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Abstract

This paper focuses on graph-level representation learning that aims to represent
graphs as vectors that can be directly utilized in downstream tasks such as graph
classification. We propose a novel graph-level representation learning principle
called Lovász principle, which is motivated by the Lovász number in graph theory.
The Lovász number of a graph is a real number that is an upper bound for graph
Shannon capacity and is strongly connected with various global characteristics
of the graph. Specifically, we show that the handle vector for computing the
Lovász number is potentially a suitable choice for graph representation, as it
captures a graph’s global properties, though a direct application of the handle
vector is difficult and problematic. We propose to use neural networks to address
the problems and hence provide the Lovász principle. Moreover, we propose an
enhanced Lovász principle that is able to exploit the subgraph Lovász numbers
directly and efficiently. The experiments demonstrate that our Lovász principles
achieve competitive performance compared to the baselines in unsupervised and
semi-supervised graph-level representation learning tasks. The code of our Lovász
principles is publicly available on GitHub†.

1 Introduction

Graphs, such as chemical compounds, protein structures, and social networks, are non-Euclidean
data that represent the relationships between entities. There have been a large number of previous
works studying many aspects of graphs, including mutagenicity prediction of chemical compounds
[Debnath et al., 1991; Kriege and Mutzel, 2012], protein structure prediction [Borgwardt et al., 2005],
and community analysis of social networks [Yanardag and Vishwanathan, 2015].

Graph-based learning problems can be organized into two categories: node-level learning and graph-
level learning. In this paper, we will only focus on graph-level learning. It is known that in graph-level
learning, one fundamental task or step is to measure the distance or similarity between graphs. An
important class of methods comparing graphs is graph kernel and many graph kernels have been
proposed in the past decades [Siglidis et al., 2020]. For instance, random walk kernels [Gärtner
et al., 2003] are the most widely-used and well-studied graph kernel family, which measure the
graph similarity by counting the common random walks between graphs. The Weisfeiler-Lehman
[Weisfeiler and Leman, 1968] family kernels are based on node label reassignment. Most graph
kernels extract the similarity information between graphs by sampling sub-structures of graphs such
as walks or reassigning the attributes of nodes with their neighborhoods. Note that graph kernels are
implicit graph representation methods and hence their flexibilities are not high. In addition, the time
and space complexities are quadratic with the number of graphs.

∗Corresponding author
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Graph representation learning aims to convert data with graph structure into vector representations that
can be applied to various downstream tasks, such as graph clustering and classification. Many studies
have been conducted on graph-level representation learning, and some of them use neural message-
passing algorithms [Kipf et al., 2018; Xie and Grossman, 2018; Gilmer et al., 2017]. For instance,
the InfoGraph proposed by [Sun et al., 2019] achieves graph-level representations by maximizing
the mutual information between the graph-level representation and the node-level representations.
Graph contrastive learning (GraphCL) [You et al., 2020] and adversarial graph contrastive learning
(AD-GCL) [Suresh et al., 2021] obtain graph-level representations by training graph neural networks
(GNNs) to maximize the correspondence between the same graph’s representations in its various
augmented forms. JOint Augmentation Optimization (JOAO) [You et al., 2021] is a framework that
automatically and adaptively selects data augmentations for GraphCL on specific graph data, using a
unified bi-level min-max optimization approach. Automated Graph Contrastive Learning (AutoGCL)
[Yin et al., 2022] uses learnable graph view generators and auto-augmentation strategy to generate
contrastive samples while preserving the most representative structures of the original graph. These
graph-level representation learning methods are all based on the InfoMax principle [Linsker, 1988].
Note that there are many other graph representation learning methods such as VGAE [Kipf and
Welling, 2016; Hamilton et al., 2017; Cui et al., 2020], graph embedding [Wu et al., 2020; Yu et al.,
2021; Bai et al., 2019; Verma and Zhang, 2019], self-supervised learning [Liu et al., 2022; Hou et al.,
2022; Lee et al., 2022; Xie et al., 2022; Wu et al., 2021; Rong et al., 2020; Zhang et al., 2021b,a;
Xiao et al., 2022], and contrastive learning [Le-Khac et al., 2020; Qiu et al., 2020; Ding et al., 2022;
Xia et al., 2022; Fang et al., 2022; Trivedi et al., 2022; Han et al., 2022; Mo et al., 2022; Yin et al.,
2022; Xu et al., 2021; Zhao et al., 2021; Zeng and Xie, 2021; Li et al., 2022a,b; Wei et al., 2022],
which will not be detailed in this paper due to the page length limit.

The InfoMax principle [Linsker, 1988], which is very popular in graph-level representation learning,
advocates maximizing the mutual information between the representations of entire graphs and the
representations of substructures of varying sizes [Peng et al., 2020; Velickovic et al., 2019; Hassani
and Khasahmadi, 2020; Xie et al., 2022; Qiu et al., 2020]. These InfoMax-based methods usually
evaluate the mutual information (MI) between different representations using Jensen-Shannon MI
estimator [Sun et al., 2019], following the formulations of f -GAN [Nowozin et al., 2016] and
Mutual Information Neural Estimation (MINE) [Belghazi et al., 2018]. However, the Jensen-Shannon
MI estimator necessitates the training of a neural network parameterized discriminator, which is
overly complex. In addition, the estimator is based on sampling, which may not be accurate enough
in exploiting the mutual information. As opposed to InfoMax, researchers proposed the graph
information bottleneck (GIB) [Wu et al., 2020] and the subgraph information bottleneck (SIB) [Yu
et al., 2021] that aim to learn the minimal sufficient representation for downstream tasks. But GIB
[Wu et al., 2020] and SIB [Yu et al., 2021] may fail if the downstream tasks are not available in the
representation learning stage.

In this work, we introduce a novel graph learning principle called Lovász principle, which is inspired
by the Lovász number [Lovász, 1979] in graph theory. The Lovász number is an upper bound for
a graph’s Shannon capacity. It is closely associated with various global characteristics of a graph,
such as the clique number and chromatic number of the complement graph. The handle vector for
calculating the Lovász number is potentially a suitable choice for the graph-level representation, as it
captures a graph’s global features, though it suffers from a few difficulties. The contributions of this
work are summarized as follows.

• We propose the Lovász principle, a novel framework for unsupervised graph representation
learning. We show how to effectively and efficiently utilize the handle vectors to represent
graphs. The Lovász principle exploits the topological structures of graphs globally via
neural networks.

• We propose an enhanced Lovász principle via effectively incorporating subgraph Lovász
numbers, while direct computation of subgraph Lovász numbers is extremely costly. The
enhanced Lovász principle ensures similar graphs have similar representations.

• We extend the Lovász principles to semi-supervised representation learning. Note that it is
possible to adapt the Lovász principles to more graph-based learning problems.

The experimental results of unsupervised learning, semi-supervised learning, and transfer learning on
many benchmark graph datasets show that the proposed Lovász principles outperform graph kernels,
classical graph embedding methods, and InfoMax principle based representation learning methods.
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2 Notations and Preliminaries

In this work, we use x, x, X , X (orX) to denote scalar, vector, matrix, and set respectively. 1a×b is a
matrix of size a× b consisting only ones. In denotes an identity matrix of size n×n. Let G = (V,E)
be a graph with n nodes and a-dimensional node features {xv ∈ Ra|v ∈ V }. We denote A ∈ Rn×n
as the adjacency matrix and X = [x1, ...,xn]

⊤ ∈ Rn×a as the node features matrix. Let z ∈ Rd
be the d-dimensional graph-level representation of G, hv ∈ Rd be the d-dimensional node-level
representation of node v, and H = [h1, ...,hn]

⊤ ∈ Rn×d be the node-level representations matrix
of G. We denote (p, q) as an edge between nodes p, q and (p, q) ∈ E if they are connected.

Let G = {G1, . . . GN} be a dataset of N graphs with K classes, where Gi = (Vi, Ei). For Gi,
we denote its number of nodes as ni, graph-level representation as zi, the adjacency matrix as
Ai, the node feature matrix as Xi, and node-level representation matrix as Hi. The graph-level
representation matrix of dataset G is denoted as Z = [z1, ...,zN ]⊤ ∈ RN×d. The set of all node-level
representations is denoted as H = {H1, . . . ,HN}.

2.1 Lovász number

The definition of Lovász number [Lovász, 1979] is based on orthonormal representations of a graph.
Therefore we first introduce the definition of orthonormal representations.
Definition 2.1 (Orthonormal representations). Given a graph G = (V,E) with |V | = n. Let

U := {U ∈ Rd×n : ∥up∥2 = 1, p = 1, 2, . . . , n; u⊤
p uq = 0, ∀(p, q) /∈ E}, (1)

where up is the p-th column of U . Then every U ∈ U is an orthonormal representation of G in Rd.

Clearly, every graph has at least one orthonormal representation. For example, a trivial representation
is that each node p is represented by the standard basis vector ep. Based on Definition 2.1, we
introduce the Lovász number [Lovász, 1979] of a graph as follows.
Definition 2.2 (Lovász number). The Lovász number of a graph G = (V,E) is defined as

ϑ(G) := min
c,U∈U

max
p∈V

1

(c⊤up)2
, (2)

where c ∈ Rd ranges over all unit vectors. The vector c yielding the minimum for (2), denoted
by c∗, is called the handle of the representation, where the corresponding U is denoted as U∗ for
convenience. U∗ is called the optimal representation of G in Rd.

