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Abstract

Controlling the parameters’ norm often yields good generalisation when training1

neural networks. Beyond simple intuitions, the relation between regularising2

parameters’ norm and obtained estimators remains theoretically misunderstood.3

For one hidden ReLU layer networks with unidimensional data, this work shows the4

parameters’ norm required to represent a function is given by the total variation of5

its second derivative, weighted by a
√
1 + x2 factor. Notably, this weighting factor6

disappears when the norm of bias terms is not regularised. The presence of this7

additional weighting factor is of utmost significance as it is shown to enforce the8

uniqueness and sparsity (in the number of kinks) of the minimal norm interpolator.9

Conversely, omitting the bias’ norm allows for non-sparse solutions. Penalising the10

bias terms in the regularisation, either explicitly or implicitly, thus leads to sparse11

estimators.12

1 Introduction13

Although modern neural networks are not particularly limited in terms of their number of parameters,14

they still demonstrate remarkable generalisation capabilities when applied to real-world data [Belkin15

et al., 2019, Zhang et al., 2021]. Intriguingly, both theoretical and empirical studies have indicated16

that the crucial factor determining the network’s generalisation properties is not the sheer number of17

parameters, but rather the norm of these parameters [Bartlett, 1996, Neyshabur et al., 2014]. This18

norm is typically controlled through a combination of explicit regularisation techniques, such as19

weight decay [Krogh and Hertz, 1991], and some form of implicit regularisation resulting from the20

training algorithm employed [Soudry et al., 2018, Lyu and Li, 2019, Ji and Telgarsky, 2019, Chizat21

and Bach, 2020].22

Neural networks with a large number of parameters can approximate any continuous function23

on a compact set [Barron, 1993]. Thus, without norm control, the space of estimated functions24

encompasses all continuous functions. In the parameter space, this implies considering neural25

networks with infinite width and unbounded weights [Neyshabur et al., 2014]. Yet, when weight26

control is enforced, the exact correspondence between the parameter space (i.e., the parameters θ of27

the network) and the function space (i.e., the estimated function fθ produced by the network’s output)28

becomes unclear. Establishing this correspondence is pivotal for comprehending the generalisation of29

overparameterised neural networks. Two fundamental questions arise.30

Question 1. What quantity in the function space, does the parameters’ norm of a neural network31

correspond to?32

Question 2. What functions are learnt when fitting training data with minimal parameters’ norm?33

We study these questions in the context of a one-hidden ReLU layer network with a skip connec-34

tion. Previous research [Kurková and Sanguineti, 2001, Bach, 2017] has examined generalisation35

guarantees for small representational cost functions, where the representational cost refers to the36
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norm required to parameterise the function. However, it remains challenging to interpret this rep-37

resentational cost using classical analysis tools and identify the corresponding function space. To38

address this issue, Question 1 seeks to determine whether this representational cost can be translated39

into a more interpretable functional (pseudo) norm. Note that Question 1 studies the parameters’40

norm required to fit a function on an entire domain. In contrast, when training a neural network for a41

regression task, we only fit a finite number of points given by the training data. Question 2 arises42

to investigate the properties of the learned functions when minimising some empirical loss with a43

regularisation of the parameters’ norm regardless of whether it is done explicitly or implicitly.44

In relation to our work, Savarese et al. [2019], Ongie et al. [2019] address Question 1 for one-hidden45

layer ReLU neural networks, focusing on univariate and multivariate functions, respectively. For46

a comprehensive review of this line of work, we recommend consulting the survey of Parhi and47

Nowak [2023]. On the other hand, Parhi and Nowak [2021], Debarre et al. [2022], Stewart et al.48

[2022] investigate Question 2 specifically in the univariate case. Additionally, Sanford et al. [2022]49

examine a particular multidimensional case. However, all of these existing studies overlook the bias50

parameters of the neural network when considering the ℓ2 regularisation term. By omitting the biases,51

the analysis and solutions to these questions become simpler.52

In sharp contrast, our work addresses both Questions 1 and 2 for univariate functions while also53

incorporating regularisation of the bias parameters. It may appear as a minor detail—it is commonly54

believed that similar estimators are obtained whether or not the biases’ norm1 is penalised [see e.g.55

