
ProteinShake
Building datasets and benchmarks for deep learning

on protein structures

Tim Kucera 1,2,3,⇤, Carlos Oliver 1,2,3 ⇤, Dexiong Chen 1,2,3, and Karsten Borgwardt 1,2,3

1Department of Biosystems Science and Engineering, ETH Zürich, Switzerland
2SIB, Swiss Institute of Bioinformatics, Basel, Switzerland

3Max Planck Institute of Biochemistry, Martinsried, Germany
⇤These authors contributed equally.

{kucera, oliver, dchen, borgwardt}@biochem.mpg.de

Abstract

We present ProteinShake, a Python software package that simplifies dataset
creation and model evaluation for deep learning on protein structures. Users
can create custom datasets or load an extensive set of pre-processed datasets from
biological data repositories such as the Protein Data Bank (PDB) and AlphaFoldDB.
Each dataset is associated with prediction tasks and evaluation functions covering
a broad array of biological challenges. A benchmark on these tasks shows that pre-
training almost always improves performance, the optimal data modality (graphs,
voxel grids, or point clouds) is task-dependent, and models struggle to generalize
to new structures. ProteinShake makes protein structure data easily accessible
and comparison among models straightforward, providing challenging benchmark
settings with real-world implications.
ProteinShake is available at https://proteinshake.ai.

1 Introduction

Over the decades, data describing protein sequence, structure, and function has been amassed in
databases such as UniProt [13] and RCSB PDB [6], as well as in a plethora of domain-specific
databases [5, 38, 12]. This abundance of data presents a prime application for deep learning models
and an opportunity to generate new insights with machine learning in challenging real-world scenarios.
The recent addition of millions of high quality structure predictions from AlphaFold [30] and other
structure prediction algorithms [32] adds a valuable resource to this pool of data, which researchers
are now eager to utilize.

However, the heterogeneity of protein data constitutes a problem for reproducible machine learning.
Structures are stored in heavy formats not developed for deep learning models, metadata is often
scattered across different databases, and files can be corrupted or of poor quality. Additionally, the
diverse approaches and network architectures in geometric deep learning require different represen-
tations of the protein structure, such as point clouds, graphs, or voxel grids. This results in highly
variable data processing steps and evaluation schemes across publications, and eventually prevents
comparison.

Ideally, datasets and evaluations should be standardized. This includes well-defined and transpar-
ent pre-processing steps of the data and reproducible data splits in the evaluation, with selected,
domain-appropriate metrics. As modern deep learning models tend to be generalists (i.e. operate
in multiple contexts and tasks) [45], the data curation process should be harmonized across differ-

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

https://proteinshake.ai


ent biological tasks, such that model architectures can be assessed by how well they capture the
underlying fundamental biological concepts. Such efforts have already propelled research across
different disciplines (e.g. ImageNet [14], OGB [22]), including biological domains (e.g. TAPE [44],
MoleculeNet [55],ProteinNet [3], rnaglib [34]). A similar effect can be expected in the recently
expanding domain of structural biology data.

We therefore propose ProteinShake to harmonize the pre-processing and evaluation steps of
protein structure data from various databases, converting them to deep-learning-ready formats while
supporting all major deep learning frameworks and architectures. Protein structures are natively
available in different representations such as point clouds, voxel grids, and graphs. For evaluation,
we provide standardized data splits based on sequence and structure similarity, with appropriate
metrics. The tasks span a wide variety of biologically important prediction targets and machine
learning problems, ranging from functional label classification, over pairwise interaction prediction
and structural similarity search, to regression on ligand affinity.

The library is easily extended to include (and explicitly designed for) user-contributed datasets and
tasks. The source code and our release scripts are fully open-source and regularly updated, such that
datasets remain up-to-date and can be reproduced anywhere. All datasets and tasks are hosted in
pre-processed form on a public dataset repository to speed up model development. Additionally, we
host a public leaderboard 1 as an opportunity for researchers to compare their models.

Our design goal is to provide a simple user interface that abstracts away boilerplate code and
removes the need to make decisions that require expert domain knowledge, while maintaining full
reproducibility and customizability. We anticipate that ProteinShake will be a useful resource for
researchers working at the intersection of machine learning and structural biology, and that it will
serve them as a basis for reproducibility and comparability.

2 Related work

Previous works have tackled various aspects of the data preparation workflow for protein structures.
ProteinShake mainly distinguishes from these works through its accessibility, culminating in
single-line usage of datasets and evaluators.

We required a number of features for our library under which we will also briefly assess the related
work: Amenability. Users with all backgrounds should be able to use it without worrying about
domain-specific parameters that require expert biological knowledge. Availability. All data and splits
should be fully reproducible on any machine, without relying on a central database. Transparency.
The processing steps from raw data to the final data objects should be open-source and self-contained.
Extendability. Based on the previous points, it should be easy to extend the database with new
datasets and tasks. Compatibility. The data should be compatible with all popular geometric deep
learning approaches. Recency. Finally, the library should provide the means to update datasets with
newly available data, which requires data versioning.