László Lovász provided a pentagon example, shown in Figure 1, to explain Lovász number
defined by (2). The visualization of U∗ and c∗ of a pentagon is like an umbrella whose
handle is c∗ and the ribs are the five columns of U∗. These five disjoint node pairs, i.e.,
(u∗

1,u
∗
3), (u

∗
1,u

∗
4), (u

∗
2,u

∗
4), (u

∗
2,u

∗
5), (u

∗
3,u

∗
5), are orthogonal to each other in visualization.

Figure 1: Pentagon example for Lovász number

The Lovász number ϑ(G) is an upper bound
on the Shannon capacity of a graph G and is
polynomial-time computable [Grötschel et al.,
1981; Galli and Letchford, 2017] (e.g., using
semidefinite programming (SDP)). Let Ḡ be the
complement of G with its clique number ω(Ḡ)
and chromatic number χ(Ḡ). The Lovász "sand-
wich theorem" shows that the Lovász number
is bounded between the clique number and the
chromatic number of Ḡ , i.e., ω(Ḡ) ≤ ϑ(G) ≤
χ(Ḡ). Although computing ω(Ḡ) and χ(Ḡ) are
both NP-hard, the "sandwich theorem" allows us to estimate the clique number and the chromatic
number of Ḡ using only ϑ(G). More detailed discussion can be found in [Knuth, 1993].

2.2 Lovász theta kernel

Johansson et al. [2014] defined the Lovász theta kernel to evaluate the similarity between graphs.
Suppose S ⊆ V is a subset of the vertices of graph G, then the Lovász number of the subgraph
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induced by S is defined as

ϑS(G) := min
c

max
p∈S

1

(c⊤up)2
, (3)

where U was pre-computed by Eq. (2) and c ranges over all unit vectors.

Definition 2.3 (Lovász-ϑ kernel [Johansson et al., 2014]). Let k be a base kernel. The Lovász theta
kernel between graphs G = (V,E) and G′ = (V ′, E′) is defined as

kLo(G,G
′) =

∑
S⊆V

∑
S′⊆V ′

δ(|S|, |S′|)
CS,S′

k(ϑS(G), ϑS′(G′)), (4)

where CS,S′ =
(|V |
|S|

)(|V ′|
|S′|

)
, δ(|S|, |S′|) = 1 if |S| = |S′|, and δ(|S|, |S′|) = 0 otherwise.

kLo is a positive semi-definite kernel [Johansson et al., 2014]. It is able to capture global properties
of graphs and has been shown useful in SVM-based graph classification [Johansson et al., 2014].

3 Lovász Principle for Graph Representation Learning

The Lovász number ϑ(G) of a graph G provides an insight into the global property of the graph. It
is a unique and deterministic value associated with an orthonormal representation U∗ and a unit
handle vector c∗. The umbrella example in Figure 1 explains how to compute the Lovász number:
compacting the ribs (i.e. U∗) as much as possible and using c∗ as the handle. This example provides
intuition that the handle vector c∗ is a natural and suitable representation of the graph G.

Given G = {G1, G2, . . . , GN} drawn from an unknown distribution DG, we want to represent each
graph as a vector such that these vectors preserve some important information of DG. Suppose we
have an algorithm A such that

(U∗
i , c

∗
i ) = A(Gi), i = 1, 2, . . . , N, (5)

where A is some solver for (2). It is natural to use c∗1, c
∗
2, . . . , c

∗
N as representations of

G1, G2, . . . , GN respectively. However, this method has the following limitations‡.

i. Non-uniqueness For any Gi, both U∗
i and c∗i are not unique. For example, let Q ∈ Rd×d

be an orthonormal matrix, i.e., Q⊤Q = QQ⊤ = Id, and let c′i = Qc∗i and U ′
i = QU∗

i .
We have ∥c′∥2 = 1, (U ′)⊤U = (U∗

i )
⊤U∗

i , and (c′)⊤u′
p = ϑ(Gi). This means (c∗i ,U

∗
i )

and (c′i,U
′) yield the same Lovász number for Gi, though they could be very different.

Thus, for two graphs Gi and Gj in G, even when they are isomorphic, c∗i and c∗j could be
very different. However, for graph representation, we hope that similar graphs have similar
representations. For two graphs Gi and Gj , one may align their orthonormal representations
using Q̂ = argminQ⊤Q=Id

∥U∗
i −QU∗

j ∥2F and compare them according to ∥c∗i − c∗jQ̂∥2.
This however only works when the ni = nj and Gi and Gj are matched.

ii. High computational cost For each Gi in G, we need to solve the optimization problem (2),
for which the time complexity of SDP is at least O(|Ei|n2.5i ) [Jiang et al., 2020]. Thus the
total time complexity for G is O(

∑N
i=1 |Ei|n2.5i ). Therefore, this representation method is

not scalable to large datasets.

iii. Ignorance of node features The computation of (5) solely relies on the graph structure and
does not take advantage of the node feature matrix Xi that is often available and informative.

iv. Non-generalization Suppose we have some new graphs and want to obtain their representa-
tions. We cannot utilize the representations of G and we have to solve (2) again for each
new graph.

v. Non-global sensing The computation of (5) treats each graph separately and cannot effec-
tively take advantage of the global information or structure of G. Individual graphs may
have noise or outliers, which cannot be handled by a local method.

‡In our experiments (Table 1), this naive method, termed as LovászNum, is tested. In addition, the Lovász-ϑ
kernel introduced in Section 2.2 is also tested.
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To solve the aforementioned five issues, we present a machine learning method. We use a neural
network FW (parameterized by W ) to approximate A. FW can be learned from G as well as some
additional information such as the node feature matrices {X1, . . . ,XN}. Specifically, we hope that

(U∗
i , c

∗
i ) ≈ FW (Ai,Xi), i = 1, 2, . . . , N. (6)

Thus, FW plays a role representing a graph (drawn from DG) to a matrix of nodes representation
and a vector of graph representation. For new graphs sampled from DG, FW should generalize well
when the approximation errors in (6) are small enough and FW is not too complex. For convenience,
we split FW into two parts, i.e., FW (·, ·) = (F (·, ·; θ), f(·, ·;ϕ)), though F and f can share some
parameters. We let U∗

i ≈ F (Ai,Xi; θ) and c∗i ≈ f(Ai,Xi;ϕ). F (·, ·; θ) is the model of node-level
representation learning while f(·, ·;ϕ) is the model of graph-level representation learning. We let

Hθ
i := F (Ai,Xi; θ), and zϕi := f(Ai,Xi;ϕ), ∀i = 1, 2, ..., N. (7)

We denote the graph-level representations matrix as Zϕ = [zϕ1 , ...,z
ϕ
N ]⊤ and the node-level represen-

tations set as Hθ = {Hθ
1 , ...,H

θ
N}. To achieve (6), we propose to solve

minimize
ϕ,θ

N∑
i=1

{
max
p∈Vi

1(
(zϕi )

⊤hθp
)2︸ ︷︷ ︸

ℓ1

+µ

(∥∥Mi ⊙
(
Hθ
i (H

θ
i )

⊤ − Ini

)∥∥2
F︸ ︷︷ ︸

ℓ2

+
(
(zϕi )

⊤zϕi − 1
)2

︸ ︷︷ ︸
ℓ3

)}
,

(8)
where Mi = 1ni×ni −Ai is a mask matrix and µ > 0 is a regularization parameter. The roles of ℓ1,
ℓ2, and ℓ3 in (8) are explained as follows.

• ℓ1 corresponds to the objective in the definition of Lovász number of Gi.

• ℓ2 is to approximate the orthonormal representation for Gi, i.e., (hθp)
⊤hθq ≈ 0 if (p, q) /∈ Ei

and ∥hp∥2 ≈ 1 ∀p ∈ Vi.

• ℓ3 corresponds to the unit-length requirement for the handle vector of Gi, i.e., ∥zϕi ∥2 ≈ 1.

We call (8) Lovász principle§, since it aims to learn an FW to solve the optimization of Lovász
number for the graphs drawn from DG. It is known that the Lovász number ϑ(G) is an upper bound
on the Shannon capacity of G = (V,E). The Shannon capacity [Shannon, 1956] models the amount
of information that can be transmitted across a noisy communication channel, where certain signal
values can be confused with each other. Here, one signal value corresponds to one node of G and
(p, q) ∈ E means that the corresponding two signals can be confused with each other. Therefore, the
graph-level and node-level representations given by our Lovász principle correspond to the upper
bound of the amount of information transmitted over the graph that is distinguishable between nodes.

Note that instead of the regularized unconstrained optimization (8), we can also use constrained
optimization (ℓ2 = ℓ3 = 0), which we call strict Lovász principle. We may use the Lagrange
multipliers method, projected gradient descent, or exact (or inexact) penalty method to solve the
constrained optimization. Take the inexact penalty method as an example, we just need to increase
the µ in (8) gradually in the optimization. The graph representation performance comparison between
unconstrained and constrained optimizations will be shown in Section 6.5 and Appendix E.