Ng, 2011]. Nonetheless, our research demonstrates that penalising the bias terms enforce sparsity and56

uniqueness of the estimated function, which is not achieved without including the bias regularisation.57

The practical similarity between these two explicit regularisations can be attributed to the presence of58

implicit regularisation, which considers the bias terms as well. The updates performed by first-order59

optimisation methods do not distinguish between bias and weight parameters, suggesting that they60

are subject to the same implicit regularisation. Consequently, while both regularisation approaches61

may yield similar estimators in practical settings, we contend that the theoretical estimators obtained62

with bias term regularisation capture the observed implicit regularisation effect. Hence, it is essential63

to investigate the implications of penalising the bias terms when addressing Questions 1 and 2, as the64

answers obtained in this scenario significantly differ from those without bias penalisation.65

Contributions. After introducing the setting in Section 2, we address Question 1 in Section 3 using66

a similar analysis approach as Savarese et al. [2019]. The key result, Theorem 1, establishes that the67

representational cost of a function, when allowed a free skip connection, is given by the weighted68

total variation of its second derivative, incorporating a
√
1 + x2 term. Notably, penalising the bias69

terms introduces a
√
1 + x2 multiplicative weight in the total variation, contrasting with the absence70

of bias penalisation.71

This weighting fundamentally impacts the answer to Question 2. In particular, it breaks the shift72

invariance property of the function’s representational cost, rendering the analysis technique proposed73

by Debarre et al. [2022] inadequate. To address this issue, we delve in Sections 4 and 5 into the74

computation and properties of solutions to the optimisation problem:75

inf
f

∥∥∥√1 + x2f ′′
∥∥∥
TV

subject to ∀i ∈ [n], f(xi) = yi.

In Section 4, we reformulate this problem as a continuous dynamic program, enabling a simpler76

analysis of the minimisation problem. Leveraging this dynamic program reformulation, Section 577

establishes the uniqueness of the solution. Additionally, under certain data assumptions, we demon-78

strate that the minimiser is among the sparest interpolators in terms of the number of kinks. It is79

worth noting that similar results have been studied in the context of sparse spikes deconvolution80

[Candès and Fernandez-Granda, 2014, Fernandez-Granda, 2016, Poon et al., 2019], and our problem81

can be seen as a generalisation of basis pursuit [Chen et al., 2001] to infinite-dimensional parameter82

spaces. However, classical techniques for sparse spikes deconvolution are ill-suited for addressing83

Question 2, as the set of sparsest interpolators is infinite in our setting.84

Finally, the significance of bias term regularisation in achieving sparser estimators during neural85

network training is illustrated on toy examples in Section 6. To ensure conciseness, only proof86

sketches are presented in the main paper, while the complete proofs can be found in the Appendix.87

1Even though Goodfellow et al. [2016, Chapter 7] claim that penalising the biases might lead to underfitting,
our work does not focus on the optimisation aspect and assumes interpolation occurs.
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2 Infinite width networks88

This section introduces the considered setting, representing unidimensional functions as infinite width89

networks. Some precise mathematical arguments are omitted here, since this construction follows90

directly the lines of Savarese et al. [2019], Ongie et al. [2019]. This work considers unidimensional91

functions fθ : R → R parameterised by a one hidden layer neural networks with ReLU activation as92

fθ(x) =
∑m
j=1 ajσ(wjx+ bj),

where σ(z) = max(0, z) is the ReLU activation and θ = (aj , wj , bj)j∈[m] ∈ R3m are the parameters93

defining the neural network. The vector a = (aj)j∈[m] stands for the weights of the last layer,94

while w and b respectively stand for the weights and biases of the hidden layer. For any width m95

and parameters θ, the quantity of importance is the squared Euclidean norm of the parameters:96

∥θ∥22 =
∑m
j=1 a

2
j + w2

j + b2j .97

We recall that contrary to Savarese et al. [2019], Ongie et al. [2019], the bias terms are included in98

the considered norm here. We now define the representational cost of a function f : R → R as99

R(f) = inf
m∈N
θ∈R3m

1

2
∥θ∥22 such that fθ = f.

