manning, S. Mirchandani, E. Mitchell, Z. Munyikwa, S. Nair,
A. Narayan, D. Narayanan, B. Newman, A. Nie, J. C. Niebles, H. Nilforoshan, J. Nyarko, G. Ogut,
L. Orr, I. Papadimitriou, J. S. Park, C. Piech, E. Portelance, C. Potts, A. Raghunathan, R. Reich,
H. Ren, F. Rong, Y. Roohani, C. Ruiz, J. Ryan, C. Ré, D. Sadigh, S. Sagawa, K. Santhanam,
A. Shih, K. Srinivasan, A. Tamkin, R. Taori, A. W. Thomas, F. Tramèr, R. E. Wang, W. Wang,
B. Wu, J. Wu, Y. Wu, S. M. Xie, M. Yasunaga, J. You, M. Zaharia, M. Zhang, T. Zhang, X. Zhang,
Y. Zhang, L. Zheng, K. Zhou, and P. Liang. On the opportunities and risks of foundation models,
2022.

S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li,
S. Lundberg, et al. Sparks of artificial general intelligence: Early experiments with GPT-4. arXiv
preprint arXiv:2303.12712, 2023.

A. Bura, D. Rengarajan, D. Kalathil, S. Shakkottai, and J.-F. Chamberland. Learning to cache and
caching to learn: Regret analysis of caching algorithms. IEEE/ACM Transactions on Networking,
30(1):18–31, 2021.

W.-C. Chang, F. X. Yu, Y.-W. Chang, Y. Yang, and S. Kumar. Pre-training tasks for embedding-based
large-scale retrieval, 2020.

Z. Chang, L. Lei, Z. Zhou, S. Mao, and T. Ristaniemi. Learn to cache: Machine learning for network
edge caching in the big data era. IEEE Wireless Communications, 25(3):28–35, 2018.

C. Chen, S. Borgeaud, G. Irving, J.-B. Lespiau, L. Sifre, and J. Jumper. Accelerating large language
model decoding with speculative sampling, 2023a.

L. Chen, M. Zaharia, and J. Zou. FrugalGPT: How to use large language models while reducing cost
and improving performance, 2023b.

W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E.
Gonzalez, I. Stoica, and E. P. Xing. Vicuna: An open-source chatbot impressing GPT-4 with 90%*
ChatGPT quality, March 2023. URL https://lmsys.org/blog/2023-03-30-vicuna/.

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung,
C. Sutton, S. Gehrmann, et al. PaLM: Scaling language modeling with pathways. arXiv preprint
arXiv:2204.02311, 2022.

J. Du, M. Ott, H. Li, X. Zhou, and V. Stoyanov. General purpose text embeddings from pre-trained
language models for scalable inference, 2020.

F. Z. Faizal, P. Singh, N. Karamchandani, and S. Moharir. Regret-optimal online caching for
adversarial and stochastic arrivals. In Performance Evaluation Methodologies and Tools: 15th
EAI International Conference, VALUETOOLS 2022, Virtual Event, November 2022, Proceedings,
pages 147–163. Springer, 2023.

W. Fedus, J. Dean, and B. Zoph. A review of sparse expert models in deep learning. arXiv preprint
arXiv:2209.01667, 2022.

E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh. GPTQ: Accurate post-training quantization for
generative pre-trained transformers, 2023.

A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer. A survey of quantization
methods for efficient neural network inference, 2021.

Google. PaLM-2 technical report. 2023.

Y. He, Z. Zhang, F. R. Yu, N. Zhao, H. Yin, V. C. Leung, and Y. Zhang. Deep-reinforcement-learning-
based optimization for cache-enabled opportunistic interference alignment wireless networks.
IEEE Transactions on Vehicular Technology, 66(11):10433–10445, 2017.

W. Jiang, G. Feng, S. Qin, T. S. P. Yum, and G. Cao. Multi-agent reinforcement learning for efficient
content caching in mobile d2d networks. IEEE Transactions on Wireless Communications, 18(3):
1610–1622, 2019.

11

https://lmsys.org/blog/2023-03-30-vicuna/

S. Jin and A. Bestavros. Popularity-aware greedy dual-size web proxy caching algorithms. In
Proceedings 20th IEEE International Conference on Distributed Computing Systems, pages 254–
261. IEEE, 2000.

Y. Jin, Z. Yang, and Z. Wang. Is pessimism provably efficient for offline RL? In International
Conference on Machine Learning, pages 5084–5096. PMLR, 2021.

E. Kamalloo, X. Zhang, O. Ogundepo, N. Thakur, D. Alfonso-Hermelo, M. Rezagholizadeh, and
J. Lin. Evaluating embedding APIs for information retrieval, 2023.

S. Kim, K. Mangalam, J. Malik, M. W. Mahoney, A. Gholami, and K. Keutzer. Big little transformer
decoder, 2023.

A. Köpf, Y. Kilcher, D. von Rütte, S. Anagnostidis, Z.-R. Tam, K. Stevens, A. Barhoum, N. M. Duc,
O. Stanley, R. Nagyfi, et al. Openassistant conversations–democratizing large language model
alignment. arXiv preprint arXiv:2304.07327, 2023.

S. Kumar and P. Singh. An overview of modern cache memory and performance analysis of
replacement policies. In 2016 IEEE International Conference on Engineering and Technology
(ICETECH), pages 210–214. IEEE, 2016.

D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim. LRFU: A spectrum of
policies that subsumes the least recently used and least frequently used policies. IEEE Transactions
on Computers, 50(12):1352–1361, 2001.

Y. Leviathan, M. Kalman, and Y. Matias. Fast inference from transformers via speculative decoding.
arXiv preprint arXiv:2211.17192, 2022.

Y. Liu, D. Iter, Y. Xu, S. Wang, R. Xu, and C. Zhu. Gpteval: Nlg evaluation using gpt-4 with better
human alignment. arXiv preprint arXiv:2303.16634, 2023.

S. Mukhopadhyay and A. Sinha. Online caching with optimal switching regret. In 2021 IEEE
International Symposium on Information Theory (ISIT), pages 1546–1551. IEEE, 2021.

H. Nori, N. King, S. M. McKinney, D. Carignan, and E. Horvitz. Capabilities of GPT-4 on medical
challenge problems. arXiv preprint arXiv:2303.13375, 2023.

OpenAI. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback.
arXiv preprint arXiv:2203.02155, 2022.

D. Paperno, G. Kruszewski, A. Lazaridou, Q. N. Pham, R. Bernardi, S. Pezzelle, M. Baroni, G. Boleda,
and R. Fernández. The LAMBADA dataset: Word prediction requiring a broad discourse context.
arXiv preprint arXiv:1606.06031, 2016.

D. Patterson, J. Gonzalez, Q. Le, C. Liang, L.-M. Munguia, D. Rothchild, D. So, M. Texier, and
J. Dean. Carbon emissions and large neural network training. arXiv preprint arXiv:2104.10350,
2021.

P. Rashidinejad, B. Zhu, C. Ma, J. Jiao, and S. Russell. Bridging offline reinforcement learning and
imitation learning: A tale of pessimism. Advances in Neural Information Processing Systems, 34:
11702–11716, 2021.

P. Rigollet and J.-C. Hütter. High dimensional statistics. Lecture notes for course 18S997, 813(814):
46, 2015.

J. Saad-Falcon, A. Singh, L. Soldaini, M. D’Arcy, A. Cohan, and D. Downey. Embedding recycling
for language models, 2023.

T. Schuster, A. Fisch, J. Gupta, M. Dehghani, D. Bahri, V. Q. Tran, Y. Tay, and D. Metzler. Confident
adaptive language modeling, 2022.

12

O. Sharir, B. Peleg, and Y. Shoham. The cost of training NLP models: A concise overview. arXiv
preprint arXiv:2004.08900, 2020.

J. Shuja, K. Bilal, W. Alasmary, H. Sinky, and E. Alanazi. Applying machine learning techniques
for caching in next-generation edge networks: A comprehensive survey. Journal of Network and
Computer Applications, 181:103005, 2021.

A. J. Smith. Cache memories. ACM Computing Surveys (CSUR), 14(3):473–530, 1982.

W. Stallings and G. K. Paul. Operating Systems: Internals and Design Principles, volume 9. Pearson
New York, 2012.

J. Wang. A survey of web caching schemes for the internet. ACM SIGCOMM Computer
Communication Review, 29(5):36–46, 1999.

J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou,
D. Metzler, et al. Emergent abilities of large language models. arXiv preprint arXiv:2206.07682,
2022a.

T. Wei, J. Qi, and S. He. A flexible multi-task model for BERT serving, 2022b.

S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V. Lin,
et al. Opt: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068, 2022.