For convenience, we let

LLo :=

|G|∑
i=1

max
p∈Vi

1

((zϕi )
⊤hθp)

2
+ µ

(∥∥Mi ⊙
(
Hθ
i (H

θ
i )

⊤ − Ini

)∥∥2
F
+

(
(zϕi )

⊤zϕi − 1
)2

)
, (9)

and call it Lovász loss. The Lovász loss is mainly designed for unsupervised graph-level representation
learning [Wu et al., 2022; Maron et al., 2019; Oono and Suzuki, 2019; Ståhlberg et al., 2022], which
can be used as an alternative to the popular InfoMax loss [Linsker, 1988] (see (16)).

Lovász principle for semi-supervised learning Inspired by InfoGraph [Sun et al., 2019] (see (17)),
we propose a Lovász loss function for semi-supervised learning tasks. Suppose the dataset G has

§We also provide an equivalent formulation based on the complement graph of G in Appendix A.
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two subsets: a labeled dataset GL and an unlabeled dataset GU . Then we deploy another supervised
encoder with parameter ψ and generate the supervised node-level representations Hψ

i , graph-level
representations zψi , and then prediction ŷψi . The overall loss function is

LLo-semi :=

|GL|∑
l=1

ℓsupervised(ŷ
ψ
l ,yl) + Lunsupervised(G) + λ

|G|∑
i=1

∥∥∥zϕi − zψi

∥∥∥2
2
, (10)

where λ is a positive hyperparameter, the supervised loss ℓsupervised is the cross-entropy loss, and the
unsupervised loss Lunsupervised is the Lovász loss LLo (Eq. (9)) or the enhanced Lovász loss LELo (Eq.
(14)). The last term encourages the representations learned by the two encoders to be similar.

4 Enhancing Lovász Principle with Subgraph Lovász Number

Lovász principle does not explicitly utilize the Lovász number in graph embedding, though the
Lovász numbers of subgraphs can be useful in comparing graphs [Johansson et al., 2014]. Therefore,
we propose to use subgraph Lovász number to enhance Lovász principle based graph representation
learning. We may consider taking advantage of the Lovász-ϑ kernel proposed by [Johansson et al.,
2014]. However, we encounter the following two difficulties.

i. Computing the Lovász numbers (3) of subgraphs is time-consuming because we need to
solve (2) for every graph and the number of subgraphs of each graph is often very large (up
to 2|V |). Hence, for large graph dataset, we cannot use (4) directly.

ii. The Lovász-ϑ kernel (4) is a pair-wise method and cannot effectively exploit the global
structure of G.

To solve the aforementioned problems, we present an iterative-refinement strategy that computes
the subgraph Lovász numbers using the embeddings given by the Lovász principle. Specifically, at
iteration t, we have the graph-level representations Z(t−1)

ϕ and the node-level representations H(t−1)
θ

given by iteration t − 1. Inspired by the Lovász-ϑ kernel (4), we compute the similarity between
graph Gi and Gj as

K
(t−1)
ij =

∑
Si⊆Vi

∑
Sj⊆Vj

δ(|Si|, |Sj |)
CSi,Sj

k(ϑ
(t−1)
Si

(Gi), ϑ
(t−1)
Sj

(Gj)), (11)

where CSi,Sj
=

(|Vi|
|Si|

)(|Vj |
|Sj |

)
and ϑ(t−1)

Si
(Gi) (similar for Gj) is obtained by

ϑ
(t−1)
Si

(Gi) = max
p∈Si

1

(z
(t−1)⊤
i h

(t−1)
p )2

. (12)

The computation of 1/(z(t−1)⊤
i h

(t−1)
p )2 for every p ∈ Vi was already done when computing LLo

via (9) at iteration t− 1 and there is no need to solve (3). For (11), we do not need to consider all
possible subgraphs and we can just randomly sample subgraphs with some fixed sizes (numbers of
nodes), which is similar to the truncated Lovász-ϑ kernel of [Johansson et al., 2014]. Thus we can
obtain the similarity K(t−1)

ij efficiently. Adapting the idea of spectral embedding [Belkin and Niyogi,
2001], we propose the following subgraph Lovász number (SLN) loss (at iteration t)

L(t)
SLN :=

|G|∑
i=1

|G|∑
j=1

K
(t−1)
ij

∥∥∥zϕi − zϕj

∥∥∥2
2
+ γ

(∥∥Z⊤
ϕ Zϕ − Id

∥∥2
F
+

∥∥Z⊤
ϕ 1N×1

∥∥2
2

)
, (13)

where γ > 0. The two regularization terms in L(t)
SLN aim to make the graph-level representations

orthonormal and centered, which is consistent with the constraints in spectral embedding. Minimizing
L(t)

SLN encourages that the graph-level representations of similar graphs (in the sense of subgraph
Lovász numbers) are closer to each other at iteration t. Integrating (13) with (9), we obtain the
following enhanced Lovász loss at iteration t

L(t)
ELo := L(t)

Lo + ηL(t)
SLN, (14)

where η > 0 is a hyperparameter. It is worth noting that LELo as well as LLo can be implemented
batch-wisely, via replacing G with its subsets. Similar to LLo, LELo can also be applied to semi-
supervised graph classification, i.e., (10).
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5 Related Work

Besides the Lovász-ϑ introduced in Section 2.2, the closest work to our Lovász principle is the
InfoMax principle. Following [Nowozin et al., 2016; Sun et al., 2019; Belghazi et al., 2018], suppose
the node-level representation hp(x) and the graph-level representation z(x) are depending on the
input x, Tφ is a discriminator parameterized by a neural network with parameters φ, the Jensen-
Shannon mutual information (MI) estimator [Fuglede and Topsoe, 2004; Nowozin et al., 2016; Hjelm
et al., 2019; Sun et al., 2019] Iφ between hp and z is defined as

Iφ(hp, z) = EP[−sp(−Tφ(hp(x), z(x)))]− EP×P̃[sp(Tφ(hp(x′), z(x)))], (15)

where x is the input sample from distribution P, x′ is the negative sample from distribution P̃, and
sp(a) = log(1 + ea) denotes the softplus function. Many recent graph-level representation learning
methods [Sun et al., 2019; You et al., 2020; Yin et al., 2022] are based on the InfoMax principle,
i.e., maximizing (15). For instance, the InfoGraph proposed by [Sun et al., 2019] obtains graph-level
representations by maximizing the mutual information between the graph-level representation and
the node-level representations as follows

ϕ∗, θ∗, φ∗ = argmax
ϕ,θ,φ

|G|∑
i=1

1

|Vi|
∑
p∈Vi

Iφ(h
θ
p, z

ϕ
i ) ≜ −LIφunsupervised(G). (16)

For semi-supervised learning, the dataset G is split into labeled dataset GL and unlabeled dataset
GU . They deploy another supervised encoder with parameter ψ and then generate the supervised
node-level representations Hψ

i , graph-level representations zψi and prediction ŷψi . The loss function
of InfoGraph for semi-supervised learning is defined as follows

Linfo-semi =

|GL|∑
l=1

ℓsupervised(ŷ
ψ
l ,yl) + LIφunsupervised(G)− λ

|G|∑
i=1

1

|Vi|
Iφ(z

ϕ
i .z

ψ
i ). (17)

The comparison between the InfoMax principle and our Lovász principle is as follows.

• The InfoMax principle focuses on the mutual information between graph-level representation
and node-level representation, while our Lovász principle is derived from the Lovász number,
a fundamental topological property of graph.

• Our Lovász principle only needs to optimize ϕ and θ. Differently, besides ϕ and θ, the
InfoMax principle has to optimize an additional discriminator parameter φ for the Jensen-
Shannon MI estimator. Thus, our Lovász principle is simpler than the InfoMax principle.

• Approximating mutual information using neural network is challenging [Nowozin et al.,
2016] and the Jensen-Shannon MI estimator Iφ only provides an approximation by sampling
rather than an exact computation. In contrast, our Lovász principle does not rely on mutual
information and sampling.

It is worth noting that the Lovász convolutional networks (LCN) proposed by [Yadav et al., 2019]
was motivated by the observation that removing certain vertices from a graph doesn’t affect the
graph’s global properties such as the Lovász number. LCN does not involve any optimization
related to the Lovász number and was designed as an alternative to GCN. Our Lovász principle is
an optimization principle that can be used in any graph neural network (e.g. LCN). It is also useful
in many applications such as graph prompt learning [Liu et al., 2023; Sun et al., 2022] and graph
anomaly detection [Ma et al., 2021; Zhang et al., 2023; Cai et al., 2023].

6 Experiments

In this section, we evaluate the effectiveness of the Lovász principle compared to the InfoMax
principle in graph representation learning methods and a few other baselines such as graph kernels.
The graph representation learning methods we considered in this paper include InfoGraph [Sun et
al., 2019], GraphCL [You et al., 2020], AD-GCL [Suresh et al., 2021], JOAO [You et al., 2021],
and AutoGCL [Yin et al., 2022], which are the most current and influential methods spanning from
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2019 to 2022. Note that the graph-level representation learning principles (GIB) [Wu et al., 2020]
and (SIB) [Yu et al., 2021] are not suitable for unsupervised graph learning and hence will not be
compared in this work. To ensure fair comparisons, we follow the neural network architectures of
those InfoMax based methods and replace the InfoMax loss (Eq. (16)) with the Lovász loss LLo (Eq.
(9)) or enhanced Lovász loss LELo (Eq. (14)) while keeping the network structures and parameter
settings unchanged. We conduct the experiments on TUD benchmark datasets [Morris et al., 2020]
and ChEMBL benchmark datasets [Mayr et al., 2018; Gaulton et al., 2012].