By homogeneity of the parameterisation, a typical rescaling trick [see e.g. Neyshabur et al., 2014,100

Theorem 1] allows to rewrite101

R(f) = inf
m,θ∈R3m

∥a∥1 such that fθ = f and w2
j + b2j = 1 for any j ∈ [m].

Note that R(f) is only finite when the function f is exactly described as a finite width neural network.102

We aim at extending this definition to a much larger functional space, i.e. to any function that can be103

arbitrarily well approximated by finite width networks, while keeping a (uniformly) bounded norm of104

the parameters. Despite approximating the function with finite width networks, the width necessarily105

grows to infinity when the approximation error goes to 0. Similarly to Ongie et al. [2019], define106

R(f) = lim
ε→0+

(
inf

m,θ∈R3m

1

2
∥θ∥22 such that |fθ(x)− f(x)| ≤ ε for any x ∈ [−1/ε, 1/ε]

)
.

Note that the approximation has to be restricted to the compact set [−1/ε, 1/ε] to avoid problematic107

degenerate situations. The functional space for which R(f) is finite is much larger than for R, and in-108

cludes every compactly supported Lipschitz function, while coinciding withR when the latter is finite.109

By rescaling argument again, we can assume the hidden layer parameters (wj , bj) are in S1 and110

instead consider the ℓ1 norm of the output layer weights. The parameters of a network can then be111

seen as a discrete signed measure on the unit sphere S1. When the width goes to infinity, a limit is112

then properly defined and corresponds to a possibly continuous signed measure. Mathematically,113

define M(S1) the space of signed measures µ on S1 with finite total variation ∥µ∥TV. Following the114

typical construction of Bengio et al. [2005], Bach [2017], an infinite width network is parameterised115

by a measure µ ∈ M(S1) as2116

fµ : x 7→
∫
S1 σ(wx+ b)dµ(w, b).

Similarly to Ongie et al. [2019], R(f) verifies the equality117

R(f) = inf
µ∈M(S1)

∥µ∥TV such that f = fµ.

The right term defines the F1 norm [Kurková and Sanguineti, 2001], i.e. R(f) = ∥f∥F1 . The F1118

norm is intuited to be of major significance for the empirical success of neural networks. In particular,119

generalisation properties of small F1 norm estimators are derived by Kurková and Sanguineti [2001],120

Bach [2017], while many theoretical results support the conjecture that training one hidden layer121

neural networks with gradient descent yields an implicit regularisation on the F1 norm of the122

estimator [Lyu and Li, 2019, Ji and Telgarsky, 2019, Chizat and Bach, 2020, Boursier et al., 2022].123

The significance of the F1 norm is the main motivation of this paper. While previous works also124

studied the representational costs of functions by neural networks [Savarese et al., 2019, Ongie et al.,125

2019], they did not penalise the bias term in the parameters’ norm, studying a functional norm slightly126

2By abuse of notation, we write both fθ and fµ, as it is clear from context whether the subscript is a vector
or a measure.
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differing from the F1 norm. This subtlety is at the origin of different levels of sparsity between the127

obtained estimators with or without penalising the bias terms, as discussed in Sections 5 and 6.128

2.1 Unpenalised skip connection129

Our objective is now to characterise the F1 norm of unidimensional functions and minimal norm130

interpolators, which can be approximately obtained when training a neural network with norm131

regularisation. The analysis and result yet remain complex despite the unidimensional setting.132