One of the first efforts was ATOM3D [50], which proposed six biologically relevant protein tasks and
provided domain-specific splits for each. The work is accompanied by a Python package which
facilitates access to these tasks, and allows users to work with their own data. Datasets imported to
ATOM3D are endowed with several utilities such as saving, fetching, splitting, transforms and filters.
However, because the library only accepts pre-built datasets, this leaves the challenge of collecting,
parsing and curating to the user, thereby limiting amenability, availability, and transparency. Notably,
datasets large enough to use for pre-training are not included, although pre-training is becoming the
basis for state-of-the-art models recently [45].

TorchDrug [61], a machine learning platform originally developed for drug discovery, is recently
expanding towards protein data. The API exposes several pre-built datasets and provides highly tun-
able and composable processing blocks for custom datasets, with a focus on graph representations of
proteins. However, obtaining a ready-to-use dataset object requires composing a series of processing
steps (amenability). Further, the processing logic used to derive the datasets from primary data is not
public, limiting availability, transparency and extendability.

1https://proteinshake.ai/#leaderboard

2

https://proteinshake.ai/#leaderboard


Graphein [25] is primarily a library for converting protein structure files into graphs. It provides
many customizations and utility functions, and is currently expanding to provide pre-processed
datasets (without evaluations). The focus of this library however lies on the graph conversion,
leaving many of our requirements unapproached. Similar to Graphein, PyUUL [41], converts protein
structure files to voxel grids and point clouds. biopandas [46] and biopython [11] perform some
fundamental processing on structure files such as parsing and cleaning.

As none of these works have fully addressed the requirements we had as machine learners, we
decided to create ProteinShake with a focus on simplicity of use. The following sections detail the
architecture of the framework and the datasets and tasks we provide in the current release.

3 Contribution

ProteinShake manages the full data and evaluation workflow, allowing the user to simply “plug in”
a model (Figure 1). The library provides datasets and associated evaluation tasks for benchmarking
models. Each dataset object contains the logic for every processing step, starting at the download of
raw data from primary resources (availability and transparency). Parameters are customizable, but set
with appropriate defaults, such that data can be used out of the box (amenability). ProteinShake
also converts data for all common deep learning frameworks and protein structure representations
(compatibility). Task and dataset interfaces are easily customizable such that users can extend
elements unique to their application (extendability). The current release hosts a database of eight
annotated datasets (Table 1), a large-scale pre-training dataset based on AlphaFoldDB, and ten
prediction tasks. The releases are versioned and allow for continuous updates of the datasets
(recency). Additionally, we demonstrate the use of ProteinShake by conducting experiments to assess
the importance of three key features: protein representation, pre-training, and data splitting.

Figure 1: ProteinShake simplifies deep learning structural biology workflows from data preparation
to model evaluation. We offer annotated datasets which can be converted to several representations
(point clouds, graphs, voxel grids) and then cast to several popular computation frameworks (PyTorch,
TensorFlow, NumPy/JAX, Pytorch Geometric, DGL, NetworkX). Datasets also serve as the basis of
prediction tasks for which we provide domain-specific splits and evaluation metrics.

4 Building datasets

A core class in ProteinShake is the Dataset. It holds a collection of protein objects containing
the structure (x, y, z coordinates and atom/residue identities) and associated annotations at the atom,
residue, and protein level (e.g., binding status of a residue or functional class of a protein). The protein
objects also accommodate meta-information, including quality-related features such as B-factor or
pLDDT values. Other relevant features can be added easily, as the protein object is implemented as a
flexible, dictionary-type storage.

3



Each dataset is constructed by implementing three steps: downloading raw data from a source
database, filtering according to quality measures, and gathering annotations (possibly from other
sources). All surrounding processing work such as API querying, parsing, cleaning, encoding, and
storing are taken care of by the library.

Currently, ProteinShake provides annotated datasets from eight different areas of protein biology
(Table 1) for which we compile ten supervised model evaluation tasks (Section 5). We provide two
large-scale (unannotated) datasets collected from the RCSB databank and AlphaFoldDB which are
primarily intended for pre-training and self-supervised learning. The former contains a large set of
experimentally solved protein structures from the RCSB Protein Data Bank [6] (ca. 36,000 structures),
the latter contains computational predictions for several organisms as well as the SwissProt database
(ca. 500,000 structures) [30, 7].