6.1 Unsupervised Learning

The first category of compare methods is graph kernel-based methods such as graphlet kernel (GL)
[Shervashidze et al., 2009], Weisfeiler-Lehman sub-tree kernel (WL) [Shervashidze et al., 2011],
deep graph kernel (DGK) [Yanardag and Vishwanathan, 2015], and Lovász-ϑ kernel [Johansson
et al., 2014]. The second category is traditional unsupervised graph representation methods like
node2vec [Grover and Leskovec, 2016], sub2vec Adhikari et al. [2018], and graph2vec [Narayanan
et al., 2017]. The third category is the methods based on the InfoMax principle (Eq. (16)), including
InfoGraph [Sun et al., 2019], GraphCL [You et al., 2020], AD-GCL [Suresh et al., 2021], JOAOv2
[You et al., 2021], and AutoGCL [Yin et al., 2022]. We also include the Lovász number method
(LovászNum) [Lovász, 1979] as a baseline, where we solve the Lovász number (Eq. (2)) using
semidefinite programming (SDP) [Wolkowicz et al., 2012] and then use the handle vector c∗ as the
graph-level representation.

Following [Sun et al., 2019; You et al., 2021; Yin et al., 2022], we train a graph representation model
on unlabeled data to obtain graph representations and use these representations and graph labels to
train a classifier. Our experimental setup is similar to that of AutoGCL [Yin et al., 2022]. Specifically,
we use a 5-layer GIN [Xu et al., 2018] with hidden size 128 as the representation model and an SVM
as the classifier. The model is trained with a batch size of 128 and a learning rate of 0.001. For
those contrastive learning methods (e.g., JOJOv2 and AutoGCL), we use 30 epochs of contrastive
pre-training under the naive strategy. We perform 10-fold cross-validation on each dataset and repeat
10 times with different random seeds and record the average accuracy (ACC) and standard deviation.

Table 1: Performance (ACC) of unsupervised learning. The baseline results are from AutoGCL [Yin
et al., 2022] and JOAO [You et al., 2021]. The bold, blue and green numbers denote the best, second
best and third best performances respectively, which also applies to Tables 2 and 3.

methods MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K

kernels
GL 81.66±2.11 - - - - 65.87±0.98 77.34±0.18 41.01± 0.17
WL 80.72±3.00 72.92±0.56 - 80.01±0.50 - 72.30±3.44 68.82±0.41 46.06± 0.21

DGK 87.44±2.72 73.30±0.82 - 80.31±0.46 - 66.96±0.56 78.04±0.39 41.27±0.18
Lovász-ϑ 82.57±1.68 71.86±1.41 - 75.90±1.33 - 67.26±1.85 76.03±1.87 43.57±1.79

vector
embedding

node2vec 72.63±10.20 57.49±3.57 - 54.89±1.61 - - - -
sub2vec 61.05±15.80 53.03±5.55 - 52.84±1.47 - 55.26±1.54 71.48±0.41 36.68±0.42

graph2vec 83.15±9.25 73.30±2.05 - 73.22±1.81 - 71.10±0.54 75.78±1.03 47.86±0.26

InfoMax
principle

InfoGraph 89.01±1.13 74.44±0.31 72.85±1.78 76.20±1.06 70.65±1.13 73.03±0.87 82.50±1.42 53.46±1.03
GraphCL 86.80±1.34 74.39±0.45 78.62±0.40 77.87±0.41 71.36±1.15 71.14±0.44 89.53±0.84 55.99±0.28
AD-GCL 87.13±1.56 73.59±0.65 74.49±0.52 69.67±0.51 73.32±0.61 71.57±1.01 85.52±0.79 53.00±0.82
JOAOv2 86.91±1.01 71.25±0.85 66.91±1.75 72.99±0.75 70.40±2.21 71.60±0.86 78.35±1.38 55.57±2.86

AutoGCL 88.64±1.08 75.80±0.36 77.57±0.60 82.00±0.29 70.12±0.68 73.30±0.40 88.58±1.49 56.75±0.18
LovászNum 81.24±1.59 62.46±1.31 67.65±2.31 74.73±1.88 72.47±1.83 70.57±1.73 71.25±1.59 43.24±1.72

Lovász
principle
(use LLo)

InfoGraph 89.67±1.54 75.26±1.43 74.13±1.49 78.21±1.35 71.46±1.21 73.87±1.32 84.76±1.86 54.57±1.38
GraphCL 87.24±1.96 75.87±2.17 79.14±1.67 79.13±1.27 72.52±1.37 72.44±1.46 89.87±2.13 56.12±1.73
AD-GCL 87.44±2.13 74.29±2.80 76.25±1.48 75.12±2.13 73.85±1.05 73.02±1.35 87.11±1.95 54.61±2.35
JOAOv2 87.19±1.92 73.15±1.46 73.15±2.17 74.15±1.67 72.62±1.43 72.18±1.72 84.19±1.67 53.74±1.70

AutoGCL 89.02±1.47 76.23±1.25 78.95±1.39 82.63±2.12 71.31±1.72 73.95±1.36 89.41±1.81 57.28±1.62

Lovász
principle

(use LELo)

InfoGraph 90.13±2.05 76.12±1.72 75.76±1.64 79.36±1.57 72.67±1.95 74.96±1.49 84.53±1.79 55.12±1.47
GraphCL 87.93±2.42 76.82±1.34 77.35±1.95 80.11±1.47 74.16±1.37 73.87±1.52 90.23±1.87 56.83±1.35
AD-GCL 88.50±1.82 75.22±1.93 76.14±1.21 78.15±1.81 74.57±1.98 73.48±1.41 88.16±1.37 55.64±1.63
JOAOv2 88.76±1.43 75.27±1.61 74.62±2.58 76.23±1.75 72.85±1.73 72.97±1.37 85.31±1.48 54.68±1.48

AutoGCL 89.87±1.85 76.03±1.37 79.31±1.27 82.95±1.26 72.23±1.52 74.52±1.44 90.65±1.46 57.93±1.72

As shown in Table 1, the enhanced Lovász loss LELo (Eq. (14)) achieves the best performance on all
datasets. By replacing the InfoMax loss with the Lovász loss LLo, the performances of the five graph
representation learning methods are improved, which demonstrates the effectiveness of the Lovász
principle. Furthermore, LELo outperformed LLo in most cases, which verified the effectiveness of
introducing subgraph Lovász numbers to the Lovász principle. It is worth noting that the LovászNum
method performs worse than the Lovász principle based methods, which confirms the limitations we
analyzed in Section 3 and verifies the necessity and significance of our proposed methods.
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6.2 Semi-supervised Learning

Following [Hu et al., 2019; You et al., 2021; Yin et al., 2022], we compare Lovász principle with
InfoMax principle in semi-supervised learning tasks. The semi-supervised losses of our Lovász
principle based methods and InfoMax based methods Linfo-semi were shown in (10) and (17) respec-
tively. Following the settings of AutoGCL [Yin et al., 2022], we employ a 10-fold cross-validation
on each dataset. For each fold, we use 80% of the total data as the unlabeled data, 10% as labeled
training data, and 10% as labeled testing data. The classifier for labeled data is a ResGCN [Chen et
al., 2019] with 5 layers and a hidden size of 128. We repeat each experiment 10 times and report the
average accuracy in Table 2. We see that our Lovász loss LLo and the enhanced Lovász loss LELo
outperformed InfoMax loss in all cases. Furthermore, LELo outperformed LLo in most cases. These
results are consistent with those in Secion 6.1.

Table 2: Performance (ACC) of semi-supervised learning.

methods NCI1 PROTEINS DD COLLAB REDDIT-B REDDIT-M5K GITHUB
no Pretrain 73.72±0.24 70.40±1.54 73.56±0.41 73.71±0.27 86.63±0.27 51.33±0.44 60.87±0.17

Pretrain-
GNN

Infomax 74.86±0.26 72.27±0.40 75.78±0.34 73.76±0.29 88.66±0.95 53.61±0.31 65.21±0.88
ContextPred 73.00±0.30 70.23±0.63 74.66±0.51 73.69±0.37 84.76±0.52 51.23±0.84 62.35±0.73

InfoMax
principle

GraphCL 74.63±0.25 74.17±0.34 76.17±1.37 74.23±0.21 89.11±0.19 52.55±0.45 65.81±0.79
AD-GCL 75.18±0.31 73.96±0.47 77.91±0.73 75.82±0.26 90.10±0.15 53.49±0.28 64.17±1.38
JOAOv2 74.86±0.39 73.31±0.48 75.81±0.73 75.53±0.18 88.79±0.65 52.71±0.28 66.66±0.60

AutoGCL 73.75±2.25 75.65±2.40 77.50±4.41 77.16±1.48 79.80±3.47 49.91±2.70 62.46±1.51

Lovász
principle
(use LLo)

GraphCL 75.46±1.53 75.12±1.87 77.46±1.52 76.12±1.15 89.87±1.68 53.69±1.68 66.72±1.53
AD-GCL 76.62±1.83 74.21±1.71 78.27±1.39 76.27±1.74 90.36±1.56 54.06±1.32 65.32±1.04
JOAOv2 76.13±1.76 73.73±1.86 76.27±1.48 77.35±1.27 89.31±1.85 53.17±1.76 66.35±1.96

AutoGCL 75.77±1.48 76.36±1.57 78.16±1.61 77.63±1.78 84.64±2.53 51.31±1.81 64.87±1.62
Lovász

principle
(use LELo)

GraphCL 75.81±1.68 75.88±1.67 78.43±1.48 77.57±1.58 90.67±1.27 54.81±1.73 67.04±1.45
AD-GCL 77.28±1.04 75.43±1.58 78.67±1.64 76.98±1.87 91.54±1.39 55.46±1.59 66.87±1.25
JOAOv2 76.25±1.59 74.67±1.37 77.96±1.86 78.84±1.75 90.25±1.22 54.32±1.89 67.52±1.73

AutoGCL 76.53±1.92 76.89±1.55 78.82±1.90 78.46±1.39 87.31±1.57 53.17±1.50 66.47±1.26

6.3 Transfer Learning

Following [Hu et al., 2019; You et al., 2021; Yin et al., 2022], we compare the performance of our
Lovász principles with the InfoMax principle in the task of transfer learning. We use the Pretrain-
GNN method [Hu et al., 2019] as a baseline and employ the Infomax, EdgePred, AttrMasking, and
ContextPred pre-training strategies. The experimental settings follow those of AutoGCL [Yin et
al., 2022]. More details are in the appendix. As shown in Table 3, the improved Lovász loss LELo
performs the best on transfer learning tasks. In addition, the Lovász principle based methods generally
outperform those based on the InfoMax principle in most cases.

