
A Appendix431

A.1 Broader Impact and Limitations432

This work, alone with the related prior works in self-supervised speech representation learning433

discussed, focused on English speech, thereby implying the potential risks associated with neglecting434

other languages, especially the low-resource languages. Nevertheless, we provide a preliminary result435

on other languages in §A.5 to mitigate the problem as much as possible.436

A.2 Discussion on online clustering437

Codebook initialization. The initialization of codebook Ek 2 RV⇥D can be critical in vector438

quantization methods [11]. We tried different initializations including439

• Ek ⇠ N (0, µ) where µ 2 {1, 1p
D
},440

• Ek ⇠ N (0, 1) followed by L2 normalization ek
v

kek
vk2

.441

In practice, we found different initialization leads to different codebook perplexity at the beginning of442

training. Nevertheless, the methods all lead to similar codebook perplexity at the end of training and443

downstream performance. This also demonstrated the stability of gradient-free online VQ in oppose444

to standard VQ.445

Input for quantization. We found normalizing the teacher model representation z̃kt is necessary446

for stable clustering. We briefly summarized the results using different normalization methods:447

• Instance normalization (IN; default): this can be interpreted as a parameter-free utterance-448

wise normalization for each channel, we found it stable.449

• Batch normalization (BN): this can be viewed as a dataset-wise version of IN which yields a450

similar result but introduces additional parameters tracking the running stats.451

• L2 normalization: a frame-wise normalization along the feature dimension, results in a more452

unstable codebook perplexity and code collapse occasionally.453

In addition, we also tried combining targets from different layers (i.e,
P

k z̃kt with a single codebook454

across all layers) before clustering following Baevski et al. [9]. This model performed significantly455

worse in the downstream fine-tuning task.456

Dealing with inactive codewords. Note that the codebook update policy457

skv  � ⌧ skv + (1� ⌧)
X

Z̃k
v ,

nk
v  � ⌧ nk

v + (1� ⌧)
���Z̃k

v

��� ,

ekv  �
skv
nk
v

,

(3)

updates each codeword ekv regardless of whether the codeword activate (i.e., having at least one458

neighbor
���Z̃k

v

��� � 1) or not. In the extreme case where a codeword remains inactive for a long period,459

we have skv ! ~0 and nk
v ! 0 which results in numerical instability or code collapse. In practice, we460

found freezing the inactivate codewords with461

⌧k
v =

(
⌧, if

���Z̃k
v

��� � 1

1, otherwise
, (5)

leads to a slightly better codebook perplexity but the improvement diminishes as the batch size462

increases.463
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Simplifying codeword update policy. A simplified version of online clustering described in Eq.3464

is to only track the averaged embedding without the size465

ekv  � ⌧ ekv + (1� ⌧)

P
Z̃k

v���Z̃k
v

���
. (6)

The simplified version enforces equal momentum for each step regardless of the size of the neighbor466

set
���Z̃v

���. In practice, we found using Eq. 3 more stable and results in slightly better performance with467

a negligible cost.468

A.3 Pseudo-code for DinoSR training469

Algorithm 1 PyTorch pseudocode for DinoSR

# teacher , student: student and teacher networks
# phi[k]: DxV cluster prediction matrix for k-th layer codebook
# codebook[k]: VxD codebook matrix for k-th layer
# code_sum[k]: VxD unnormalized codebook matrix for k-th layer
# code_cnt[k]: Vx1 codeword counter for k-th layer
# lbd , tau: decay rates of teacher network , codebook
teacher.weight = student.weight

for x in dataset: # mini audio batch BxT

# Eq.1: teacher EMA
teacher.weight = lbd * teacher.weight + \

(1-lbd) * student.weight

z = student(mask(x)) # BxTxD , last layer only
z = z[masked_position] # MxD
with torch.no_grad (): # gradient -free syntax

z_tilde = teacher(x) # KxBxTxD , all K layers
z_tilde = z_tilde[:,masked_position] # KxMxD

loss = 0
for k in range(K-N,K):

with torch.no_grad ():
# Eq.2: online clustering
d = -framewiseL2(z_tilde[k],codebook[k])
target_cls = hardmax(d, dim=-1) # MxV

# Eq.3: codebook learning
code_sum[k] = tau * code_sum[k] + \

(1-tau) * matmul(target_cls.T,z_tilde)
code_cnt[k] = tau * code_cnt[k] + \

(1-tau) * target_cls.sum(dim=0)
codebook[k] = code_sum[k] / code_cnt[k]

# Eq.4: cluster prediction
p_v = phi[k](z) # MxV
loss += cross_entropy(p_v , target_cls)

loss.backward ()
student.step()

A.4 Additional results and analysis470

Visualizing phone-code correlation. To further demonstrate the difference between DinoSR and471

prior works with online codebook learning, we visualized the conditional probability P (phone|code)472

computed using Co-training APC 2[29] and Vector-Quantized Autoregressive Predictive Coding473

(VQ-APC3;[12]) following the exact same setup used in Figure 4. Clearly, DinoSR is able to capture474

the long-tail distribution better, and the codewords tend to be more concentrated to the most correlated475

phone when compared against the prior works.476

2Model checkpoint from https://github.com/30stomercury/autoregressive-co-training
3Code from https://github.com/iamyuanchung/VQ-APC
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Figure 6: P (phone|code) from DinoSR with 217 codewords activated out of 256.
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Figure 7: P (phone|code) from Co-training APC [29] with 164 codewords activated out of 256.
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Figure 8: P (phone|code) from VQ-APC [12] with 98 codewords activated out of 512.