Allowing for an unpenalised affine term in the neural network representation leads to a cleaner133

characterisation of the norm and description of minimal norm interpolators. As a consequence, we134

parameterise in the remaining of this work finite and infinite width networks as follows:135

fθ,a0,b0 : x 7→ a0x+ b0 + fθ(x), and fµ,a0,b0 : x 7→ a0x+ b0 + fµ(x),

where (a0, b0) ∈ R2. The affine part a0x+ b0 actually corresponds to a free skip connection in the136

neural network architecture [He et al., 2016] and allows to ignore the affine part in the representational137

cost of the function f , which we now define as138

R1(f) = lim
ε→0+

(
inf

m,θ∈R3m

(a0,b0)∈R2

1

2
∥θ∥22 such that |fθ,a0,b0(x)− f(x)| ≤ ε for any x ∈ [−1/ε, 1/ε]

)
.

The representational cost R1(f) is similar to R(f), but allows for a free affine term in the network139

architecture. Similarly to R(f), it can be proven that R1(f) verifies140

R1(f) = inf
µ∈M(S1)
a0,b0∈R

∥µ∥TV such that f = fµ,a0,b0 .

The remaining of this work studies more closely the cost R1(f). Theorem 1 in Section 3 can be141

directly extended to the cost R(f), i.e. without unpenalised skip connection. Its adapted version is142

given by Theorem 4 in Appendix C for completeness.143

Multiple works also consider free skip connections as it allows for a simpler analysis [e.g. Savarese144

et al., 2019, Ongie et al., 2019, Debarre et al., 2022, Sanford et al., 2022]. Since a skip connection145

can be represented by two ReLU neurons, it is commonly believed that considering a free skip146

connection does not alter the nature of the obtained results. This belief is further supported by147

empirical evidence in Section 6 and Appendix B, where our findings hold true both with and without148

free skip connections.149

3 Representational cost150

Theorem 1 below characterises the representational cost R1(f) of any univariate function.151

Theorem 1. For any Lipschitz function f : R → R,152

R1(f) =
∥∥∥√1 + x2f ′′

∥∥∥
TV

=

∫
R

√
1 + x2 d|f ′′|(x).

For any non-Lipschitz function, R1(f) = ∞.153

In Theorem 1, f ′′ is the distributional second derivative of f , which is well defined for Lipschitz154

functions. Without penalisation of the bias terms, the representational cost is given by the total155

variation of f ′′ [Savarese et al., 2019]. Theorem 1 states that penalising the biases adds a weight156 √
1 + x2 to f ′′. This weighting favors sparser estimators when training neural networks, as shown in157

Section 5. Also, the space of functions that can be represented by infinite width neural networks with158

finite parameters’ norm, when the bias terms are ignored, corresponds to functions with bounded159

total variation of their second derivative. When including these bias terms in the representational160

cost, second derivatives additionally require a light tail. Without a free affine term, Theorem 4 in161

Appendix C characterises R(f), which yields an additional term accounting for the affine part of f .162

According to Theorem 1, the minimisation problem considered when training one hidden ReLU layer163

infinite width neural network with ℓ2 regularisation is equivalent to the minimisation problem164

inf
f

n∑
i=1

(f(xi)− yi)
2 + λ

∥∥∥√1 + x2f ′′
∥∥∥
TV

. (1)
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What types of functions do minimise this problem? Which solutions does the
∥∥√1 + x2f ′′

∥∥
TV

165

regularisation term favor? These fundamental questions are studied in the following sections. We166

show that this regularisation favors functions that can be represented by small (finite) width neural167

networks. On the contrary, when the weight decay term does not penalise the biases of the neural168

network, such a sparsity is not particularly preferred as highlighted by Section 6.169

4 Computing minimal norm interpolator170

To study the properties of solutions obtained by training data with either an implicit or explicit weight171

decay regularisation, we consider the minimal norm interpolator problem172

inf
θ,a0,b0

1

2
∥θ∥22 such that ∀i ∈ [n], fθ,a0,b0(xi) = yi, (2)

where (xi, yi)i∈[n] ∈ R2n is a training set. Without loss of generality, we assume in the following173

that the observations xi are ordered, i.e., x1 < x2 < . . . < xn. Thanks to Theorem 1, this problem is174

equivalent, when allowing infinite width networks, to175

inf
f

∥∥∥√1 + x2f ′′
∥∥∥
TV

such that ∀i ∈ [n], f(xi) = yi. (3)