Table 3: Performance (ROC-AUC score) of transfer learning.

methods BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE
no Pretrain 65.8±4.5 74.0±0.8 63.4±0.6 57.3±1.6 58.0±4.4 71.8±2.5 75.3±1.9 70.1±5.4

Pretrain-
GNN’s

strategies

Infomax 68.8±0.8 75.3±0.5 62.7±0.4 58.4±0.8 69.9±3.0 75.3±2.5 76.0±0.7 75.9±1.6
EdgePred 67.3±2.4 76.0±0.6 64.1±0.6 60.4±0.7 64.1±3.7 74.1±2.1 76.3±1.0 79.9±0.9

AttrMasking 64.3±2.8 76.7±0.4 64.2±0.5 61.0±0.7 71.8±4.1 74.7±1.4 77.2±1.1 79.3±1.6
ContextPred 68.0±2.0 75.7±0.7 63.9±0.6 60.9±0.6 65.9±3.8 75.8±1.7 77.3±1.0 79.6±1.2

InfoMax
principle

GraphCL 69.68±0.67 73.87±0.66 62.40±0.57 60.53±0.88 75.99±2.65 69.80±2.66 78.47±1.22 75.38±1.44
AD-GCL 70.01±1.07 76.54±0.82 63.07±0.72 63.28±0.79 79.78±3.52 72.30±1.61 78.28±0.97 78.51±0.80
JOAOv2 71.39±0.92 74.27±0.62 63.16±0.45 60.49±0.74 80.97±1.64 73.67±1.00 77.51±1.17 75.49±1.27

AutoGCL 73.36±0.77 75.69±0.29 63.47±0.38 62.51±0.63 80.99±3.38 75.83±1.30 78.35±0.64 83.26±1.13

Lovász
principle
(use LLo)

GraphCL 71.37±1.74 75.66±1.82 63.35±1.47 62.11±1.35 77.02±1.67 72.25±1.42 79.23±1.43 78.51±1.58
AD-GCL 72.24±1.89 77.52±1.74 63.56±1.36 63.87±1.53 80.35±2.36 74.42±1.57 78.95±2.21 80.17±1.04
JOAOv2 72.16±1.35 75.86±1.21 63.92±1.52 62.56±1.12 81.26±2.37 75.94±1.38 79.01±2.68 79.82±1.39

AutoGCL 73.79±1.41 76.13±1.48 64.21±1.58 63.24±1.51 81.32±2.12 76.04±1.87 78.64±1.95 82.57±1.95
Lovász

principle
(use LELo)

GraphCL 73.05±1.21 76.45±1.35 64.58±1.73 63.72±1.52 80.21±2.31 74.43±1.95 80.37±1.52 80.63±1.63
AD-GCL 72.48±1.59 77.96±1.71 64.27±1.68 63.91±1.74 81.76±2.01 75.88±1.48 81.08±2.35 82.21±1.49
JOAOv2 74.13±1.26 76.21±1.35 64.81±1.92 63.38±1.89 82.75±2.69 76.51±1.53 81.13±1.96 81.34±1.35

AutoGCL 74.67±1.81 76.97±1.76 65.36±1.45 64.13±1.48 82.13±2.41 76.93±1.62 79.56±1.41 83.57±1.30

6.4 Overall Performance and Significance Analysis

For convenience, we show the average performance of all methods over all datasets in Figure 2. We
see our Lovász principles outperformed other methods in the three tasks.

To measure the significance of the improvement over the baselines, we implement paired t-tests on
the mean scores obtained from the datasets. A p-value below 0.05 indicates a significant difference.
The results presented in Table 4 demonstrate the statistical significance of the improvements achieved
by our methods across all the datasets.
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(a) Unsupervised learning (b) Semi-supervised learning (c) Transfer learning

Figure 2: The average performance of different types of methods

Table 4: Significance analysis (p-values) of improvement via the paired t-test. A p-value less than
0.05 indicates a significant improvement.

tasks principles comparison InfoGraph GraphCL AD-GCL JOAOv2 AutoGCL

unsupervised
InfoMax vs Lovász (LLo) 0.00067 0.00286 0.02238 0.07347 0.00059
InfoMax vs Lovász (LELo) 0.00005 0.01626 0.01541 0.01319 0.00035

Lovász (LLo) vs Lovász (LELo) 0.00429 0.10925 0.01522 0.00079 0.00466

semi-supervised
InfoMax vs Lovász (LLo) - 0.00028 0.01115 0.04290 0.02147
InfoMax vs Lovász (LELo) - 0.00051 0.00051 0.00116 0.01129

Lovász (LLo) vs Lovász (LELo) - 0.00169 0.00076 0.00133 0.00545

6.5 Measuring the Quality of Solver Approximation

Given a GNN model FW trained via the Lovász principle, the predicted Lovász number of a graph
G is denoted as ϑ̂(G), while the ground-truth Lovász number ϑ(G) can be computed by SDP
[Wolkowicz et al., 2012]. Then we define the relative prediction error for the Lovász number as

eϑ = |ϑ̂(G)− ϑ(G)|/ϑ(G). (18)

Besides the regularized optimization of the Lovász principle in (9), we also propose a constrained
optimization method in Appendix E. We select 50 graphs from each of the four datasets and report
eϑ given by both the regularized (µ = 10) optimization and the constrained optimization for Lovász
principle in Table 5. We can see that in almost all cases, the relative prediction errors are less than
10%. This indicates that the FW trained by the Lovász principle is a good and reliable approximator
for the solver A of the Lovász number. This is similar to the idea of learning to optimize.

Table 5: Relative prediction errors eϑ given by regularized optimization and constrained optimization

eϑ (%) MUTAG PROTEINS DD NCI1
regularized optimization 9.7± 3.4 8.2±2.1 6.3±1.1 10.2± 3.6
constrained optimization 6.5± 2.4 7.3±1.6 6.1±1.2 8.5± 2.3

6.6 More Numerical Results

The results of parameter sensitivity analysis, ablation study, and time cost comparison are in
Appendix C, Appendix D, and Appendix F respectively.

7 Conclusions

This paper proposed a novel method called Lovász principle for unsupervised graph-level representa-
tion learning. An extension using the subgraph Lovász number was also presented. The numerical
results of unsupervised learning, semi-supervised learning, and transfer learning showed that the
proposed methods are more effective than graph kernels and InfoMax principle based representation
learning methods. Besides unsupervised representation learning, it is possible to apply our methods to
other tasks such as graph-level clustering and graph generation. For instance, we can add a clustering
module (e.g. [Xie et al., 2016]) to LLo to construct an end-to-end clustering algorithm. We can
combine LLo with variational autoencoder [Kingma and Welling, 2013] to train a model to generate
new graphs. Nevertheless, the implementation of these methods is out of the scope of this paper.
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A Comaprision with the equivalent forms of the Lovász principles

In this section, we propose an equivalent form of the Lovász principle based on the complement
graph of G. We first introduce an equivalent definition of Lovász number as follows.
Definition A.1 (Lovász number Lovász [1979]). Let Ḡ be the complement graph of G and Ū be the
orthonormal representations of Ḡ, Lovász proposed an equivalent definition of Lovász number as

ϑ(G) := max
d,U∈Ū

∑
p∈V

(d⊤up)
2. (19)

where d ∈ Rd ranges over all unit vectors.

The unit vector d in the Eq. (19) is also a suitable representation vector for graph G. Thus we can
obtain a Lovász loss L̄Lo based on Definition A.1 as follows.

L̄Lo :=

|G|∑
i=1

−
∑
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)
.

(20)
where M̄i = Ai is a mask matrix for complement graph Ḡ. Similar to the main paper, an enhanced
Lovász loss based on Definition A.1 at iteration t is defined as

L̄(t)
ELo := L̄(t)

Lo + λL̄(t)
SLN, (21)

where L̄(t)
SLN is the subgraph Lovász number (SLN) loss of complement graph Ḡ based on Lovász

number definition (19).