Table 1: Datasets currently hosted by ProteinShake. The library is designed to be straightforwardly
extended, such that new datasets can be easily integrated in the future.
Dataset Protein count Area of protein biology
Pfam 31’109 Evolutionary relationships
Gene Ontology 32’633 Functions, Components, Pathways
Enzyme Commission 15’603 Reaction catalysis
Ligand binding 4’642 Small molecule binding
Protein-protein interfaces 2’839 Protein binding
Structure similarity 1’000 Structure alignment
Structural class 10’066 Geometric relationships
Virtual screening 38 Drug discovery

RCSB monomers 36’576 Experimental structures
AlphaFold monomers 541’143 Predicted structures

4.1 Representations and frameworks

A crucial decision when developing a deep learning model for protein structures is the choice of an
appropriate representation of the structure which maps raw coordinates and annotations to objects that
can be used in the model. This mapping can be done in several ways, each of which have biological
implications and also dictate the type of model to be used.

At its core, a protein structure is simply a set of coordinates in 3D space (a point cloud). This
representation abstracts away the fact that each of the points (atoms or residues) physically interact
with each other in a distinct way. One can represent these interactions by constructing a geometric
graph, where each edge represents a likely interaction as given by spatial proximity. Lastly, one
might prefer a more coarse-grained representation where the protein structure is rasterized on a
regular voxel grid. Each of these representations is rooted in a different field of machine learning
and is typically used in dedicated model architectures.

Apart from the general representation, an important nuance of a protein structure is its surface,
i.e., those atoms and residues that lie on the interface to the solvent and directly interact with the
environment. The surface carries special significance for the protein function, as it constitutes the
direct interface in binding events. This information can be utilized in modeling.

With this in mind, one of ProteinShake’s core features is to allow easy conversions between com-
monly used protein representations. ProteinShake currently supports converting any protein dataset
to ✏-neighborhood or k-nearest-neighbor graphs based on inter-atomic or inter-residue distances,
voxel grids which represent the occupancy of a regular 3D grid that is laid over the protein structure,
and point clouds of atoms or residues which are sets of labeled points in 3D space. Irrespective of
the representation, all proteins are annotated with their solvent accessibility scores (computed with
freesasa [36, 37]), which can either be used as a feature, or as a filter to reduce the protein to its
exposed surface residues.

The representations are available for the major deep learning frameworks PyTorch [42], TensorFlow
[1], NumPy/JAX [8], and the graph learning frameworks PyTorch-Geometric [16], DGL [53], and
NetworkX [21].

4



Figure 2: Overview of the supported prediction tasks in the current release. ProteinShake is able
to model a wide range of biological research questions and machine learning problems, covering
regression, ranking, retrieval, classification, pre-training, metric learning, and more. ProteinShake
is designed to drastically simplify the addition of new tasks, such that new research questions can be
addressed quickly.

5 Building benchmarks

The second core object in the library is the Task which is the central utility for benchmarking. A
task extends a dataset with the logic for splitting data into train/validation/test splits and metrics to
evaluate a set of predictions. We created and host several tasks based on our annotated datasets which
we describe in detail below and illustrate in Figure 2.

5.1 Sequence and structure dataset splits

A commonly employed splitting method for protein data is a sequence-similarity split. Proteins are
first clustered by sequence similarity (e.g., with CD-Hit [17]) and the splits are then based on the
clusters, ensuring similar instances end up in the same split. This ensures that model generalization
can properly be assessed.

It is however known that protein structures are more conserved than protein sequences [24], which
implies that dissimilar sequences might still adopt similar structures. Hence, a sequence-based split
does not guarantee structural dissimilarity between train and test data.

We create a structure-similarity split by utilizing the fast structure alignment software
Foldseek [51]. A complete clustering is computationally prohibitive so we resort to an efficient
heuristic: test and validation sets are built iteratively by randomly sampling an initial protein and then
retrieving all similar instances with Foldseek, constructing structure-based clusters analogously
to the sequence-based split. Structural similarity is defined by thresholds on the Local Distance
Difference Test (LDDT) metric. Clusters are then sampled until the desired set size is reached. This
split procedure serves as a novel and challenging setting that tests the ability of models to generalize
in terms of structure and not just sequence homology.

All tasks are available with random, sequence, and structure splits, providing different levels of
difficulty for generalization. The splits are pre-computed with similarity thresholds between 30%-
90% for the sequence split and 50%-90% for the structure split, with a default of 70%. Users who
wish more fine-grained control over the similarity splits can change the parameters when processing
locally. ProteinShake also offers the ability to add custom split procedures, for example to integrate
existing benchmarks that follow other splitting strategies.

5.2 Tasks

To showcase the advantage of standardization and the ability of ProteinShake to integrate various
types of prediction problems, we implement a range of tasks covering different application areas

5



of biology which we categorize in three major areas: function prediction, geometric reasoning, and
physical interaction modeling (Figure 2).

The tasks cover various machine learning settings: regression, multi-class and multi-label classifica-
tion, retrieval, ranking, metric learning and self-supervised learning. The inputs to the model can be
single proteins, pairs of proteins, or proteins paired with other instances such as chemical compounds.
Predictions can be made on the atom, residue, or protein level. For each task, several metrics are
available, and we designate one metric as the default according to literature where possible.