C. Zhou, Q. Li, C. Li, J. Yu, Y. Liu, G. Wang, K. Zhang, C. Ji, Q. Yan, L. He, H. Peng, J. Li, J. Wu,
Z. Liu, P. Xie, C. Xiong, J. Pei, P. S. Yu, and L. Sun. A comprehensive survey on pretrained
foundation models: A history from BERT to ChatGPT, 2023.

D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Christiano, and G. Irving.
Fine-tuning language models from human preferences. arXiv preprint arXiv:1909.08593, 2019.

13

Appendix

A Discussions on the Choice of Output, Model and Cost

The proposed framework is flexible in the choice of outputs, models and costs. Below we discuss
several possible choices and combinations of output, models and costs that are most practically
relevant.

Per-token Output and Per-sentence Output. We have two design choices of the desired output in
each round, namely per-token output and per-sentence output.

For per-token output, we aim at generating one token at each round as a response of the queries. In
this case, we only cache the next token for a given query and estimate the cost for generating next
token. We also have the flexibility of choosing different models to generate each token in each round.

For per-sentence output, we aim at generating a complete response at each round. In this case, we
cache the whole responses for a given query, and estimate the cost for generating the whole responses.
This may introduce more variance in the cost due to the variation and randomness in the length of the
generated responses.

Choices of Costs The cost can be chosen as FLOPS, latency of the model, the price for API calls,
user satisfaction of the results, or a combination of all the four factors.

Model multiplexing A common choice of model ensembles is a pair of small and large models.
The cost for small model Cs(q) can be written as Cs(q) = Cs,0(q) + Y (q)Cs,1(q). Here Y (q) is a
binary random variable, indicating whether the small model outputs satisfying results (Y (q) = 0)
or not (Y (q) = 1). In the case when the small model outputs a satisfying response, the incurred
cost is Cs,0(q). In the case when the small model outputs a bad response, the incurred cost is
Cs,0(q) + Cs,1(q). We discuss two possible choices of Y (q), Cs,0(q) and Cs,1(q) based on two
different evaluation pipeline as below.

• One-time evaluation pipeline. For the one-time evaluation pipeline, we can only call one
of the models once and the generated content cannot be changed. In this case, Cs,0(q) can
be set as the cost for running the small model to generate responses, Y (q) is set to be 1 if
the user is not satisfied with the response, and Cs,1(q) is the incurred cost for unsatisfactory
of the user. One can similarly set the same cost for the large model.

• Correction-based evaluation pipeline. For correction-based evaluation, we may re-
generate the content with a different model if it is unsatisfying, and get an extra cost for
fixing the content. Such evaluation can be easily combined with LLM Cascade (Frantar et al.,
2023) or the idea from Big Little Transformer Decoder (Kim et al., 2023) and Spectulative
sampling (Chen et al., 2023a). For example, after running the small model, we run the large
model once to infer all the log probabilities of the small model output in parallel, and reject
its output if the log probabilities are low. If the small model output is rejected, we will set
Y (q) = 1 and run large model to re-generate the responses. In this case, Cs,0(q) is the cost
of running the small model for generating responses, and running the large model once for
checking the probability. And Cs,1(q) is the cost of running the large model to generate the
response.

We also remark here that in the special case when the cost for the small model is much smaller than
that of the large model under the correction-based evaluation pipeline, the cascade selector which
always runs the small model first may give better performance than the model multiplexer if the
accuracy of the model multiplexer is low, since running small model does not introduce too much
cost compared to running large model. In this situation, the cascade selector can also be combined
with LEC caching to further improve the performance.

On the other hand, we may also choose among models with similar size but different expertise,
including coding, summarization and chat etc. In this case, we also expect to see different qualities
and cost of responses for specific queries.

14

B Generalization to Variable Size Cache

For the variable-size caching problem, assume that the cache size of q is a deterministic scalar,
denoted as S(q). In the population case we design the cache as follows:

L⋆ = argmin
L:

∑
q∈L S(q)≤L

∑
q∈Q

P (q)1(q ̸∈ L)min (c⋆s(q), c
⋆
l (q)) .

In the case when all S, P, c⋆s, c
⋆
l are known, one may solve the above constrained optimization problem

for the optimal caching. When S(q) ≪ L, a good cache replacement algorithm is GDSF itself, which
replaces the query with the smallest expected cost per-size P (q)min (c⋆s(q), c

⋆
l (q)) /S(q) rather than

expected cost per-query.

A more practical setting is the case when the cache size for each query S(q) is a random variable.
Due to the randomness in the generation procedure, we expect to see responses of different lengths
even when we use the same model to process the same query. In each round, we will have a generated
response with size s(q) that is sampled from the random variable S(qt). We conjecture that the
optimal cache replacement algorithm is to replace the query with the smallest expected cost per-size
P (q)min (c⋆s(q), c

⋆
l (q)) /s(q) as well, where s(q) is the size of the cached queries and responses.

C Generalization to Multiplexing of Multiple Models

The proposed algorithm can be generalized to model multiplexing with multiple models. Assume
that we have K models, and each model has a random cost function Ck(q) with expectation c⋆k(q).
In this case, the optimal population algorithm is

π⋆(q) = argmin
k∈[K]

c⋆k(q),

L⋆ = argmin
L:|L|≤L

∑
q∈Q

P (q)1(q ̸∈ L) min
k∈[K]

c⋆k(q).

And the finite sample algorithm is natural to follow. In practice, one may train a neural network with
K dimensional output to predict the cost for each of the models.

D Differences Between the Optimal Policy and the Baseline

Consider the population setting in Section 3, where we optimize caching without model multiplexing.
We show via a simple example below that without considering the cost for individual query, LFU can
be highly sub-optimal compared to the optimal caching strategy in the population. The ratio
Proposition 1. For any fixed cost function c⋆l , one can design some distribution of queries P such
that for any ϵ > 0,

cost(LLFU)

cost(LLEC)
≥ maxq∈Q c⋆l (q)

minq∈Q c⋆l (q)
− ϵ.

The construction can be seen from a two-query example. Let c⋆l (q1) = c1, c⋆l (q2) = c2 with c1 < c2.
Let P (q1) =, P (q2) = This shows that when the individual cost varies drastically for different
queries, the total expected cost for LFU can be highly sub-optimal compared with the cost-aware
caching strategy.

To compare the performance of the model multiplexing in Section 4, we take the cache size L = 0.
We have the following proposition for the performance improvement of the model multiplexer.
Proposition 2. Let L = 0. The difference in cost between the baseline and the model multiplexer
can be written as

cost(L⋆, πs)− cost(L⋆, π⋆) =
∑
q∈Q

P (q)max(0, c⋆s(q)− c⋆l (q)),

cost(L⋆, πl)− cost(L⋆, π⋆) =
∑
q∈Q

P (q)max(0, c⋆l (q)− c⋆s(q)).

15

The proof is a direct result of plugging in the cost definition. We see that the gap between πs and
the optimal model multiplexer becomes larger when a large fraction of the queries have smaller cost
when processed by the large models, and vice versa.

E Proof of Theorem 1

Proof. We first prove the following lemma on the lower bound of P (q) for any q ∈ L⋆.

Lemma 1. For any q ∈ L⋆, we have P (q) ≥ B1/(B2|Q|).

Proof. From the fact that
∑

q∈Q P (q) = 1 and for any q ∈ L⋆ and any q′ ̸∈ L⋆, P (q) ≥
P (q′)c⋆l (q

′)/c⋆l (q) ≥ P (q′)B1/B2, we know that for any q ∈ L⋆, P (q) ≥ B1/(B2|Q|).

We define the following three events:

E1 =

{
∀q ∈ Q, |P̂ (q)− P (q)| ≤

√
2 log(6/δ)

N

}
,

E2 =

{
∀q ∈ Q, |ĉl(q)− c⋆l (q)| ≤ (B2 −B1)

√
log(6|Q|/δ)

2
∑N

n=1 1(qn = q)

}
,

E3 =

{
∀q ∈ L⋆,

N∑
n=1

1(qn = q) ≥ B1N

2B2|Q|

}
.

We know that the first two events hold simutaneously with probability at least 1−2δ/3 from Lemma 3.
For the third event, from the Chernoff bound, we know that for any q ∈ Q, we have

P

(
N∑

n=1

1(qn = q) ≥ NP (q)/2

)
≥ 1− exp(−NP (q)/8).

From Lemma 1 we know that for any q ∈ L⋆, P (q) ≥ B1/(B2|Q|). Thus the above inequality
further implies

P

(
N∑

n=1

1(qn = q) ≥ B1N

2B2|Q|

)
≥ 1− exp

(
− B1N

8B2|Q|

)
≥ 1− δ

3L
.