Lemma 1 below actually makes these problems equivalent as soon as the width is larger than some176

threshold smaller than n− 1. Equation (3) then corresponds to Equation (1) when the regularisation177

parameter λ is infinitely small.178

Lemma 1. The problem in Equation (3) admits a minimiser. Moreover, with i0 := min{i ∈ [n]|xi ≥179

0}, any minimiser is of the form180

f(x) = ax+ b+
∑n−1
i=1 ai(x− τi)+

where τi ∈ (xi, xi+1] for any i ∈ {1, . . . , i0 − 2}, τi0−1 ∈ (xi0−1, xi0) and τi ∈ [xi, xi+1) for any181

i ∈ {i0, . . . , n− 1}.182

Lemma 1 already provides a first guarantee on the sparsity of any minimiser of Equation (3). It183

indeed includes at most n− 1 kinks. In contrast, minimal norm interpolators with an infinite number184

of kinks exist when the bias terms are not regularised [Debarre et al., 2022]. An even stronger sparse185

recovery result is given in Section 5. Lemma 1 can be seen as a particular case of Theorem 1 of Wang186

et al. [2021]. In the multivariate case and without a free skip connection, the latter states that the187

minimal norm interpolator has at most one kink (i.e. neuron) per activation cone of the weights and188

has no more than n + 1 kinks in total. The idea of our proof is that several kinks among a single189

activation cone could be merged into a single kink in the same cone. The resulting function then still190

interpolates, but has a smaller representational cost.191

Lemma 1 allows to only consider 2 parameters for each interval (xi, xi+1) (potentially closed at one192

end). Actually, the degree of freedom is only 1 on such intervals: choosing ai fixes τi (or inversely)193

because of the interpolation constraint. Lemma 2 below uses this idea to recast the minimisation194

Problem (3) as a dynamic program with unidimensional state variables si ∈ R for any i ∈ [n].195

Lemma 2. If x1 < 0 and xn ≥ 0, then we have for i0 = min{i ∈ [n]|xi ≥ 0} the following196

equivalence of optimisation problems197

min
f

∀i∈[n],f(xi)=yi

∥∥∥√1 + x2f ′′
∥∥∥
TV

= min
(si0−1,si0 )∈Λ

gi0(si0 , si0−1) + ci0−1(si0−1) + ci0(si0) (4)

where the set Λ and the functions gi and ci are defined in Equations (5) to (7) below.198

Let us describe the dynamic program defining the functions ci, which characterises the minimal norm199

interpolator thanks to Lemma 2. First define for any i ∈ [n−1], the slope δi :=
yi+1−yi
xi+1−xi

; the function200

gi+1(si+1, si) :=

√
(xi+1(si+1 − δi)− xi(si − δi))

2
+ (si+1 − si)

2 for any (si+1, si) ∈ R2;

(5)

and the intervals Si(s) :=


(−∞, δi] if s > δi
{δi} if s = δi
[δi,+∞) if s < δi

for any s ∈ R.
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The set Λ is then the union of three product spaces given by201

Λ := (−∞, δi0−1)× (δi0−1,+∞) ∪ {(δi0−1, δi0−1)} ∪ (δi0−1,+∞)× (−∞, δi0−1). (6)
Finally, we define the functions ci : R → R+ recursively as c1 = cn ≡ 0 and202

ci+1 : si+1 7→ min
si∈Si(si+1)

gi+1(si+1, si) + ci(si) for any i ∈ {1, . . . , i0 − 2}

ci : si 7→ min
si+1∈Si(si)

gi+1(si+1, si) + ci+1(si+1) for any i ∈ {i0, . . . , n− 1}. (7)