5.2.1 Structure-function relationships

There exist large, expertly curated ontologies that organize proteins into hierarchies of functional
roles [5, 12, 4, 13]. In an effort to better understand the relationship between protein structure and
the protein’s role(s) in the cell we build three classification tasks. In this setting, the input is a protein
structure and the prediction target is one of the following classifications:

• Enzyme Class (multi-class): given a protein, predict the chemical reaction it catalyzes. Built
using the Enzyme Commission hierarchy [4]. The target is given by the top level of the hierarchy.
Default metric is accuracy [20].

• Gene Ontology (multi-label): given a protein, predict its Gene Ontology [12] labels. The Gene
Ontology describes various aspects of molecular function, cellular components, and biological
processes. Default metric is Fmax [20].

• Protein Family (multi-class): given a protein, predict its protein family (Pfam). The Pfam
annotations [5] classify proteins according to the functional attributions of their domains.
Default metric is accuracy.

Successful models in these tasks have the potential to deepen our understanding of structure-function
relationships in proteins [20].

5.2.2 Geometric reasoning

Next, we design tasks to test the ability of models to learn geometric relationships between structures.
Here we ask whether the learned representations of a model reflect structural properties. We define
three prediction targets:

• Structure Class (multi-class): given a protein, predict the correct structural class of a protein.
This task is is built on the Structural Classification of Proteins (SCOP) [38]. Default metric is
accuracy.

• Structural Similarity (regression): given an unaligned pair of proteins, predict the (aligned)
Local Distance Difference Test (LDDT) of the structures. Target values are computed after
alignment with TM-align [58] for all pairs of 1000 randomly sampled single-chain proteins.
Default metric is Spearman rank correlation.

• Structural Search (retrieval): retrieve a set of proteins structurally similar to a query [51] Simi-
larity is defined by LDDT>=0.8 after alignment with TM-align. Default metric is precision@k.

Models that can learn a good representation of protein structure geometries have applications in fast
structure alignment [60], efficient structure search [51, 33] and motif discovery [40].

5.2.3 Modeling physical interactions

Physical interactions between proteins and other ligands such as small molecules and RNA form a
large part of protein function. The PDBbind-CN [54] database collects and curates a set of experimen-
tally derived protein structures with known binding partners along with additional annotations such
as binding affinity and dissociation constants. It has previously been used in binding site prediction
and ligand affinity prediction problems [29, 27, 26]. We build three tasks on top of the PDBbind-CN
data and the DUDE-Z virtual screening benchmark [47].

• Ligand Affinity (regression): given a protein and a chemical compound (represented as a SMILES
string), predict the affinity (dissociation constant Kd) between the two molecules. Default metric
is Pearson correlation [27].

6



• Protein Protein Interface (binary): predict the binary contact matrix between a pair of bound
proteins chains. Contact threshold is set to 6.0Å. Chains are independently centered and
randomly rotated to simulate unbound form. Default metric is median AUROC [49, 50],
although we also provide metrics for unbalanced data.

• Binding Site Detection (binary): given a protein residue, predict whether it belongs to a small
molecule binding cavity. Binding site residues are those within the binding pocket provided by
PDBBind [54]. Default metric is Matthew’s Correlation [18].

• Virtual Screening (retrieval): given a protein and a set of small molecules (provided as SMILES
strings) containing both active ligands and non-ligands (decoys), rank the small molecules such
that actives are ranked higher than the decoys. Default metric is the enrichment factor [10].

Successful models in this family of tasks have potential to accelerate drug discovery [52] and to
improve our understanding of the interactome [57].

6 Contributing and maintenance

ProteinShake classes handle the boilerplate code of dataset and task creation such that users can
implement their custom datasets and tasks by only providing the elements specific to their application.
We welcome contributions. See the documentation for more information on how to create datasets
and tasks, and how to contribute them.

The preparation of a dataset, even on a compute cluster, can easily take multiple hours up to several
days. The pre-processed datasets are therefore hosted2, providing ready-to-use datasets in the matter
of minutes. The ProteinShake database has fully automated, versioned releases to incorporate
newly added protein structures and annotations. Additionally, the classes contain all processing code,
such that they can be built by anyone from scratch, guaranteeing reproducibility and availability.

7 Experiments

For future reference we provide a benchmark of baselines for each task, representation, and data split.
We observe that: i) the optimal protein representation differs depending on the task, ii) structure-based
splits are harder to generalize to, and iii) pre-training with AlphaFoldDB enhances performance for
most models and tasks.