The last inequality is due to our assumption that N ≥ 8B2|Q| log(3L/δ)
B1

.

We condition on the three events from now on. The last two events imply that for any q ∈ L⋆,

|ĉl(q)− c⋆l (q)| ≤ (B2 −B1)

√
B2|Q| log(6|Q|/δ)

NB1
.

We have

cost(L̂)− cost(L⋆) =
∑
q∈Q

P (q)
(
1(q ̸∈ L̂)− 1(q ̸∈ L⋆)

)
c⋆l (q)

=
∑
q∈Q

P (q)
(
1(q ∈ L⋆)− 1(q ∈ L̂)

)
c⋆l (q).

Let ĉl,pes(q) = ĉl(q)− (B2 −B1)
√

log(6|Q|/δ)
2
∑N

n=1 1(qn=q)
. Note that for any q ∈ L⋆, we know that

P̂ (q)ĉl,pes(q) ≥ max

(
P (q)−

√
2 log(6/δ)

N
, 0

)c⋆l (q)− 2(B2 −B1)

√
B2|Q| log(6|Q|/δ)

NB1

≥ P (q)c⋆l (q)− C(B2 −B1) ·

√
B2|Q| log(6|Q|/δ)

NB1
.

16

And similarly, for any q ̸∈ L⋆, we know that

P̂ (q)ĉl,pes(q) ≤

(
P (q) +

√
2 log(6/δ)

N

)
c⋆l (q) ≤ P (q)c⋆l (q) +B2

√
2 log(6/δ)

N
.

Now consider any q ∈ L̂ but q ̸∈ L⋆, and any other q′ ∈ L⋆ but q′ ̸∈ L̂. We have
P (q′)c⋆l (q

′)− P (q)c⋆l (q)

≤P̂ (q′)ĉl,pes(q
′)− P̂ (q)ĉl,pes(q) + C(B2 −B1) ·

√
B2|Q| log(6|Q|/δ)

NB1

≤C(B2 −B1) ·

√
B2|Q| log(6|Q|/δ)

NB1
.

Overall, we know that conditioned on E1 ∩ E2 ∩ E3, we have

cost(L̂)− cost(L⋆) ≤C(B2 −B1)L ·

√
B2|Q| log(6|Q|/δ)

NB1
.

And this implies that

E[cost(L̂)− cost(L⋆)] ≤ C(B2 −B1)L ·

√
B2|Q| log(6|Q|/δ)

NB1
+ δB2.

Taking δ = 1/N finishes the proof.

F Proof of Theorem 2

Proof. Upper Bound. We start with the upper bound by the following lemma.

Lemma 2. In each round t ∈ [T], we always have

Lt+1 ∈ argmin
L

∑
q∈Q

P̂t(q)1(q ̸∈ L)ĉl,t(q).

Proof. We prove this lemma by induction. First, consider the case when |Lt+1| < L. In this scenario,
we always put the query into the cache. And Lt+1 contains all queries with non-zero P̂t. Thus such
Lt+1 is always one of the minimizers.

Now consider the case when |Lt+1| = L. Assume that the conclusion holds for time step t. Now
consider the case of t+ 2. When the new query is in the cache qt+1 ∈ Lt+1, the cache will remain
unchanged Lt+2 = Lt+1. In this case, the estimated probability for qt+1 is increased, while the
others are decreased, and ĉl,t+1 is not changed for any query. Thus Lt+2 is still the minimizer. When
the new query does not hit the cache, the estimated probability times costs for all other queries
except for qt+1 are decreased proportionally since P̂t+1 is decreased proportionally while ĉl,t+1 is
not changed for all other queries. Thus the only potential change in the relative order of costs is that
of qt+1. Since we can add qt+1 at the end of query, we know that after this round Lt+2 is still the
minimizer.

Let gk(q) be the length of the interval between the k-th and k+1-th arrival of query q in the sequence
of received queries (we set gk(q) = 0 if k exceeds the total number of times q is queried.). Define the
following three events:

E1,t =

{
∀q ∈ Q, |P̂t−1(q)− P (q)| ≤ min

(
1,

√
2 log(6T/δ)

t− 1

)}
,

E2,t =

{
∀q ∈ Q, ĉl,t−1(q)− c⋆l (q) ∈

[
−2(B2 −B1)min

(
1,

√
log(6T |Q|/δ)

2
∑t−1

i=1 1(ci ̸= ×, qi = q)

)
, 0

]}
,

E3 =

{
∀q ∈ L⋆, k ≤ T, gk(q) ≤

B2|Q| log(3TL/δ)
B1

}
.

We prove that the three events hold simultaneously with probability at least 1− δ:

17

Lemma 3. We have

P

((
T⋂

t=T 2/3

E1,t ∩ E2,t

)
∩ E3

)
≥ 1− δ.

Proof. From the Dvoretzky-Kiefer-Wolfowitz inequality, we have

P(max
q∈Q

|P̂t(q)− P (q)| > ϵ) ≤ 2 exp(−ϵ2t/2).

By taking ϵ =
√

2 log(6T/δ)
t , we see that maxq∈Q |P̂t(q)− P (q)| ≤ ϵ holds with probability at least

1 − δ/(3T) for any fixed t ∈ [T]. Now by taking a union bound over all t ∈ [T], we know that⋂T
t=1 E1,t holds with probability at least 1− δ/3.

For the second event, from Hoeffding’s inequality, we have for any q ∈ Q,

P

(
|ĉl,t(q)− c⋆l (q)| ≤ (B2 −B1)min

(
1,

√
log(6T |Q|/δ)

2
∑t−1

s=1 1(cs ̸= ×, qs = q)

))
≥ 1− δ

3T |Q|
.

Now taking union bound over t ∈ [T] and q ∈ Q gives that
⋂T

t=1 E2,t holds with probability at least
1− δ/3.

For the third event, we know that the interval gk(q) satisfies a geometric distribution with success
probability P (q). For any q ∈ L⋆, we have

P (gk(q) ≥ s) ≤ (1− P (q))s ≤
(
1− B1

|Q|B2

)s

.

By taking s = B2|Q| log(TL/δ)
B1

, we know that

P
(
gk(q) ≥

B2|Q| log(3TL/δ)
B1

)
≤
(
1− B1

|Q|B2

)s

≤ δ

3TL
.

By taking union bounds over all q ∈ L⋆ and k we get the result.

Let Et =
⋂t

s=1 E1,s ∩ E2,s. We can write the regret as follows.

Regret(T) ≤
T∑

t=1

E[cost(qt,Lt)− cost(qt,L⋆)1(Et)] + E[cost(qt,Lt)− cost(qt,L⋆)1(Ēt)]

≤
T∑

t=1

E[cost(qt,Lt)− cost(qt,L⋆)1(Et)] + CδTB2

= CδTB2 +

T∑
t=1

E[cost(qt,Lt)− cost(qt,L⋆)1(Et)].

Note that the sampling distribution of qt is independent of Et. Thus we can write the expectation as

T∑
t=1

E[cost(qt,Lt)− cost(qt,L⋆)1(Et)] ≤
T∑

t=1

∑
q∈Q

E[P (q) (1(q ̸∈ Lt)− 1(q ̸∈ L⋆)) c⋆l (q) | Et]

Let Tt(q) =
∑t−1

i=1 1(qi ̸∈ Li, qi = q). Note that the event ci = × is equivalent to that qi ∈ Li. Now
at each round t, conditioned on event Et, we know that for any q ∈ L⋆,

P̂t−1(q)ĉl,t−1(q) ≥ max

(
P (q)−min

(
1,

√
2 log(6T/δ)

t− 1

)
, 0

)(
c⋆l (q)− 2(B2 −B1) ·min

(
1,

√
log(6T |Q|/δ)

Tt(q)

))

≥ P (q)c⋆l (q)− C(B2 −B1) ·min

(
1,

√
log(6T |Q|/δ)

Tt(q)

)
.

18

And similarly, for any q ̸∈ L⋆, we know that

P̂t(q)ĉl,t−1(q) ≤

(
P (q) + min

(
1,

√
2 log(8T/δ)

t− 1

))
c⋆l (q) ≤ P (q)c⋆l (q) +B2 min

(
1,

√
2 log(8T/δ)

t− 1

)
.

Now consider any q ∈ Lt but q ̸∈ L⋆, and any other q′ ∈ L⋆ but q′ ̸∈ Lt. We have

P (q′)c⋆l (q
′)− P (q)c⋆l (q)

≤P̂ (q′)ĉl,t−1(q
′)− P̂ (q)ĉl,t−1(q) + C(B2 −B1) ·min

(
1,

√
log(6T |Q|/δ)

Tt(q)

)
+B2 min

(
1,

√
2 log(6T/δ)

t− 1

)

≤C(B2 −B1) ·min

(
1,

√
log(6T |Q|/δ)

Tt(q)

)
+B2 min

(
1,

√
2 log(8T/δ)

t− 1

)
.