We compare the Lovász loss L̄Lo and enhanced Lovász loss L̄(t)
ELo (based on d) with the LLo and L(t)

ELo
(based on handdle vector c). The results are shown in Tables 6, 7 and 8. For convenience, we show
the average performance of all methods over all datasets in Figure 3. We see the two equivalent
forms of Lovász principles have very similar performance in the three learning tasks and both of
them outperform the InfoMax principle.

Table 6: Performance of unsupervised learning. The bold, blue and green numbers denote the best,
second best, and third best performances respectively, which also applies to Tables 7 and 8.

methods MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K
Lovász

principle
(use LLo
and c)

InfoGraph 89.67±1.54 75.26±1.43 74.13±1.49 78.21±1.35 71.46±1.21 73.87±1.32 84.76±1.86 54.57±1.38
GraphCL 87.24±1.96 75.87±2.17 79.14±1.67 79.13±1.27 72.52±1.37 72.44±1.46 89.87±2.13 56.12±1.73
AD-GCL 87.44±2.13 74.29±2.80 76.25±1.48 75.12±2.13 73.85±1.05 73.02±1.35 87.11±1.95 54.61±2.35
JOAOv2 87.19±1.92 73.15±1.46 73.15±2.17 74.15±1.67 72.62±1.43 72.18±1.72 84.19±1.67 53.74±1.70

AutoGCL 89.02±1.47 76.23±1.25 78.95±1.39 82.63±2.12 71.31±1.72 73.95±1.36 89.41±1.81 57.28±1.62
Lovász

principle
(use LELo

and c)

InfoGraph 90.13±2.05 76.12±1.72 75.76±1.64 79.36±1.57 72.67±1.95 74.96±1.49 84.53±1.79 55.12±1.47
GraphCL 87.93±2.42 76.82±1.34 77.35±1.95 80.11±1.47 74.16±1.37 73.87±1.52 90.23±1.87 56.83±1.35
AD-GCL 88.50±1.82 75.22±1.93 76.14±1.21 78.15±1.81 74.57±1.98 73.48±1.41 88.16±1.37 55.64±1.63
JOAOv2 88.76±1.43 75.27±1.61 74.62±2.58 76.23±1.75 72.85±1.73 72.97±1.37 85.31±1.48 54.68±1.48

AutoGCL 89.87±1.85 76.03±1.37 79.31±1.27 82.95±1.26 72.23±1.52 74.52±1.44 90.65±1.46 57.93±1.72
Lovász

principle
(use L̄Lo
and d)

InfoGraph 88.41±2.47 74.37±2.53 76.26±1.57 77.16±2.43 72.51±1.93 74.12±1.65 86.30±1.92 55.18±2.28
GraphCL 86.59±1.82 76.42±1.97 78.35±1.42 78.24±1.68 71.46±2.02 73.81±1.92 88.16±1.35 54.75±2.41
AD-GCL 87.36±1.67 75.10±2.33 76.77±2.10 76.67±1.51 74.24±2.17 73.14±1.51 88.21±2.41 55.42±1.31
JOAOv2 88.58±2.30 74.26±1.52 75.01±1.65 77.28±1.92 73.21±1.81 73.21±1.95 85.47±2.02 55.09±2.46

AutoGCL 88.25±2.11 75.78±2.31 77.16±1.91 80.16±1.07 73.11±2.21 74.64±2.07 87.57±2.14 56.83±2.18
Lovász

principle
(use L̄ELo

and d)

InfoGraph 89.92±1.26 75.37±1.78 76.12±1.81 80.47±1.99 73.18±1.64 73.11±1.38 85.16±2.31 54.87±2.35
GraphCL 88.93±2.51 75.13±1.26 77.52±2.18 81.35±1.62 73.26±2.01 74.21±1.45 89.47±2.23 55.21±1.92
AD-GCL 89.38±1.79 76.72±2.09 75.33±1.95 80.02±2.51 74.18±1.44 74.09±1.50 87.36±1.52 56.39±2.32
JOAOv2 87.30±1.25 74.62±1.30 76.12±1.12 79.14±2.50 73.11±2.30 73.16±1.42 87.69±2.20 55.67±1.83

AutoGCL 89.31±2.01 75.23±1.46 79.87±1.34 82.71±1.34 74.20±1.28 73.90±1.67 90.47±2.52 58.17±1.68

B Experimental setting of transfer learning

Following [Hu et al., 2019; You et al., 2021; Yin et al., 2022], we compare the performance of transfer
learning of the Lovász principle with the InfoMax principle. We use the Pretrain-GNN method [Hu
et al., 2019] as a baseline and employ the Infomax, EdgePred, AttrMasking, and ContextPred
pre-training strategies. The experimental settings followed those of AutoGCL [Yin et al., 2022].
Specifically, we performed supervised pre-training for 100 epochs on the ChEMBL dataset [Mayr
et al., 2018; Gaulton et al., 2012], and then fine-tuned the model for 30 epochs on 8 chemistry
evaluation subsets, using a classifier with a hidden size of 300. Our training employed a batch size
of 256 and a learning rate of 0.001. We substitute the InfoMax loss in the four contrastive learning
methods (GraphCL, AD-GCL, JOAOv2, and AutoGCL) with the Lovász loss LLo or LELo. We repeat
each experiment 10 times and report the average ROC-AUC scores in Table 3 of the main paper.
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Table 7: Performance of semi-supervised learning.

methods NCI1 PROTEINS DD COLLAB REDDIT-B REDDIT-M5K GITHUB
Lovász

(use LLo
and c)

GraphCL 75.46±1.53 75.12±1.87 77.46±1.52 76.12±1.15 89.87±1.68 53.69±1.68 66.72±1.53
AD-GCL 76.62±1.83 74.21±1.71 78.27±1.39 76.27±1.74 90.36±1.56 54.06±1.32 65.32±1.04
JOAOv2 76.13±1.76 73.73±1.86 76.27±1.48 77.35±1.27 89.31±1.85 53.17±1.76 66.35±1.96

AutoGCL 75.77±1.48 76.36±1.57 78.16±1.61 77.63±1.78 84.64±2.53 51.31±1.81 64.87±1.62
Lovász

(use LELo
and c)

GraphCL 75.81±1.68 75.88±1.67 78.43±1.48 77.57±1.58 90.67±1.27 54.81±1.73 67.04±1.45
AD-GCL 77.28±1.04 75.43±1.58 78.67±1.64 76.98±1.87 91.54±1.39 55.46±1.59 66.87±1.25
JOAOv2 76.25±1.59 74.67±1.37 77.96±1.86 78.84±1.75 90.25±1.22 54.32±1.89 67.52±1.73

AutoGCL 76.53±1.92 76.89±1.55 78.82±1.90 78.46±1.39 87.31±1.57 53.17±1.50 66.47±1.26

Lovász
(use L̄Lo
and d)

GraphCL 76.21±1.80 76.67±2.14 78.20±1.64 78.26±2.47 90.24±2.13 54.71±1.97 65.91±2.43
AD-GCL 75.71±1.46 75.39±1.57 77.86±1.77 77.53±1.89 91.14±2.63 54.17±2.75 66.14±1.71
JOAOv2 76.40±2.32 74.61±1.28 77.26±2.01 76.45±1.34 88.27±1.89 54.34±2.53 65.41±2.76

AutoGCL 76.84±1.53 76.49±2.03 78.35±1.75 78.02±2.41 86.17±1.61 52.26±1.76 64.26±2.41
Lovász

(use L̄ELo
and d)

GraphCL 76.28±1.59 76.21±2.30 79.34±2.51 78.10±1.76 91.21±2.04 55.62±2.68 66.59±1.62
AD-GCL 77.65±2.17 75.52±1.97 78.71±1.93 77.29±2.33 90.76±2.18 55.14±1.73 67.31±2.41
JOAOv2 76.19±2.30 75.41±2.24 78.03±2.58 79.31±1.49 91.34±2.11 53.70±2.41 66.35±2.28

AutoGCL 75.42±1.87 77.25±2.67 77.54±1.26 78.27±2.43 88.69±2.63 54.28±1.64 66.19±1.67

Table 8: Performance of transfer learning.

methods BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE
Lovász

(use LLo
and c)

GraphCL 71.37±1.74 75.66±1.82 63.35±1.47 62.11±1.35 77.02±1.67 72.25±1.42 79.23±1.43 78.51±1.58
AD-GCL 72.24±1.89 77.52±1.74 63.56±1.36 63.87±1.53 80.35±2.36 74.42±1.57 78.95±2.21 80.17±1.04
JOAOv2 72.16±1.35 75.86±1.21 63.92±1.52 62.56±1.12 81.26±2.37 75.94±1.38 79.01±2.68 79.82±1.39

AutoGCL 73.79±1.41 76.13±1.48 64.21±1.58 63.24±1.51 81.32±2.12 76.04±1.87 78.64±1.95 82.57±1.95
Lovász

(use LELo
and c)

GraphCL 73.05±1.21 76.45±1.35 64.58±1.73 63.72±1.52 80.21±2.31 74.43±1.95 80.37±1.52 80.63±1.63
AD-GCL 72.48±1.59 77.96±1.71 64.27±1.68 63.91±1.74 81.76±2.01 75.88±1.48 81.08±2.35 82.21±1.49
JOAOv2 74.13±1.26 76.21±1.35 64.81±1.92 63.38±1.89 82.75±2.69 76.51±1.53 81.13±1.96 81.34±1.35