7.1 Experimental setup

We consider the following representative deep neural networks for each protein representation:
GINs [56] for graphs, PointNet++ [43] for point clouds, and a 3D CNN for voxels. These models
serve as our base models for obtaining residue embeddings, which are then either used directly,
pooled, or combined with other protein/molecule embeddings to perform predictions at residue level,
protein level, or protein pair level, respectively. Note that the voxel model cannot easily be applied
in residue-level tasks, as each voxel may contain several residues. Our models are implemented
in PyTorch [42] and PyG [16]. For each model, we use minimal hyper-parameter tuning to show
proof-of-concept results. More advanced structure-aware machine learning models [19, 9, 28] could
potentially boost performances. We cordially invite researchers to contribute their own models to
our leaderboard. The data parameters are left to the default settings of ProteinShake. Graphs
are constructed using an ✏-neighborhood with ✏ = 8.0Å, the voxel grids are constructed using a
voxel size of 2.0Å and a 35⇥ 35⇥ 35 voxel grid size. We report model size, runtime and memory
usage in Appendix Table 6. We refer the interested reader to our code base for the details of model
architectures and hyper-parameter settings.

Additionally to supervised training on the respective task training data, we pre-train models on
structures from AlphaFoldDB which are provided by ProteinShake. For simplicity, we only
consider a masking residue strategy, adapted from techniques used in natural language modeling [31].
The masking strategy consists of randomly sampling a set of residues to mask, by replacing the true
residue type with a special mask label. Finally, we independently maximize the log likelihood of the

2With permanent DOI object identifiers issued by Zenodo. See our documentation for a list of releases.

7



true residue type given the structure and the remaining unmasked residues as context. We add a linear
layer on top of the pre-trained base model and finetune the entire model using task-specific losses.3

7.2 The optimal protein representation differs depending on the task

Table 2 shows a comparison of model performances on different tasks and representations (based on
the random split, results for the other splits can be found in the Appendix). While the graph model
generally performed the best with large margin, some tasks are better modeled with point clouds or
voxel grids.

The tasks describe different physical processes and are heterogeneous in their prediction targets. The
data representations on the other hand capture different aspects of protein structure and also the
corresponding model architectures process information in very different ways. We hence hypothesize
that the different models/representations capture different aspects of proteins which are more or less
important for solving a given task.

The tasks that are better solved with point clouds or voxel grids are Ligand Affinity, Protein Protein In-
terface and Structure Similarity, which heavily rely on spatial, geometric information, which is poorly
modeled by a graph. We conclude that researchers should consider a priori which representation best
fits their task at hand or include the representation as part of a hyperparameter search.

Table 2: Comparison of models trained with different representations of protein structure across
various tasks, on a random data split. The optimal choice of representation depends on the task.
Shown are mean and standard deviation across four runs with different seeds. The Voxel model is
not applicable to residue-level tasks.
Representation Graph Point Voxel
Task

Binding Site 0.721 ± 0.010 0.609 ± 0.006 -
Enzyme Class 0.790 ± 0.007 0.712 ± 0.016 0.643 ± 0.026
Gene Ontology 0.704 ± 0.001 0.580 ± 0.002 0.602 ± 0.018
Ligand Affinity 0.670 ± 0.019 0.683 ± 0.003 0.689 ± 0.013
Protein Family 0.728 ± 0.004 0.609 ± 0.004 0.668 ± 0.005
Protein-Protein Interface 0.883 ± 0.050 0.974 ± 0.003 -
Structural Class 0.495 ± 0.012 0.293 ± 0.013 0.337 ± 0.011
Structural Similarity 0.598 ± 0.018 0.627 ± 0.006 0.645 ± 0.020

7.3 Generalization is harder in structure-based splits

Figure 3 shows a comparison of data splits, across tasks and representations. Generally, models
decrease in performance going from a random split, to a sequence split, to a structure split. This
indicates that models struggle to generalize to splits based on sequence and structure similarity. Vice
versa, this implies that sequence and structure similarity provide information that models can utilize
to improve their predictions.

In a scenario where a model is applied to out-of-distribution (OOD) data it is advisable to construct
appropriate train/test splits to correctly assess generalization capability. Most real world applications
require a model to work on OOD data. Hence, whenever a model is used to predict properties of
proteins that are either dissimilar in sequence or in structure to the train set, we advise to use the
corresponding split of ProteinShake for evaluation.

The evaluations presented here were split on a moderate 70% similarity threshold, where the effect is
already drastic, across tasks and models. We emphasize that real world applications regularly present
such distribution shifts. The data split type should be carefully considered, and in case of doubt the
most stringent structure split should be used.

3All code for training and pre-training is available at https://github.com/BorgwardtLab/
proteinshake_models.

8

https://github.com/BorgwardtLab/proteinshake_models
https://github.com/BorgwardtLab/proteinshake_models


Figure 3: Comparison of random, sequence, and structure splits across tasks and representations.
Models generalize less well to sequence and structure splits, respectively. The split should be chosen
according to the prediction problem.