Thus we know that

T∑
t=1

E[cost(qt,Lt)− cost(qt,L⋆)1(Et)]

≤C

T∑
t=1

E

∑
q∈L⋆

1(q ̸∈ Lt)(B2 −B1) ·min

(
1,

√
log(6T |Q|/δ)

Tt(q)

)
+B2 min

(
1,

√
2 log(6T/δ)

t− 1

)
| Et

 .

Thus we have

T∑
t=1

E[cost(qt,Lt)− cost(qt,L⋆)1(Et)]

≤B2Tδ + C

T∑
t=1

E

[∑
q∈L⋆

1(q ̸∈ Lt)(B2 −B1) ·min

(
1,

√
log(6T |Q|/δ)

Tt(q)

)

+B2 min

(
1,

√
2 log(6T/δ)

t− 1

)
| Et ∩ E3

]

≤C ·

(
B2Tδ + LB2

√
2T log(6T/δ)

+ (B2 −B1) log(6T |Q|/δ) ·
∑
q∈L⋆

T∑
t=1

E

[
1(q ̸∈ Lt) ·min

(
1,

√
1

Tt(q)

)
| Et ∩ E3

])
.

Now for each q ∈ L⋆, we look at the term
∑T

t=1 E
[
1(q ̸∈ Lt) ·min

(
1,
√

1
Tt(q)

)
| Et ∩ E3

]
. We

prove the following lemma:

Lemma 4. We have

T∑
t=1

E

[
1(q ̸∈ Lt) ·min

(
1,

√
1

Tt(q)

)
| Et ∩ E3

]
≤ CB2|Q| log(3TL/δ)

√
T

B1
+ Tδ.

19

Proof. Let tk(q) =
∑k−1

l=1 gl(q) be the step that the k-th query of q arrives, with t0(q) = 0. And let
E = (

⋂T
t=1 Et) ∩ E3. The summation can be written as

T∑
t=1

E

[
1(q ̸∈ Lt) ·min

(
1,

√
1

Tt(q)

)
| Et ∩ E3

]

≤
T∑

t=1

E

[
1(q ̸∈ Lt) ·min

(
1,

√
1

Tt(q)

)
| E

]
+ Tδ

=

T∑
k=0

E

 tk+1(q)∑
t=tk(q)+1

1(q ̸∈ Lt) ·min

(
1,

√
1

Tt(q)

)
| E

+ Tδ

≤
T∑

k=0

E

 tk+1(q)∑
t=tk(q)+1

1(q ̸∈ Ltk+1(q)) ·min

(
1,

√
1

Ttk(q)+1(q)

)
| E

+ Tδ.

The last inequality is due to (a) Tt(q) does not change if at round t the query is not q; (b) if
q ∈ Ltk+1(q), we will have q ∈ Lt for any t ∈ [tk(q)+ 1, tk+1(q)] since q never arrives in the middle
and must remain in the cache set until tk+1(q). Now from event E3, we know that

T∑
k=0

E

 tk+1(q)∑
t=tk(q)+1

1(q ̸∈ Ltk+1(q)) ·min

(
1,

√
1

Ttk(q)+1(q)

)
| E

≤

T∑
k=0

E

[
1(q ̸∈ Ltk+1(q)) · gk(q) ·min

(
1,

√
1

Ttk(q)+1(q)

)
| E

]

≤B2|Q| log(3TL/δ)
B1

·
T∑

k=0

E

[
1(q ̸∈ Ltk+1(q)) ·min

(
1,

√
1

Ttk(q)+1(q)

)
| E

]
We know that Ttk+1(q)+1(q) = Ttk+1(q)(q) + 1 = Ttk(q)+1(q) + 1 if q ̸∈ Ltk+1(q) since the
query q missing the cache will be sent to the model. Thus overall, we know that we have either
Ttk+1(q)+1(q) = Ttk(q)+1(q) + 1, or 1(q ̸∈ Ltk+1(q)) ·

√
1

Ttk(q)+1(q)
= 0 and Ttk+1(q)+1(q) =

Ttk(q)+1(q). Thus overall, we have
T∑

k=0

E

[
1(q ̸∈ Ltk+1(q)) ·min

(
1,

√
1

Ttk(q)+1(q)

)
| E

]
≤

T∑
k=1

1√
k
≤ C

√
T .

By taking δ = 1/T , we know the final regret can be bounded by

Regret(T) ≤ CL(B2 −B1)B2|Q|L log2(T |Q|)
B1

·
√
T .

Lower bound. Now we turn to the lower bound. We apply Le Cam’s two point lemma for the regret.
Consider any family of algorithm {Lt}Tt=1, where Lt can be dependent on observations prior to time
step t. We aim to design two instances with the same P (q) and different random variable Cl(q) such
that for any algorithm, the incurred cost for one of the instance is at least Ω(

√
T). Consider the

case when we only have two candidate queries Q = {q1, q2}. Set P (q1) = P (q2) = 1/2 for both
instances and the cache size L = 1. For instance one, we let C(1)

l (q1) ∼ Bern(1/2), C(1)
l (q2) ∼

Bern(1/2 + ∆). For instance two, we let C(2)
l (q1) ∼ Bern(1/2), C(2)

l (q2) ∼ Bern(1/2−∆). We
have
inf

{Lt}T
t=1

sup
P,Cl

Regret(T) ≥ inf
{Lt}T

t=1

sup
Cl∈{C(1)

l ,C
(2)
l }

Regret(T)

= inf
{Lt}T

t=1

sup
Cl∈{C(1)

l ,C
(2)
l }

T∑
t=1

E

[
1

2

2∑
i=1

1(qi ̸∈ Lt)c
⋆
l (qi)−

1

2

2∑
i=1

1(qi ̸∈ L⋆)c⋆l (qi)

]
.

20

Let Regret(1)(T) be the total regret when Cl = C
(1)
l , and Regret(2)(T) be the total regret when

Cl = C
(2)
l . Then we can verify that for any sequence of Lt,

Regret(1)(T) + Regret(2)(T) ≥ ∆T

2
.

Thus from Le Cam’s Lemma, we have

inf
{Lt}T

t=1

sup
P,Cl

Regret(T) ≥ ∆T

4
· (1− TV(P

c
(1)
l

,P
c
(2)
l

))

≥ ∆T

8
· exp(−DKL(Pc

(1)
l

,P
c
(2)
l

))

≥ ∆T

8
· exp(−2∆2E1[T2]).

Here E1[T2] is the expected times of observing the cost of q2 under instance one. Taking ∆ = T−1/2

and minimizing the above equation with E1[T2] gives the desired bound.

G Proof of Theorem 3

Proof. We define the following four events:

E1 =

{
∀q ∈ Q, |P̂ (q)− P (q)| ≤

√
2 log(8/δ)

N

}
,

E2 =

{
∀q ∈ Q, |ĉl(q)− c⋆l (q)| ≤ (B2 −B1)

√
log(8|Q|/δ)

2
∑N

n=1 1(qn = q)

}
,

E3 =

{
∀q ∈ Q, |ĉs(q)− c⋆s(q)| ≤ (B2 −B1)

√
log(8|Q|/δ)

2
∑N

n=1 1(qn = q)

}
,

E4 =

{
∀q ∈ L⋆,

N∑
n=1

1(qn = q) ≥ N · P (q)/2

}
.

We know that the above events hold simultaneously with probability at least 1− δ from Lemma 3.
We condition on the four events from now on. We first decompose the cost difference as

cost(L̂, π̂)− cost(L⋆, π⋆) = cost(L̂, π̂)− cost(L̂, π⋆) + cost(L̂, π⋆)− cost(L⋆, π⋆).

The first difference can be further written as

cost(L̂, π̂)− cost(L̂, π⋆) =
∑
q∈Q

P (q)1(q ̸∈ L̂)(c⋆s(q)π̂(q) + c⋆l (q)(1− π̂(q))− c⋆s(q)π
⋆(q)− c⋆l (q)(1− π⋆(q)))

=
∑
q∈Q

P (q)1(q ̸∈ L̂)(c⋆s(q)π̂(q) + c⋆l (q)(1− π̂(q))−min(c⋆s(q), c
⋆
l (q)))

≤
∑
q∈Q

P (q)(c⋆s(q)π̂(q) + c⋆l (q)(1− π̂(q))−min(c⋆s(q), c
⋆
l (q)))

=
∑
q∈Q

P (q) (c⋆s(q)1(ĉs(q) ≤ ĉl(q)) + c⋆l (q)1(ĉs(q) > ĉl(q))−min(c⋆s(q), c
⋆
l (q))) .