AutoGCL 74.67±1.81 76.97±1.76 65.36±1.45 64.13±1.48 82.13±2.41 76.93±1.62 79.56±1.41 83.57±1.30
Lovász

(use L̄Lo
and d)

GraphCL 72.53±2.16 75.27±1.35 64.20±1.82 63.16±2.25 79.17±1.63 74.53±2.28 78.61±1.55 80.43±1.77
AD-GCL 71.45±1.77 76.48±2.03 63.78±2.21 62.85±2.31 79.33±2.49 73.19±1.22 79.42±1.43 78.26±1.47
JOAOv2 71.78±2.27 75.19±1.87 64.26±1.65 63.27±1.80 81.46±1.83 74.39±2.48 79.59±2.17 80.14±2.51

AutoGCL 72.52±2.30 76.46±2.33 63.81±2.53 62.84±1.34 80.91±2.27 75.57±2.16 79.35±1.42 81.66±1.60
Lovász

(use L̄ELo
and d)

GraphCL 74.54±2.23 76.32±2.54 65.62±1.74 64.34±1.86 81.75±1.61 75.20±2.31 81.64±2.37 81.27±1.58
AD-GCL 71.74±2.81 77.85±1.95 64.81±2.52 64.25±2.57 80.54±1.32 75.34±1.76 80.56±1.64 81.65±2.48
JOAOv2 73.71±1.68 76.43±1.64 64.92±2.17 63.56±1.67 81.96±1.58 76.78±1.84 81.53±2.42 80.76±2.31

AutoGCL 74.69±2.10 76.21±1.81 65.13±1.83 63.77±2.52 82.47±2.52 75.42±2.25 80.74±1.56 82.89±2.68

(a) Unsupervised learning (b) Semi-supervised learning (c) Transfer learning

Figure 3: The average performance of different types of methods

C Parameter sensitivity analysis

There are five hyperparameters need to be tuned in Lovász principle method: the dimension of
representations d, the hyperparameter of orthonormal representation regularization µ, the hyperpa-
rameter of orthogonal regularization in subgraph Lovász number (SLN) loss γ, hyperparameter of
subgraph Lovász number (SLN) loss in enhanced Lovász loss η, the hyperparameter of graph-level
representations ℓ2-norm regularization in semi-supervised Lovász loss λ. In this section, we analyze
the parameter sensitivity on the InfoGraph Sun et al. [2019] with different hyperparameters. We
repeat each experiment for ten times and plot the average accuracy on different datasets.

C.1 d as the dimension of representations

In Lovász principle, d is the dimension of node-level representations H = [h1, ...,hn]
⊤ ∈ Rn×d

and graph-level representation of G, hv ∈ Rd. In the definition of Lovász number, the node-level
representations are orthonormal representations, i.e., H⊤ ∈ U . Let α(G) be the independent number
of graph G, which is the size of the maximum independent set. If d ≤ α(G), the node-level
representations H are impossible to be orthonormal representations such that the Lovász number
cannot be obtained. In Figure 4, we fix other hyperparameters and tune d from {10, 20, ..., 90, 100}.
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(a) MUTAG (b) PROTEIN (c) DD (d) NCI1

(e) COLLAB (f) IMDB-B (g) REDDIT-B (h) REDDIT-M5

Figure 4: The average ACC of different d on different dataset

The results show that a small d adversely affects the performance because d may be less than α(G) on
some graphs. When d is too large, the average accuracy decreases slightly because the representations
with large d may capture some noisy information of a graph.

C.2 µ for orthonormal representation regularization

(a) MUTAG (b) PROTEIN (c) DD (d) NCI1

(e) COLLAB (f) IMDB-B (g) REDDIT-B (h) REDDIT-M5

Figure 5: The average ACC of different µ on different data

In Lovász principle, µ is the hyperparameter for orthonormal representation regularization in Lovász
loss LLo (9) as follows

LLo :=

|G|∑
i=1

max
p∈Vi

1

((zϕi )
⊤hθp)

2
+ µ

(∥∥Mi ⊙
(
Hθ
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F
+
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⊤zϕi − 1
)2

)
. (22)

In Figure 5, we fix other hyperparameters and tune µ from {10−3, 10−2, ..., 105, 106}. The results
show that µ is not sensitive when 0.1 ≤ µ ≤ 1e3. If µ is too small, the average accuracy decreases
slightly because the node-level representations H may not be orthonormal representations. A very
large µ adversely affects the performance because the orthonormal representation regularization
dominates the representation learning such that the Lovász principle fails.
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(a) MUTAG (b) PROTEIN (c) DD (d) NCI1

(e) COLLAB (f) IMDB-B (g) REDDIT-B (h) REDDIT-M5

Figure 6: The average ACC of different γ on different data

C.3 γ for orthogonal regularization in subgraph Lovász number (SLN) loss

In Lovász principle, γ is the hyperparameter for orthogonal regularization in subgraph Lovász number
(SLN) loss L(t)

SLN as follows

L(t)
SLN :=

|G|∑
i=1

|G|∑
j=1

K
(t−1)
ij ∥zϕi − zϕj ∥

2
2 + γ(∥Z⊤

ϕ Zϕ − Id∥2F + ∥Z⊤
ϕ 1N×1∥22), (23)

In Figure 6, we fix other hyperparameters and tune γ from {10−3, 10−2, ..., 105, 106}. The results
show that γ is not sensitive when 0.1 ≤ γ ≤ 1e3. If γ is too small, the average accuracy decreases
slightly because the orthogonal constraints of spectral embedding may not hold. A very large γ
adversely affects the performance because the orthogonal regularization of spectral embedding
dominates the representation learning such that the Lovász principle fails.

C.4 η for subgraph Lovász number (SLN) loss in enhanced Lovász loss

(a) MUTAG (b) PROTEIN (c) DD (d) NCI1

(e) COLLAB (f) IMDB-B (g) REDDIT-B (h) REDDIT-M5

Figure 7: The average ACC of different η on different data

In Lovász principle, η is the hyperparameter for subgraph Lovász number (SLN) loss L(t)
SLN in

enhanced Lovász loss L(t)
ELo as follows

L(t)
ELo := L(t)

Lo + ηL(t)
SLN.
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In Figure 7, we fix other hyperparameters and tune η from {10−3, 10−2, ..., 105, 106}. The results
show that η is not sensitive when 10−2 ≤ η ≤ 1e4. If η is a very small number, the enhanced Lovász
loss L(t)

ELo degenerates into the Lovász loss LLo, which also performs well in representation learning.
A very large η adversely affects the performance because the subgraph Lovász number (SLN) loss
L(t)

SLN dominates the representation learning such that the Lovász principle may fail.

C.5 λ for the ℓ2-norm regularization in semi-supervised Lovász loss

(a) MUTAG (b) PROTEIN (c) DD (d) NCI1

(e) COLLAB (f) IMDB-B (g) REDDIT-B (h) REDDIT-M5

Figure 8: The average ACC of different λ on different data

In semi-supervised learning, λ the hyperparameter for the ℓ2-norm regularization in semi-supervised
Lovász loss as follows

LLo-semi :=

|GL|∑
l=1

Lsupervised(ŷ
ψ
l ,yl) + Lunsupervised(H

θ
i , z

ϕ
i ) + λ

|G|∑
i=1

∥zϕi − zψi ∥
2
2, (24)

In Figure 8, we fix other hyperparameters and tune λ from {10−3, 10−2, ..., 105, 106}. The results
show that η is not sensitive when 0.1 ≤ γ ≤ 1e3. If λ is a very small number, the supervised encoder
and unsupervised encoder may learn different information of a graphG such that the average accuracy
slightly decreases. A very large η will cause the training to be trapped in early iterations such that the
representation learning fails.

D Ablation study

In this section, we analyze the importance of the orthonormal representation regularization (Eq. (9))
and the subgraph Lovász number (SLN) loss (Eq. (14)) by ablation study on unsupervised learning.

D.1 Ablation study of orthonormal representation regularization

In the ablation study, we remove the orthonormal representation regularization in Eq. (9) by setting
µ = 0. The results in Table 9 show that the orthonormal representation regularization can improve
the performance of graph representation learning for two reasons:

• The orthonormal representation constraint is part of the definition of Lovász number such
that the Lovász principle may fail without the orthonormal representation regularization.