Figure 4: Relative improvement due to pre-training across tasks and representations. In most settings,
performance is substantially improved by pre-training with AlphaFoldDB. Tasks are abbreviated with
their initials. Values are relative to the metric values obtained from the supervised model without
pre-training.

7.4 Pre-training with AlphaFoldDB enhances performance across models and tasks

Unsupervised pre-training with unlabeled data has become a standard strategy to improve model
performance on supervised tasks [15, 59, 35]. We can also see this effect for our prediction tasks
on experimentally determined protein structures, even though we used predicted structures from
AlphaFoldDB for pre-training (Figure 4). Pre-training substantially improves model performance
in the majority of test cases, however there are some model-task combinations where initialization
with pre-trained weights is even detrimental. This means that, in some cases, the parameters learned
under the pre-training objective (here residue masking) are less informative for solving the task
than random initializations. The mechanisms of pre-training are still discussed [39, 2, 23], other
pre-training objectives might be more appropriate for certain tasks and models. ProteinShake
aims to simplify further research on topics such as this one by making tasks and model architectures
directly comparable.

The availability of high quality structure predictions presents many possibilities for improving perfor-
mance on supervised tasks. We strongly advise researchers to make use of this data. ProteinShake
provides the SwissProt database from AlphaFoldDB readily accessible as a pre-processed dataset.

9



8 Conclusion

We presented ProteinShake, an open-source Python package which unifies data preparation for
machine learning on protein 3D structures, eliminating one of the most tedious and error-prone stages
of the workflow for practitioners. The tool is highly flexible while providing rich functionality in a
simple, accessible and extensible way. Our experiments demonstrate this flexibility and provided some
imperatives for model development. We also showcased the capabilities of the library as a framework
for building datasets and benchmarks by implementing a diverse set of tasks, covering many biological
research questions and machine learning problems. A limitation of these benchmarks is that they are
simplified approximations to complex biological problems, made with inter-task comparability in
mind (e.g. a uniform splitting strategy across tasks). Future releases of our benchmarks will include
further task-specific considerations and will be complemented with re-implementations of existing
benchmarks.

We hope to have laid a foundation for researchers to now integrate both established and novel
datasets and benchmarks. Importantly, ProteinShake was built explicitly to facilitate community
collaboration, we therefore invite researchers to contribute custom datasets, tasks, and leaderboard
submissions to the library. We believe ProteinShake will improve reproducibility and greatly
facilitate machine learning model development in structural protein biology.

References
[1] Martín Abadi. Tensorflow: learning functions at scale. In Proceedings of the 21st ACM

SIGPLAN International Conference on Functional Programming, 2016.

[2] Ahmed Alajrami and Nikolaos Aletras. How does the pre-training objective affect what large
language models learn about linguistic properties? arXiv preprint arXiv:2203.10415, 2022.

[3] Mohammed AlQuraishi. ProteinNet: a standardized data set for machine learning of protein
structure. BMC bioinformatics, 20(1):1–10, 2019.

[4] Amos Bairoch. The ENZYME database in 2000. Nucleic Acids Research, 28(1):304–305, 2000.

[5] Alex Bateman, Lachlan Coin, Richard Durbin, Robert D Finn, Volker Hollich, Sam Griffiths-
Jones, Ajay Khanna, Mhairi Marshall, Simon Moxon, Erik LL Sonnhammer, et al. The Pfam
protein families database. Nucleic Acids Research, 32(suppl_1):D138–D141, 2004.

[6] Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge
Weissig, Ilya N Shindyalov, and Philip E Bourne. The protein data bank. Nucleic Acids
Research, 28(1):235–242, 2000.

[7] Brigitte Boeckmann, Amos Bairoch, Rolf Apweiler, Marie-Claude Blatter, Anne Estreicher,
Elisabeth Gasteiger, Maria J Martin, Karine Michoud, Claire O’Donovan, Isabelle Phan, et al.
The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic acids
research, 31(1):365–370, 2003.

[8] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

[9] Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International Conference on Machine Learning, pages 3469–3489.
PMLR, 2022.

[10] Hongming Chen, Paul D Lyne, Fabrizio Giordanetto, Timothy Lovell, and Jin Li. On evaluating
molecular-docking methods for pose prediction and enrichment factors. Journal of Chemical
Information and Modeling, 46(1):401–415, 2006.

[11] Peter JA Cock, Tiago Antao, Jeffrey T Chang, Brad A Chapman, Cymon J Cox, Andrew Dalke,
Iddo Friedberg, Thomas Hamelryck, Frank Kauff, Bartek Wilczynski, et al. Biopython: freely
available Python tools for computational molecular biology and bioinformatics. Bioinformatics,
25(11):1422–1423, 2009.

10



[12] Gene Ontology Consortium. The gene ontology (go) project in 2006. Nucleic acids research,
34(suppl_1):D322–D326, 2006.