Note that if ĉs(q) − ĉl(q) has the same sign as c⋆s(q) − c⋆l (q), the difference c⋆s(q)1(ĉs(q) ≤
ĉl(q)) + c⋆l (q)1(ĉs(q) > ĉl(q)) −min(c⋆s(q), c

⋆
l (q)) becomes 0. Otherwise, if c⋆s(q) − c⋆l (q) > 0,

we know that

c⋆s(q)− c⋆l (q) ≤ ĉs(q)− ĉl(q) + |ĉs(q)− c⋆s(q)|+ |ĉl(q)− c⋆l (q)| ≤ |ĉs(q)− c⋆s(q)|+ |ĉl(q)− c⋆l (q)|.

21

And similarly if c⋆s(q)− c⋆l (q) ≤ 0, we know that c⋆l (q)− c⋆s(q) ≤ |ĉs(q)− c⋆s(q)|+ |ĉl(q)− c⋆l (q)|.
Overall, we have

E[cost(L̂, π̂)− cost(L̂, π⋆)] ≤ E

∑
q∈Q

P (q)|ĉs(q)− c⋆s(q)|+ |ĉl(q)− c⋆l (q)|

(i)

≤ E

√∑
q∈Q

P (q)(ĉs(q)− c⋆s(q))
2 +

√∑
q∈Q

P (q)(ĉl(q)− c⋆l (q))
2

(ii)

≤

√√√√√E

∑
q∈Q

P (q)(ĉs(q)− c⋆s(q))
2

+

√√√√√E

∑
q∈Q

P (q)(ĉl(q)− c⋆l (q))
2

(iii)

≤ C(B2 −B1)

√
|Q| log(N)

N
.

Here (i) is due to Cauchy-Schwarz, and (ii) is from Jensen’s inequality, and (iii) is the standard rate
of the least squared estimator (Rigollet and Hütter, 2015).

For the second difference, we have

cost(L̂, π⋆)− cost(L⋆, π⋆) =
∑
q∈Q

P (q)
(
1(q ̸∈ L̂)− 1(q ̸∈ L⋆)

)
min(c⋆s(q), c

⋆
l (q))

=
∑
q∈Q

P (q)
(
1(q ∈ L⋆)− 1(q ∈ L̂)

)
min(c⋆s(q), c

⋆
l (q)).

Note that for any q ∈ L⋆, we know that

P̂ (q)

(
min (ĉs(q), ĉl(q))− (B2 −B1)

√
log(8|Q|/δ)

2
∑N

n=1 1(qn = q)

)

≥max

(
P (q)−

√
2 log(8/δ)

N
, 0

)
·

(
min (c⋆s(q), c

⋆
l (q))− 2(B2 −B1)

√
log(8|Q|/δ)

2
∑N

n=1 1(qn = q)

)

≥P (q)min (c⋆s(q), c
⋆
l (q))− C(B2 −B1) ·

√
log(8|Q|/δ)

2
∑N

n=1 1(qn = q)

≥P (q)min (c⋆s(q), c
⋆
l (q))− C(B2 −B1) ·

√
B2|Q| log(8|Q|/δ)

B1N
.

The last inequality uses event E3 and Lemma 1. And similarly, for any q ̸∈ L⋆, we know that

P̂ (q)

(
min (ĉs(q), ĉl(q))− (B2 −B1)

√
log(8|Q|/δ)

2
∑N

n=1 1(qn = q)

)
≤

(
P (q) +

√
2 log(8/δ)

N

)
min (c⋆s(q), c

⋆
l (q))

≤ P (q)min (c⋆s(q), c
⋆
l (q)) +B2

√
2 log(8/δ)

N
.

Now consider any q ∈ Lt but q ̸∈ L⋆, and any other q′ ∈ L⋆ but q′ ̸∈ Lt. We have

P (q′)min (c⋆s(q
′), c⋆l (q

′))− P (q)min (c⋆s(q), c
⋆
l (q))

≤P̂ (q′)

(
min (ĉs(q

′), ĉl(q
′))− (B2 −B1)

√
log(8|Q|/δ)

2
∑N

n=1 1(qn = q′)

)

− P̂ (q)

(
min (ĉs(q), ĉl(q))− (B2 −B1)

√
log(8|Q|/δ)

2
∑N

n=1 1(qn = q)

)
+ C(B2 −B1) ·

√
B2|Q| log(8|Q|/δ)

B1N

≤C(B2 −B1) ·

√
B2|Q| log(8|Q|/δ)

B1N
.

22

Here the last inequality uses the fact that q is inside Lt and thus the difference between the first two
terms are upper bounded by 0. Finally, we know that conditioned on E1 ∩ E2 ∩ E3 ∩ E4, we have

cost(L̂, π⋆)− cost(L⋆, π⋆) ≤CL(B2 −B1) ·

√
B2|Q| log(8|Q|/δ)

B1N
.

Overall, we know that

E[cost(L̂, π̂)− cost(L̂, π⋆)] ≤ B2δ + CL(B2 −B1) ·

√
B2|Q| log(8|Q|/δ)

B1N
.

Taking δ = 1/N finishes the proof.

H Proof of Theorem 4

Proof. Let gk(q) be the length of the interval between the k-th and (k+1)-th arrival of query q in the
sequence of received queries (we set gk(q) = 0 if k exceeds the total number of times q is queried.).
Define the following four events:

E1,t =

{
∀q ∈ Q, |P̂t−1(q)− P (q)| ≤ min

(
1,

√
2 log(8T/δ)

t− 1

)}
,

E2,t =

{
∀q ∈ Q, ĉl,t−1(q) ∈

[
c⋆l (q)− 2(B2 −B1)min

(
1,

√
log(8T |Q|/δ)

2
∑t−1

i=1 1(si = 0, qi = q)

)
, c⋆l (q)

]}
,

E3,t =

{
∀q ∈ Q, ĉs,t−1(q) ∈

[
c⋆s(q)− 2(B2 −B1)min

(
1,

√
log(8T |Q|/δ)

2
∑t−1

i=1 1(si = 1, qi = q)

)
, c⋆s(q)

]}
,

E4 =

{
∀q ∈ L⋆, k ≤ T, gk(q) ≤

B2|Q| log(4TL/δ)
B1

}
.

From the same analysis as Lemma 3, we know that the four events (
⋂t

s=1 E1,s ∩ E2,s ∩ E3,s) ∩ E4

hold simultaneously with probability at least 1− δ.

Let Et =
⋂t

s=1 E1,s ∩ E2,s ∩ E3,s. The regret can be decomposed as follows.

Regret(T)

=

T∑
t=1

E[cost(qt,Lt, πt)− cost(qt,L⋆, π⋆)]

≤
T∑

t=1

E[cost(qt,Lt, πt)− cost(qt,L⋆, π⋆)1(Et)] + E[cost(qt,Lt, πt)− cost(qt,L⋆, π⋆)1(Ēt)]

≤
T∑

t=1

E[cost(qt,Lt, πt)− cost(qt,L⋆, π⋆)1(Et)] + δTB2

=

T∑
t=1

E[(cost(qt,Lt, πt)− cost(qt,Lt, π
⋆) + cost(qt,Lt, π

⋆)− cost(qt,L⋆, π⋆))1(Et)] + δTB2.

The first difference can be further written as

E[cost(qt,Lt, πt)− cost(qt,Lt, π
⋆) | Et]

=E[1(qt ̸∈ Lt)(c
⋆
s(qt)πt(qt) + c⋆l (qt)(1− πt(qt))− c⋆s(qt)π

⋆(qt)− c⋆l (qt)(1− π⋆(qt))) | Et]

=E[1(qt ̸∈ Lt)(c
⋆
s(qt)πt(qt) + c⋆l (qt)(1− πt(qt))−min(c⋆s(qt), c

⋆
l (qt))) | Et]

≤E[c⋆s(qt)πt(qt) + c⋆l (qt)(1− πt(qt))−min(c⋆s(qt), c
⋆
l (qt)) | Et]

=E[c⋆s(qt)1(ĉs,t(qt) ≤ ĉl,t(qt)) + c⋆l (qt)1(ĉs,t(qt) > ĉl,t(qt))−min(c⋆s(qt), c
⋆
l (qt)) | Et].