Figure 9 and figure 10 provided another view of the codeword distribution over the phone477

set. Each codeword is assigned to a single phone based on the most correlated phone (i.e.,478

argmaxphone P (phone|code)). We derive the learned phone distribution by accumulating the occur-479

rence of all codewords and compare to the ground truth. Results show the distribution of codewords480

from DinoSR is very close to the ground truth, while other methods failed to capture the underlying481

distribution by over-assigning codewords to the more frequent phones and dropping the less frequent482

phones.483

Finding the best codebook. By examining phone-normalized mutual information, code perplexity,484

and ABX score in acoustic unit discovery in each layer, we can see that the 5th layer of the teacher485

model consistently performed the best. However, this is only considering phones as the ideal discrete486

unit. A more throughout study on the content of each layer is left as future work.487
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Figure 9: Histogram of phones and codewords.

sp AH sil S T N IH IY D L R AE ER Z AY EH M K HH EY F W DH P OWAO AA V UW B NG AW SH G spn CH TH Y JH UH OY ZH
0.00

0.05

0.10

0.15

0.20

0.25

o
cc

u
re

n
ce

(%
)

ground truth

DinoSR

Co-training APC

VQ-APC

Figure 10: Histogram of phones and codewords.
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Figure 11: Layer-wise phone-normalized mutual information, code perplexity, and ABX score in
acoustic unit discovery.

A.5 Preliminary Result on Multi-lingual Speech488

We conducted a preliminary experiment under limited computing budget to showcase that our method489

can be generalized to other languages. We followed the setting in multi-lingual speech representation490

learning [42, 43] to pre-train DinoSR on 10 different languages (Bengali, Cantonese, Georgian,491

Haitian, Kurmanji, Pashto, Tamil, Turkish, Tokpisin, Vietnamese) on the BABEL dataset [44] and492

fine-tune on 4 different unseen languages (Assamese, Tagalog, Swahili, Lao). In this setup we trained493

our model for 200k steps on 4 GPUs with a total batch size of 16 minutes. We report Character Error494

Rate (CER) on the fine-tuning languages in Table 6.495

Table 6: Character Error Rate (WER) on BABEL dataset.
Model Pre-training Batch size Fine-tuning Language

steps (minutes) Assamese Tagalog Swahili Lao

Seq-to-seq ASR without pre-training [42] - - 41.3 37.9 29.1 38.7
XLSR-10 [43] 250k 96 29.4 21.9 16.6 23.3

DinoSR 200k 16 27.2 19.4 14.6 22.8
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Inspired by the International Phonetic Alphabet [45] which defined a universal set of acoustic units496

across different languages, we take a look into how DinoSR acoustic units derived from the 10497

pre-training languages are distributed. Interestingly, we found the acoustic units are more likely to be498

shared across different languages as shown in Table 7.499

Table 7: Codeword distribution over different languages from BABEL dataset. Each cell corresponded
to the proportion of codewords activated in n languages, e.g., 86.5% of the codewords emerged in all
10 languages for the 5th layer.

Layer n languages
1 2 3 4 5 6 7 8 9 10

5th 0.0% 0.0% 4.5% 1.7% 1.1% 0.6% 1.1% 3.4% 1.1% 86.5%
6th 0.0% 0.0% 2.9% 1.7% 1.7% 1.7% 1.7% 1.7% 2.9% 85.5%
7th 0.7% 0.7% 4.0% 1.3% 1.3% 0.7% 3.4% 4.0% 7.4% 76.5%
8th 0.0% 0.0% 1.9% 2.6% 1.3% 0.6% 1.3% 2.6% 1.9% 87.8%
9th 0.0% 0.0% 2.4% 1.8% 1.8% 1.2% 0.6% 1.2% 3.6% 87.4%
10th 0.0% 0.0% 1.8% 1.2% 1.2% 0.0% 0.6% 1.2% 1.8% 92.1%
11th 0.0% 0.0% 1.9% 0.6% 0.0% 0.6% 0.0% 2.5% 1.9% 92.5%
12th 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 1.2% 0.6% 97.6%

In conclusion, preliminary results on BABEL show that DinoSR can be applied to languages other500

than English. Moreover, learning acoustic units from different languages is possible even with a501

shared vocabulary.502
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