[13] UniProt Consortium. Uniprot: a hub for protein information. Nucleic Acids Research,
43(D1):D204–D212, 2015.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[15] Dumitru Erhan, Aaron Courville, Yoshua Bengio, and Pascal Vincent. Why does unsupervised
pre-training help deep learning? In Proceedings of the thirteenth international conference
on artificial intelligence and statistics, pages 201–208. JMLR Workshop and Conference
Proceedings, 2010.

[16] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

[17] Limin Fu, Beifang Niu, Zhengwei Zhu, Sitao Wu, and Weizhong Li. CD-HIT: accelerated for
clustering the next-generation sequencing data. Bioinformatics, 28(23):3150–3152, 2012.

[18] Tiziano Gallo Cassarino, Lorenza Bordoli, and Torsten Schwede. Assessment of ligand binding
site predictions in CASP10. Proteins: Structure, Function, and Bioinformatics, 82:154–163,
2014.

[19] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning,
pages 1263–1272. PMLR, 2017.

[20] Vladimir Gligorijević, P Douglas Renfrew, Tomasz Kosciolek, Julia Koehler Leman, Daniel
Berenberg, Tommi Vatanen, Chris Chandler, Bryn C Taylor, Ian M Fisk, Hera Vlamakis,
et al. Structure-based protein function prediction using graph convolutional networks. Nature
Communications, 12(1):3168, 2021.

[21] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics,
and function using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman, editors,
Proceedings of the 7th Python in Science Conference, pages 11–15, Pasadena, CA USA, 2008.

[22] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in Neural Information Processing Systems, 33:22118–22133, 2020.

[23] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265,
2019.

[24] Kristoffer Illergård, David H Ardell, and Arne Elofsson. Structure is three to ten times more
conserved than sequence–a study of structural response in protein cores. Proteins: Structure,
Function, and Bioinformatics, 77(3):499–508, 2009.

[25] Arian Jamasb, Ramon Viñas Torné, Eric Ma, Yuanqi Du, Charles Harris, Kexin Huang, Dominic
Hall, Pietro Lió, and Tom Blundell. Graphein-a python library for geometric deep learning
and network analysis on biomolecular structures and interaction networks. Advances in Neural
Information Processing Systems, 35:27153–27167, 2022.

[26] José Jiménez, Stefan Doerr, Gerard Martínez-Rosell, Alexander S Rose, and Gianni De Fabritiis.
DeepSite: protein-binding site predictor using 3D-convolutional neural networks. Bioinformat-
ics, 33(19):3036–3042, 2017.

[27] José Jiménez, Miha Skalic, Gerard Martinez-Rosell, and Gianni De Fabritiis. KDEEP: protein–
ligand absolute binding affinity prediction via 3D-convolutional neural networks. Journal of
Chemical Information and Modeling, 58(2):287–296, 2018.

11



[28] Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael JL Townshend, and Ron Dror. Learn-
ing from protein structure with geometric vector perceptrons. arXiv preprint arXiv:2009.01411,
2020.

[29] Derek Jones, Hyojin Kim, Xiaohua Zhang, Adam Zemla, Garrett Stevenson, WF Drew Bennett,
Daniel Kirshner, Sergio E Wong, Felice C Lightstone, and Jonathan E Allen. Improved
protein–ligand binding affinity prediction with structure-based deep fusion inference. Journal
of Chemical Information and Modeling, 61(4):1583–1592, 2021.

[30] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873):583–589, 2021.

[31] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, 2019.

[32] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, 2023.

[33] Yang Liu, Qing Ye, Liwei Wang, and Jian Peng. Learning structural motif representations for
efficient protein structure search. Bioinformatics, 34(17):i773–i780, 2018.

[34] Vincent Mallet, Carlos Oliver, Jonathan Broadbent, William L Hamilton, and Jérôme Waldispühl.
RNAglib: a python package for RNA 2.5 D graphs. Bioinformatics, 38(5):1458–1459, 2022.

[35] Huanru Henry Mao. A survey on self-supervised pre-training for sequential transfer learning in
neural networks. arXiv preprint arXiv:2007.00800, 2020.

[36] Simon Mitternacht. FreeSASA: An open source C library for solvent accessible surface area
calculations. F1000Research, 5, 2016.

[37] Simon Mitternacht. FreeSASA-Python. https://github.com/freesasa/
freesasa-python, 2022.

[38] Alexey G Murzin, Steven E Brenner, Tim Hubbard, and Cyrus Chothia. SCOP: a structural
classification of proteins database for the investigation of sequences and structures. Journal of
molecular biology, 247(4):536–540, 1995.

[39] Alejandro Newell and Jia Deng. How useful is self-supervised pretraining for visual tasks? In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2020.

[40] Carlos Oliver, Dexiong Chen, Vincent Mallet, Pericles Philippopoulos, and Karsten Borgwardt.
Approximate network motif mining via graph learning. arXiv preprint arXiv:2206.01008, 2022.