23

Note that if ĉs,t(qt)− ĉl,t(qt) has the same sign as c⋆s(qt)− c⋆l (qt), the difference c⋆s(qt)1(ĉs,t(qt) ≤
ĉl,t(qt)) + c⋆l (qt)1(ĉs,t(qt) > ĉl,t(qt)) − min(c⋆s(qt), c

⋆
l (qt)) becomes 0. Otherwise, if c⋆s(qt) −

c⋆l (qt) > 0 and ĉs,t(qt)− ĉl,t(qt) ≤ 0, we know that st = 1 and

c⋆s(q)− c⋆l (q) ≤ĉs,t(q)− ĉl,t(q) + 2(B2 −B1)min

(
1,

√
log(8T |Q|/δ)

2
∑t−1

i=1 1(si = 1, qi = q)

)

≤2(B2 −B1)min

(
1,

√
log(8T |Q|/δ)

2
∑t−1

i=1 1(si = 1, qi = q)

)
.

And similarly if c⋆s(q) − c⋆l (q) ≤ 0 and ĉs,t(qt) − ĉl,t(qt) > 0, we know that st = 0 and c⋆l (q) −
c⋆s(q) ≤ 2(B2 −B1)min

(
1,
√

log(8T |Q|/δ)
2
∑t−1

i=1 1(si=0,qi=q)

)
. Overall, we have

T∑
t=1

E[(cost(qt,Lt, πt)− cost(qt,Lt, π
⋆)]

≤2(B2 −B1)

T∑
t=1

∑
q∈Q

E

[
1(st = 1, qt = q)min

(
1,

√
log(8T |Q|/δ)

2
∑t−1

i=1 1(si = 1, qi = q)

)

+ 1(st = 0, qt = q)min

(
1,

√
log(8T |Q|/δ)

2
∑t−1

i=1 1(si = 0, qi = q)

)]
≤2(B2 −B1)

√
|Q|T log(8|Q|T/δ).

Here the last inequality uses the fact that for each q ∈ Q, the summation over time step is upper
bounded by 2

∑T (q)
i=1

√
log(8T |Q|/δ)/2i ≤ 2

√
log(8T |Q|/δ)T (q), where T (q) is the number of

steps of receiving query q in total T steps. Optimizing over T (q) gives the final bound.

For the second difference, we have

E[cost(Lt, π
⋆)− cost(L⋆, π⋆) | Et] =E

∑
q∈Q

P (q) (1(q ̸∈ Lt)− 1(q ̸∈ L⋆))min(c⋆s(q), c
⋆
l (q)) | Et

=E

∑
q∈Q

P (q) (1(q ∈ L⋆)− 1(q ∈ Lt))min(c⋆s(q), c
⋆
l (q)) | Et

 .

Note that for any q ∈ L⋆, we know that

P̂t(q)min (ĉs,t(q), ĉl,t(q))

≥max

(
P (q)−

√
2 log(8/δ)

t
, 0

)
· 1(πt(q) = 1)

(
c⋆s(q)− 2(B2 −B1)min

(
1,

√
log(8|Q|/δ)

2
∑t−1

i=1 1(si = 1, qi = q)

))

+ 1(πt(q) = 0)

(
c⋆l (q)− 2(B2 −B1)min

(
1,

√
log(8|Q|/δ)

2
∑t−1

i=1 1(si = 0, qi = q)

))

≥P (q)min (c⋆s(q), c
⋆
l (q))− (B2 −B1)

√
2 log(8/δ)

t
+ P (q) ·

(
1(πt(q) = 1)

·

(
c⋆s(q)− 2(B2 −B1)min

(
1,

√
log(8|Q|/δ)

2
∑t−1

i=1 1(si = 1, qi = q)

))

+ 1(πt(q) = 0)

(
c⋆l (q)− 2(B2 −B1)min

(
1,

√
log(8|Q|/δ)

2
∑t−1

i=1 1(si = 0, qi = q)

))
−min(c⋆s(q), c

⋆
l (q))

)

≥P (q)min (c⋆s(q), c
⋆
l (q))− C(B2 −B1) ·min

(
1,

√
log(8|Q|/δ)

2
∑t−1

i=1 1(si = πt(q), qi = q)

)
.

24

Below we justify the last inequality. First, note that πt(q) = 1 is equivalent to that ĉs,t(q) ≤ ĉl,t(q).
Thus if ĉs,t(qt) − ĉl,t(qt) has the same sign as c⋆s(qt) − c⋆l (qt), the above inequality holds. Now
consider the case when ĉs,t(qt) − ĉl,t(qt) has a different sign as c⋆s(qt) − c⋆l (qt). Assume that
ĉs,t(qt) > ĉl,t(qt) and c⋆s(qt) < c⋆l (qt). We know that πt(q) = 0, and

c⋆l (q)− 2(B2 −B1)min

(
1,

√
log(8|Q|/δ)

2
∑t−1

i=1 1(si = 0, qi = q)

)
− c⋆s(q)

>− 2(B2 −B1)min

(
1,

√
log(8|Q|/δ)

2
∑t−1

i=1 1(si = 0, qi = q)

)
.

Similarly we can prove that for the reversed case. Now for any q ̸∈ L⋆, we know that

P̂t(q)min (ĉs,t(q), ĉl,t(q)) ≤

(
P (q) +

√
2 log(8/δ)

t

)
min (c⋆s(q), c

⋆
l (q))

≤ P (q)min (c⋆s(q), c
⋆
l (q)) +B2

√
2 log(8/δ)

t
.

Now consider any q ∈ Lt but q ̸∈ L⋆, and any other q′ ∈ L⋆ but q′ ̸∈ Lt. We have

P (q′)min (c⋆s(q
′), c⋆l (q

′))− P (q)min (c⋆s(q), c
⋆
l (q))

≤P̂t(q
′)min (ĉs,t(q

′), ĉl,t(q
′))− P̂t(q)min (ĉs,t(q), ĉl,t(q))

+ C(B2 −B1) ·min

(
1,

√
log(8|Q|/δ)

2
∑t−1

i=1 1(si = πt(q), qi = q)

)
+B2

√
2 log(8/δ)

t

≤C(B2 −B1) ·min

(
1,

√
log(8|Q|/δ)

2
∑t−1

i=1 1(si = πt(q), qi = q)

)
+B2

√
2 log(8/δ)

t
.

Here the last inequality uses the fact that q is inside Lt. Thus we have
T∑

t=1

E[cost(Lt, π
⋆)− cost(L⋆, π⋆)1(Et)]

≤
T∑

t=1

E[cost(Lt, π
⋆)− cost(L⋆, π⋆)1(Et ∩ E4)] +B2Tδ

≤B2Tδ + C

T∑
t=1

E

[∑
q∈L⋆

1(q ̸∈ Lt)(B2 −B1) ·min

(
1,

√
log(8|Q|/δ)

2
∑t−1

i=1 1(si = πt(q), qi = q)

)

+B2

√
2 log(8/δ)

t
| Et ∩ E4

]

≤C ·

(
B2Tδ + LB2

√
2T log(8/δ) + (B2 −B1) log(8T |Q|/δ)

·
∑
q∈L⋆

T∑
t=1

E

[
1(q ̸∈ Lt) ·min

(
1,

√
1∑t−1

i=1 1(si = πt(q), qi = q)

)
| Et ∩ E4

])

=C ·

(
B2Tδ + LB2

√
2T log(8/δ) + (B2 −B1) log(8T |Q|/δ)

·
∑
q∈L⋆

∑
π∈{1,2}

T∑
t=1

E

[
1(q ̸∈ Lt, πt(q) = π) ·min

(
1,

√
1∑t−1

i=1 1(si = π, qi = q)

)
| Et ∩ E4

])
.

Let Tt(q, π) =
∑t−1

i=1 1(si = π, qi = q). Now for each q ∈ L⋆ and π ∈ {0, 1}, we look at the term∑T
t=1 E

[
1(q ̸∈ Lt, πt = π) ·min

(
1,
√

1
Tt(q,π)

)
| Et ∩ E4

]
. We prove the following lemma:

25

Lemma 5. We have
T∑

t=1

E

[
1(q ̸∈ Lt, πt(q) = π) ·min

(
1,

√
1

Tt(q, π)

)
| Et ∩ E4

]
≤ CB2|Q| log(3TL/δ)

√
T

B1
+ Tδ.

Proof. Let tk(q) =
∑k−1

l=1 gl(q) be the step that the k-th query of q arrives. And let E = (
⋂T

t=1 Et)∩
E4. The summation can be written as

T∑
t=1

E

[
1(q ̸∈ Lt, πt(q) = π) ·min

(
1,

√
1

Tt(q, π)

)
| Et ∩ E3

]

≤
T∑

t=1

E

[
1(q ̸∈ Lt, πt(q) = π) ·min

(
1,

√
1

Tt(q, π)

)
| E

]
+ Tδ

=

T∑
k=0

E

 tk+1(q)∑
t=tk(q)+1

1(q ̸∈ Lt, πt(q) = π) ·min

(
1,

√
1

Tt(q, π)

)
| E

+ Tδ

≤
T∑

k=0

E

 tk+1(q)∑
t=tk(q)+1

1(q ̸∈ Ltk+1(q), πtk+1
(q) = π) ·min

(
1,

√
1

Ttk(q)+1(q, π)

)
| E

+ Tδ.