• The orthonormal representation regularization guides the method the learn the structure
property of a graph.
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Table 9: Performance (ACC) of unsupervised learning for Ablation study. The ablation indicates
µ = 0 in Eq. (9). The bold numbers denote the better performances of the same method.

methods ablation MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K

Lovász
principle
(use LLo)

InfoGraph ✓ 88.25±1.63 74.38±1.52 73.05±1.77 76.89±1.42 72.23±1.35 72.09±1.41 83.56±1.22 53.21±1.90
× 89.67±1.54 75.26±1.43 74.13±1.49 78.21±1.35 71.46±1.21 73.87±1.32 84.76±1.86 54.57±1.38

GraphCL ✓ 86.16±1.31 73.48±1.56 78.22±1.09 77.84±1.73 71.65±1.20 71.82±1.78 87.79±1.86 55.03±2.17
× 87.24±1.96 75.87±2.17 79.14±1.67 79.13±1.27 72.52±1.37 72.44±1.46 89.87±2.13 56.12±1.73

AD-GCL ✓ 86.28±1.84 73.52±1.78 75.89±1.67 74.53±1.36 72.41±1.58 72.84±1.52 88.46±1.35 53.27±1.51
× 87.44±2.13 74.29±2.80 76.25±1.48 75.12±2.13 73.85±1.05 73.02±1.35 87.11±1.95 54.61±2.35

JOAOv2 ✓ 88.34±1.36 72.49±1.19 72.53±2.07 73.64±2.52 72.27±1.59 71.63±1.81 83.48±1.31 53.02±1.21
× 87.19±1.92 73.15±1.46 73.15±2.17 74.15±1.67 72.62±1.43 72.18±1.72 84.19±1.67 53.74±1.70

AutoGCL ✓ 88.76±2.15 75.59±2.03 78.42±1.81 81.79±1.65 70.42±1.30 73.64±1.52 88.31±1.22 56.53±1.27
× 89.02±1.47 76.23±1.25 78.95±1.39 82.63±2.12 71.31±1.72 73.95±1.36 89.41±1.81 57.28±1.62

Lovász
principle

(use LELo)

InfoGraph ✓ 89.51±1.63 75.18±1.67 76.29±1.52 78.24±1.61 71.22±1.43 74.35±1.07 83.87±2.39 56.23±1.15
× 90.13±2.05 76.12±1.72 75.76±1.64 79.36±1.57 72.67±1.95 74.96±1.49 84.53±1.79 55.12±1.47

GraphCL ✓ 86.78±1.57 76.24±1.60 76.71±1.63 79.42±1.03 73.37±1.26 73.42±1.07 89.70±1.52 55.64±1.25
× 87.93±2.42 76.82±1.34 77.35±1.95 80.11±1.47 74.16±1.37 73.87±1.52 90.23±1.87 56.83±1.35

AD-GCL ✓ 88.36±1.51 74.63±1.74 76.39±1.37 77.68±1.23 74.03±1.52 72.73±1.22 87.31±1.21 55.87±1.42
× 88.50±1.82 75.22±1.93 76.14±1.21 78.15±1.81 74.57±1.98 73.48±1.41 88.16±1.37 55.64±1.63

JOAOv2 ✓ 88.27±1.39 74.52±1.40 74.31±1.15 75.78±1.43 72.10±1.62 72.39±2.15 84.45±1.36 54.21±1.52
× 88.76±1.43 75.27±1.61 74.62±2.58 76.23±1.75 72.85±1.73 72.97±1.37 85.31±1.48 54.68±1.48

AutoGCL ✓ 89.24±2.43 75.29±1.58 78.42±1.68 82.31±1.79 71.69±1.98 74.46±1.65 90.10±1.73 57.27±1.54
× 89.87±1.85 76.03±1.37 79.31±1.27 82.95±1.26 72.23±1.52 74.52±1.44 90.65±1.46 57.93±1.72

D.2 Ablation study of subgraph Lovász number (SLN) loss

If we remove the subgraph Lovász number (SLN) loss in Eq. (14) by setting η = 0, the enhanced
Lovász loss (14) degenerates to simple Lovász loss (9). The results in Table 10 show that the subgraph
Lovász number (SLN) loss can improve the performance of graph representation learning because
similar graphs are guaranteed to be close to each other in the representation space.

D.3 Ablation study of orthonormal representation regularization

Table 10: Performance (ACC) of unsupervised learning for Ablation study. The ablation indicates
η = 0 in Eq. (14). The bold numbers denote the better performances of the same method.

methods ablation MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K
InfoGraph ✓ 89.67±1.54 75.26±1.43 74.13±1.49 78.21±1.35 71.46±1.21 73.87±1.32 84.76±1.86 54.57±1.38

× 90.13±2.05 76.12±1.72 75.76±1.64 79.36±1.57 72.67±1.95 74.96±1.49 84.53±1.79 55.12±1.47
GraphCL ✓ 87.24±1.96 75.87±2.17 79.14±1.67 79.13±1.27 72.52±1.37 72.44±1.46 89.87±2.13 56.12±1.73

× 87.93±2.42 76.82±1.34 77.35±1.95 80.11±1.47 74.16±1.37 73.87±1.52 90.23±1.87 56.83±1.35
AD-GCL ✓ 87.44±2.13 74.29±2.80 76.25±1.48 75.12±2.13 73.85±1.05 73.02±1.35 87.11±1.95 54.61±2.35

× 88.50±1.82 75.22±1.93 76.14±1.21 78.15±1.81 74.57±1.98 73.48±1.41 88.16±1.37 55.64±1.63
JOAOv2 ✓ 87.19±1.92 73.15±1.46 73.15±2.17 74.15±1.67 72.62±1.43 72.18±1.72 84.19±1.67 53.74±1.70

× 88.76±1.43 75.27±1.61 74.62±2.58 76.23±1.75 72.85±1.73 72.97±1.37 85.31±1.48 54.68±1.48
AutoGCL ✓ 89.02±1.47 76.23±1.25 78.95±1.39 82.63±2.12 71.31±1.72 73.95±1.36 89.41±1.81 57.28±1.62

× 89.87±1.85 76.03±1.37 79.31±1.27 82.95±1.26 72.23±1.52 74.52±1.44 90.65±1.46 57.93±1.72

E Strict Lovász Principle

We use regularization in Lovász principle (9) instead of constraint because its optimization is much
easier and its performance is very close to the constrained optimization. In Algorithm 1, we propose
a constrained optimization for the "strict Lovász principle" via projection.

Algorithm 1: Constrained optimization for "strict Lovász principle"
1: Initialization: µ = 1
2: repeat
3: Ĥt = F (A,X; θt) and ẑt = f(A,X;ϕt)

4: Ht = ProjU (Ĥ
t) and zt = ẑt

∥ẑt∥
5: obtain θt+1, ϕt+1 by SGD updating
6: until Convergence

In Algorithm 1, the ProjU project Ĥt to the orthonormal representation space, which is similar
to the Gram–Schmidt process. We define projw(h) := <h,w>

<w,w>w. Let Wk be the set that Wk :=

{w1, w2, ..., wk}. For each vertex i ∈ V , we denote Ωi as the set of vector wjs where j can be each
vertex not adjacent to vertex i. Then the Ht = ProjU (Ĥ

t) is defined in Algorithm 2
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Algorithm 2: The definition of projection function ProjU
1: w1 = ĥt1, e1 = w1

∥w1∥

2: w2 = ĥt2 −
∑
w∈W2−1∩Ω2

projw(ĥ
t
2), e2 = w2

∥w2∥
3: ...
4: wk = ĥtk −

∑
w∈Wk−1∩Ωk

projw(ĥ
t
k), ek = wk

∥wk∥
5: ...
6: wn = ĥtn −

∑
w∈Wn−1∩Ωn

projw(ĥ
t
n), en = wn

∥wn∥
7: Output Ht+1 = [e1, e2, ..., en]

⊤

The comparisons between the regularized (µ = 1) optimization and the constrained optimization for
two methods on four datasets are as follows.

Table 11: Comparison between regularized optimization and constrained optimization

method MUTAG PROTEINS DD NCI1
regularized opt. InfoGraph 89.67± 1.54 75.26 ± 1.43 74.13± 1.49 78.21± 1.35
regularized opt. GraphCL 87.24±1.96 75.87± 2.17 79.14 ± 1.67 79.13± 1.27
constrained opt. InfoGraph 86.12± 2.32 75.49± 1.52 76.42± 1.56 77.80± 1.24
constrained opt. GraphCL 87.52 ± 2.75 76.11± 1.36 78.54 ± 2.21 77.63± 1.58

F Time cost comparison

We compare the time cost between the InfoMax principle and Lovász principle using the InfoGraph
Sun et al. [2019] model on different datasets. We run the programming on a machine with Intel 7
CPU and RTX 3090 GPU. We repeat the experiment five times and report the results in Table 12. The
Lovász principle is the fastest method among the three. The Lovász principle is the fastest method

Table 12: Time cost of InfoGraph. h stands for hour and m stands for minute. The brown value
indicates the lowest time cost.

tasks principle MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M5K

unsupervised
learning

InfoMax 2.3 m 12.6 m 1 h 39 m 36.5 m 1 h 50 m 5.8 m 3 h 14 m 7 h 31 m
Lovász 1.8 m 11.7 m 1 h 25 m 33.2 m 1 h 46 m 5.1 m 3 h 9 m 7 h 26 m

Enhanced
Lovász 1.8 m 12.2 m 1 h 30 m 34.3 m 1 h 47 m 5.3 m 3 h 10 m 7 h 27 m

semi-
supervised
learning

InfoMax 2.3 m 13.1 m 1 h 47 m 46.3 m 2 h 21 m 9.6 m 3 h 47 m 8 h 52 m
Lovász 2.0 m 12.7 m 1 h 39 m 43.1 m 2 h 15 m 8.1 m 3 h 27 m 8 h 16 m

Enhanced
Lovász 2.0 m 12.8 m 1 h 40 m 42.6 m 2 h 17 m 8.3 m 3 h 29 m 8 h 20 m

among the three, and the reasons are as follows:

• The Lovász principle is faster than the InfoMax principle because the former does not use
the f -GAN [Nowozin et al., 2016] and the Jensen-Shannon MI estimator Iφ to evaluate the
mutual information.

• Enhanced Lovász principle is slightly lower than Lovász principle because the computation
of 1/(z(t−1)⊤

i u
(t−1)
p )2 for every p ∈ Vi was already done when computing LLo.
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