[41] Gabriele Orlando, Daniele Raimondi, Ramon Duran-Romaña, Yves Moreau, Joost
Schymkowitz, and Frederic Rousseau. PyUUL provides an interface between biological
structures and deep learning algorithms. Nature Communications, 13(1):1–9, 2022.

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in Neural Information Processing
Systems, 32, 2019.

[43] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. PointNet++: Deep hierarchical
feature learning on point sets in a metric space. In Advances in Neural Information Processing
Systems, 2017.

[44] Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Peter Chen, John Canny, Pieter
Abbeel, and Yun Song. Evaluating protein transfer learning with TAPE. Advances in Neural
Information Processing Systems, 32, 2019.

12

https://github.com/freesasa/freesasa-python
https://github.com/freesasa/freesasa-python


[45] Roshan Rao, Joshua Meier, Tom Sercu, Sergey Ovchinnikov, and Alexander Rives. Transformer
protein language models are unsupervised structure learners. Biorxiv, pages 2020–12, 2020.

[46] Sebastian Raschka. BioPandas: Working with molecular structures in pandas DataFrames. J.
Open Source Softw., 2(14):279, 2017.

[47] Reed M Stein, Ying Yang, Trent E Balius, Matt J O’Meara, Jiankun Lyu, Jennifer Young, Khanh
Tang, Brian K Shoichet, and John J Irwin. Property-unmatched decoys in docking benchmarks.
Journal of Chemical Information and Modeling, 61(2):699–714, 2021.

[48] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pages 10347–10357, 2021.

[49] Raphael Townshend, Rishi Bedi, Patricia Suriana, and Ron Dror. End-to-end learning on 3D
protein structure for interface prediction. Advances in Neural Information Processing Systems,
32, 2019.

[50] Raphael JL Townshend, Martin Vögele, Patricia Suriana, Alexander Derry, Alexander Powers,
Yianni Laloudakis, Sidhika Balachandar, Bowen Jing, Brandon Anderson, Stephan Eismann,
et al. AtOM3D: Tasks on molecules in three dimensions. arXiv preprint arXiv:2012.04035,
2020.

[51] Michel van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee,
Cameron LM Gilchrist, Johannes Söding, and Martin Steinegger. Fast and accurate protein
structure search with Foldseek. Nature Biotechnology, pages 1–4, 2023.

[52] Kaili Wang, Renyi Zhou, Yaohang Li, and Min Li. DeepDTAF: a deep learning method to
predict protein–ligand binding affinity. Briefings in Bioinformatics, 22(5):bbab072, 2021.

[53] Minjie Yu Wang. Deep Graph Library: Towards efficient and scalable deep learning on graphs.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[54] Renxiao Wang, Xueliang Fang, Yipin Lu, Chao-Yie Yang, and Shaomeng Wang. The PDBbind
database: methodologies and updates. Journal of Medicinal Chemistry, 48(12):4111–4119,
2005.

[55] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. MoleculeNet: a benchmark for molecular machine
learning. Chemical Science, 9(2):513–530, 2018.

[56] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[57] Mengying Zhang, Qiang Su, Yi Lu, Manman Zhao, and Bing Niu. Application of machine
learning approaches for protein-protein interactions prediction. Medicinal Chemistry, 13(6):506–
514, 2017.

[58] Yang Zhang and Jeffrey Skolnick. TM-align: a protein structure alignment algorithm based on
the TM-score. Nucleic Acids Research, 33(7):2302–2309, 2005.

[59] Zuobai Zhang, Minghao Xu, Arian Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel
Das, and Jian Tang. Protein representation learning by geometric structure pretraining. arXiv
preprint arXiv:2203.06125, 2022.

[60] Jianwei Zhu, Sheng Wang, Dongbo Bu, and Jinbo Xu. Protein threading using residue co-
variation and deep learning. Bioinformatics, 34(13):i263–i273, 2018.

[61] Zhaocheng Zhu, Chence Shi, Zuobai Zhang, Shengchao Liu, Minghao Xu, Xinyu Yuan, Yang-
tian Zhang, Junkun Chen, Huiyu Cai, Jiarui Lu, et al. TorchDrug: A powerful and flexible
machine learning platform for drug discovery. arXiv preprint arXiv:2202.08320, 2022.

13


	Introduction
	Related work
	Contribution
	Building datasets
	Representations and frameworks

	Building benchmarks
	Sequence and structure dataset splits
	Tasks
	Structure-function relationships
	Geometric reasoning
	Modeling physical interactions


	Contributing and maintenance
	Experiments
	Experimental setup
	The optimal protein representation differs depending on the task
	Generalization is harder in structure-based splits
	Pre-training with AlphaFoldDB enhances performance across models and tasks

	Conclusion