The last inequality is due to (a). Tt(q, π) does not change if at round t the query is not q; (b). if
q ∈ Ltk+1(q), we will have q ∈ Lt for any t ∈ [tk(q)+ 1, tk+1(q)] since q never arrives in the middle
and must remain in the cache set until tk+1(q); (c) For t ∈ [tk(q) + 1, tk+1(q)], πt does not change
since both the frequency and cost estimator does not change for q. From the definition of tk(q), we
know that Ttk(q)+1(q, π) ≥ 1 and thus we can drop the the minimum in the above equation. Now
from event E4, we know that

T∑
k=0

E

 tk+1(q)∑
t=tk(q)+1

1(q ̸∈ Ltk+1(q), πtk+1
(q) = π) ·min

(
1,

√
1

Ttk(q)+1(q, π)

)
| E

≤

T∑
k=0

E

[
gk(q) · 1(q ̸∈ Ltk+1(q), πtk+1

(q) = π) ·min

(
1,

√
1

Ttk(q)+1(q, π)

)
| E

]

≤B2|Q| log(4TL/δ)
B1

·
T∑

k=0

E

[
1(q ̸∈ Ltk+1(q), πtk+1

(q) = π) ·min

(
1,

√
1

Ttk(q)+1(q, π)

)
| E

]
We know that Ttk+1(q)+1(q, π) = Ttk+1(q)(q, π) + 1 = Ttk(q)+1(q, π) + 1 if q ̸∈ Ltk+1(q) and
πtk+1

(q) = π since the query q missing the cache will be sent to one of the models, and only the one
selected will observe the cost. Thus overall, we know that we have either Ttk+1(q)+1(q, π) =

Ttk(q)+1(q, π) + 1, or 1(q ̸∈ Ltk+1(q), πtk+1
(q) = π) · min

(
1,
√

1
Ttk(q)+1(q,π)

)
= 0 and

Ttk+1(q)+1(q, π) = Ttk(q)+1(q, π). Thus overall, we have

T∑
k=0

E

[
1(q ̸∈ Ltk+1(q), πtk+1

(q) = π) ·min

(
1,

√
1

Ttk(q)+1(q, π)

)
| E

]
≤

T∑
k=1

1√
k
≤ C

√
T .

Thus we know that the second difference satisfies
T∑

t=1

E[cost(Lt, π
⋆)− cost(L⋆, π⋆)1(Et)] ≤C ·

(
B2Tδ + LB2

√
2T log(8/δ)

+
L(B2 −B1)B2|Q|L log2(T |Q|/δ)

B1
·
√
T

)
.

26

Overall by taking δ = 1/T , we know that

Regret(T) ≤ CL(B2 −B1)B2|Q|L log2(T |Q|)
B1

·
√
T .

I Additional Experiments

I.1 Synthetic Datasets

We conduct synthetic online and offline experiments for joint optimization of caching and model
multiplexing. We use i.i.d. Bernoulli distributions for two models because we want to mimic the
model ensemble use case and give a large penalty to the wrong output. In Figure 2, we plot the
cumulative cost and regret in online learning for LFU and LEC caching algorithms. We present more
data points in Table 3 and Table 4, under the same setting of 10000 requests with 20 different queries
and cache size 10. Similar to the real dataset setting, we compare all combinations of caching strategy
choices and model multiplexer choices. We consider the frequency distribution as power distribution
with α = 0.5 and 0.8. The ground truth cost for each query processed by both models is set as a
sample from r ·X + 1, where r is called as cost ratio and X is a random variable generated from
a Bernoulli distribution with the parameter 0.5. We consider the model multiplexer accuracy with
0.8 and 1. We repeat the simulation 1000 times and take the mean. Consistent with Figure 2, our
simulation suggests that LEC with a perfect model multiplexer significantly improves the baselines
when the cost ratio is large. Simulation 1000 times cannot remove all randomness so we can observe
some fluctuations. Theoretically, the columns of choosing model 1 and the columns of choosing
model 2 should behave similarly.

α cost ratio selector
accuracy

LFU+
model 1

LFU+
model 2

LFU+
selector

LEC+
model 1

LEC+
model 2

LEC+
selector

0.5 1.5 0.8 5.25 5.24 4.09 4.40 4.36 3.59
0.8 1.5 0.8 7.61 7.60 5.93 5.73 5.68 4.85
0.5 1.5 1 5.25 5.24 3.31 4.40 4.36 2.74
0.8 1.5 1 7.61 7.60 4.81 5.73 5.68 3.68
0.5 100 0.8 148.05 147.38 103.43 29.93 26.83 39.32
0.8 100 0.8 214.93 213.88 150.31 43.77 39.02 49.88

0.5 100 1 148.05 147.38 73.94 29.93 26.83 3.12
0.8 100 1 214.93 213.88 107.63 43.77 39.02 4.19

Table 3: offline synthetic dataset

α cost ratio LFU+
model 1

LFU+
model 2

LFU+
selector

LEC+
model 1

LEC+
model 2

LEC+
selector

0.5 1.5 5.35 5.34 4.34 4.60 4.59 3.75
0.8 1.5 7.79 7.78 6.32 6.01 5.98 5.09
0.5 100 150.93 150.37 76.80 31.88 28.65 4.85
0.8 100 220.19 219.49 112.26 46.44 41.45 6.31

Table 4: online synthetic dataset

I.2 Real Datasets

In this section, we provide additional experiments on real-world dataset. We run both offline and
online algorithms on Lambada dataset and OpenAssistant dataset, with OPT-1.3B vs OPT-13B or
FastChat-T5-3B vs Vicuna-13B. We mainly consider three settings:

27

• In Table 5-12, we consider distinct prompt size 100, total query size 10000, cache size 40,
same as the experiments in the main text.

• In Table 13-20, we consider distinct prompt size 1000, total query size 2000, cache size 100.
• In Table 21-28, we consider distinct prompt size 1000, total query size 2000, cache size 0,

same as the experiments in the main text.

Our proposed algorithm mostly gives dominant results over other baselines. In Table 21-28, the cache
size is set to be 0 so there is no difference between LFU and LEC.

α LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 3.77 4.11 2.17 3.71 1.83 1.26
0.5 8.11 8.85 4.54 7.93 3.51 2.29
0.8 11.43 12.47 6.35 10.91 4.63 2.86

Table 5: FLOPs for online lambda dataset, opt-1.3b vs opt-13b

α LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 349.44 425.05 224.33 349.47 241.89 170.02
0.5 751.78 916.58 469.74 751.77 462.34 321.46
0.8 1059.95 1290.26 656.61 1060.01 596.92 397.01

Table 6: Latency for online lambda dataset, opt-1.3b vs opt-13b

α LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 1.66 1.68 0.90 1.12 0.67 0.48
0.5 3.56 3.61 1.88 2.20 1.22 0.87
0.8 5.01 5.09 2.64 2.75 1.49 1.04

Table 7: FLOPs for online oasst dataset, fastchat-t5 vs vicuna

28

α LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 9.31 13.88 7.24 8.74 8.82 5.93
0.5 20.04 29.88 15.11 18.68 16.90 11.87
0.8 28.24 42.12 21.14 26.07 20.31 15.49

Table 8: Latency for online oasst dataset, fastchat-t5 vs vicuna

α selector
accuracy

LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 0.8 3.49 3.81 2.60 3.44 1.50 2.00
0.5 0.8 7.71 8.43 5.76 7.54 3.09 3.94
0.8 0.8 10.81 11.80 8.06 10.36 4.11 4.76

0.2 1 3.49 3.81 1.91 3.44 1.50 0.99
0.5 1 7.71 8.43 4.22 7.54 3.09 1.97
0.8 1 10.81 11.80 5.90 10.36 4.11 2.50

Table 9: FLOPs for offline lambda dataset, opt-1.3b vs opt-13b

α selector
accuracy

LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 0.8 324.02 394.22 261.89 324.02 207.71 214.03
0.5 0.8 714.87 872.60 578.91 714.87 417.01 442.05
0.8 0.8 1002.26 1220.93 810.45 1002.25 538.56 549.06

0.2 1 324.02 394.22 197.00 324.02 207.71 141.55
0.5 1 714.87 872.60 435.74 714.87 417.01 287.72
0.8 1 1002.26 1220.93 609.95 1002.25 538.56 358.33

Table 10: Latency for offline lambda dataset, opt-1.3b vs opt-13b

α selector
accuracy

LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 0.8 1.54 1.55 1.09 1.01 0.56 0.66
0.5 0.8 3.39 3.42 2.41 2.08 1.10 1.31
0.8 0.8 4.74 4.82 3.38 2.61 1.36 1.62

0.2 1 1.54 1.55 0.79 1.01 0.56 0.38
0.5 1 3.39 3.42 1.75 2.08 1.10 0.76
0.8 1 4.74 4.82 2.45 2.61 1.36 0.93

Table 11: FLOPs for offline oasst dataset, fastchat-t5 vs vicuna

α selector
accuracy

LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 0.8 8.64 12.86 8.06 8.03 7.76 6.73
0.5 0.8 19.07 28.42 17.81 17.66 15.63 14.14
0.8 0.8 26.70 39.91 24.98 24.53 19.01 18.12
0.2 1 8.64 12.86 6.28 8.03 7.76 4.86
0.5 1 19.07 28.42 13.86 17.66 15.63 10.43
0.8 1 26.70 39.91 19.44 24.53 19.01 13.80

Table 12: Latency for offline oasst dataset, fastchat-t5 vs vicuna

29

α LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 1.81 1.97 1.62 1.80 1.72 1.52
0.5 3.14 3.42 2.59 3.12 3.01 2.41
0.8 3.67 3.99 2.95 3.64 3.57 2.76

Table 13: FLOPs for online lambda dataset, opt-1.3b vs opt-13b

α LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 0.17 0.21 0.17 0.17 0.19 0.17
0.5 0.30 0.36 0.27 0.30 0.33 0.26
0.8 0.35 0.42 0.31 0.35 0.39 0.30

Table 14: Latency for online lambda dataset, opt-1.3b vs opt-13b

α LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 1.03 1.16 0.96 0.88 0.91 0.85
0.5 1.78 2.01 1.52 1.45 1.47 1.27
0.8 2.08 2.34 1.73 1.64 1.69 1.43

Table 15: FLOPs for online oasst dataset, fastchat-t5 vs vicuna

α LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 4.60 7.12 5.86 4.53 6.54 5.73
0.5 7.98 12.33 9.33 7.86 11.27 9.08
0.8 9.31 14.38 10.64 9.19 13.12 10.35

Table 16: Latency for online oasst dataset, fastchat-t5 vs vicuna

α selector
accuracy

LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 0.8 1.40 1.52 1.04 1.38 1.06 0.91
0.5 0.8 2.62 2.85 1.95 2.59 2.15 1.69
0.8 0.8 3.09 3.37 2.30 3.05 2.62 1.98
0.2 1 1.40 1.52 0.76 1.38 1.06 0.57
0.5 1 2.62 2.85 1.43 2.59 2.15 1.13
0.8 1 3.09 3.37 1.68 3.05 2.62 1.35

Table 17: FLOPs for offline lambda dataset, opt-1.3b vs opt-13b

30

α selector
accuracy

LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 0.8 0.13 0.16 0.11 0.13 0.12 0.10
0.5 0.8 0.25 0.30 0.20 0.25 0.24 0.18
0.8 0.8 0.29 0.36 0.24 0.29 0.29 0.21
0.2 1 0.13 0.16 0.08 0.13 0.12 0.07
0.5 1 0.25 0.30 0.15 0.25 0.24 0.13
0.8 1 0.29 0.36 0.18 0.29 0.29 0.15

Table 18: Latency for offline lambda dataset, opt-1.3b vs opt-13b

α selector
accuracy

LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 0.8 0.79 0.90 0.61 0.51 0.41 0.35
0.5 0.8 1.48 1.67 1.13 0.97 0.84 0.68
0.8 0.8 1.75 1.97 1.34 1.13 0.99 0.79
0.2 1 0.79 0.90 0.45 0.51 0.41 0.23
0.5 1 1.48 1.67 0.84 0.97 0.84 0.46
0.8 1 1.75 1.97 0.99 1.13 0.99 0.54

Table 19: FLOPs for offline oasst dataset, fastchat-t5 vs vicuna

α selector
accuracy

LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 0.8 3.55 5.49 3.42 3.41 4.43 3.15
0.5 0.8 6.65 10.28 6.41 6.45 8.50 5.90
0.8 0.8 7.86 12.14 7.57 7.61 10.06 6.95
0.2 1 3.55 5.49 2.69 3.41 4.43 2.40
0.5 1 6.65 10.28 5.04 6.45 8.50 4.59
0.8 1 7.86 12.14 5.95 7.61 10.06 5.44

Table 20: Latency for offline oasst dataset, fastchat-t5 vs vicuna

α LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 4.13 4.49 2.88 4.13 4.49 2.88
0.5 4.13 4.49 3.12 4.13 4.49 3.12
0.8 4.13 4.49 3.21 4.13 4.49 3.21

Table 21: FLOPs for online lambda dataset, opt-1.3b vs opt-13b

α LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 0.39 0.48 0.31 0.39 0.48 0.31
0.5 0.39 0.48 0.33 0.39 0.48 0.33
0.8 0.39 0.48 0.34 0.39 0.48 0.34

Table 22: Latency for online lambda dataset, opt-1.3b vs opt-13b

31

α LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 2.50 2.66 1.72 2.50 2.66 1.72
0.5 2.36 2.63 1.84 2.36 2.63 1.84
0.8 2.34 2.64 1.88 2.34 2.64 1.88

Table 23: FLOPs for online oasst dataset, fastchat-t5 vs vicuna

α LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 10.45 16.08 10.37 10.45 16.08 10.37
0.5 10.48 16.18 11.25 10.48 16.18 11.25
0.8 10.48 16.19 11.54 10.48 16.19 11.54

Table 24: Latency for online oasst dataset, fastchat-t5 vs vicuna

α selector
accuracy

LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 0.8 4.13 4.49 3.07 4.13 4.49 3.07
0.5 0.8 4.13 4.49 3.07 4.13 4.49 3.07
0.8 0.8 4.13 4.49 3.07 4.13 4.49 3.07
0.2 1 4.13 4.49 2.24 4.13 4.49 2.24
0.5 1 4.13 4.49 2.25 4.13 4.49 2.25
0.8 1 4.13 4.49 2.25 4.13 4.49 2.25

Table 25: FLOPs for offline lambda dataset, opt-1.3b vs opt-13b

α selector
accuracy

LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 0.8 0.39 0.48 0.32 0.39 0.48 0.32
0.5 0.8 0.39 0.48 0.32 0.39 0.48 0.32
0.8 0.8 0.39 0.48 0.32 0.39 0.48 0.32
0.2 1 0.39 0.48 0.24 0.39 0.48 0.24
0.5 1 0.39 0.48 0.24 0.39 0.48 0.24
0.8 1 0.39 0.48 0.24 0.39 0.48 0.24

Table 26: Latency for offline lambda dataset, opt-1.3b vs opt-13b

α selector
accuracy

LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 0.8 2.50 2.66 1.84 2.50 2.66 1.84
0.5 0.8 2.36 2.63 1.79 2.36 2.63 1.79
0.8 0.8 2.34 2.64 1.79 2.34 2.64 1.79
0.2 1 2.50 2.66 1.35 2.50 2.66 1.35
0.5 1 2.36 2.63 1.32 2.36 2.63 1.32
0.8 1 2.34 2.64 1.32 2.34 2.64 1.32

Table 27: FLOPs for offline oasst dataset, fastchat-t5 vs vicuna

32

α selector
accuracy

LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 0.8 10.45 16.08 10.05 10.45 16.08 10.05
0.5 0.8 10.48 16.18 10.09 10.48 16.18 10.09
0.8 0.8 10.48 16.19 10.10 10.48 16.19 10.10
0.2 1 10.45 16.08 7.91 10.45 16.08 7.91
0.5 1 10.48 16.18 7.94 10.48 16.18 7.94
0.8 1 10.48 16.19 7.94 10.48 16.19 7.94

Table 28: Latency for offline oasst dataset, fastchat-t5 vs vicuna

33

	Introduction
	Related work

	Formulation
	Caching without model multiplexing
	Caching with model multiplexing

	Optimal Caching without Model multiplexing
	Population setting
	Finite sample setting: Offline learning
	Finite sample setting: Online learning

	Optimal Caching and Model multiplexing
	Population setting
	Finite sample setting: Offline learning
	Finite sample setting: Online learning

	Experiments
	Simulations for algorithm analysis
	Experiments on real datasets

	Conclusions
	Discussions on the Choice of Output, Model and Cost
	Generalization to Variable Size Cache
	Generalization to Multiplexing of Multiple Models
	Differences Between the Optimal Policy and the Baseline
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Additional Experiments
	Synthetic Datasets
	Real Datasets