Equation (7) defines a dynamic program with a continuous state space. Intuitively for i ≥ i0, the203

variable si accounts for the left derivative at the point xi. The term gi+1(si+1, si) is the minimal204

cost (in neuron norm) for reaching the point (xi+1, yi+1) with a slope si+1, knowing that the left205

slope is si at the point (xi, yi). Similarly, the interval Si(si) gives the reachable slopes3 at xi+1,206

knowing the slope in xi is si. Finally, ci(si) holds for the minimal cost of fitting all the points207

(xi+1, yi+1), . . . , (xn, yn) when the left derivative in (xi, yi) is given by si. It is defined recursively208

by minimising the sum of the cost for reaching the next point (xi+1, yi+1) with a slope si+1, given by209

gi+1(si+1, si); and the cost of fitting all the points after xi+1, given by ci+1. This recursive definition210

is illustrated in Figure 1 below. A symmetric definition holds for i < i0.
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−0.50
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gi+1(si+1, si)

xi

si

xi+1

si+1

total cost
ci(si)

total cost
ci+1(si+1)

f

Figure 1: Recursive definition of the dynamic program for i ≥ i0.
211

Remark 1. Equation (4) actually considers the junction of two dynamic programs: a first one212

corresponding to the points with negative x values and a second one for positive values. This213

separation around x = 0 is not needed for Lemma 2, but allows for a cleaner analysis in Section 5.214

Lemmas 1 and 2 also hold for any arbitrary choice of i0. In particular for i0 = 1, Equation (4) would215

not consider the junction of two dynamic programs anymore, but a single one.216

Remark 2. The assumption x1 < 0 and xn ≥ 0 is not fundamental, but is only required to properly217

define the junction mentioned in Remark 1. If all the x values are positive (or negative by symmetry),218

the analysis of the right term in Equation (4) is simplified, since there is no junction to consider. In219

particular, all the results from Section 5 hold without this assumption. These results are proven in the220

hardest case x1 < 0 and xn ≥ 0 in Appendix E, from which other cases can be directly deferred.221

Lemma 2 formulates the minimisation of the representational cost among the interpolating functions222

as a simpler dynamic program on the sequence of slopes at each xi. This equivalence is the key223

technical result of this work, from which Section 5 defers many properties on the minimiser(s) of224

Equation (3).225

5 Properties of minimal norm interpolator226

Thanks to the dynamic program formulation given by Lemma 2, this section derives key properties on227

the interpolating functions of minimal representational cost. In particular, it shows that Equation (3)228

always admits a unique minimum. Moreover, under some condition on the training set, this minimising229

function has the smallest number of kinks among the set of interpolators.230

Theorem 2. The following optimisation problem admits a unique minimiser:231

inf
f

∥∥∥√1 + x2f ′′
∥∥∥
TV

such that ∀i ∈ [n], f(xi) = yi.

3Here, a single kink is used in the interval [xi, xi+1], thanks to Lemma 3.
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The proof of Theorem 2 uses the correspondence between interpolating functions and sequences of232

slopes (si)i∈[n] ∈ S , where the set S is defined by Equation (21) in Appendix D.2. In particular, we233

show that the following problem admits a unique minimiser:234

mins∈S
∑n−1
i=1 gi+1(si+1, si). (8)

We note in the following s∗ ∈ S the unique minimiser of the problem in Equation (8). From this235

sequence of slopes s∗, the unique minimising function of Equation (3) can be recovered. Moreover,236

s∗ minimises the dynamic program given by the functions ci as follows:237

ci+1(s
∗
i+1) = gi+1(s

∗
i+1, s

∗
i ) + ci(s

∗
i ) for any i ∈ [i0 − 2]

ci(s
∗
i ) = gi+1(s

∗
i+1, s

∗
i ) + ci+1(s

∗
i+1) for any i ∈ {i0, . . . , n− 1}.

Using simple properties of the functions ci given by Lemma 7 in Appendix E, properties on s∗ can238

be derived besides the uniqueness of the minimal norm interpolator. Lemma 3 below gives a first239

intuitive property of this minimiser, which proves helpful in showing the main result of the section.240

Lemma 3. For any i ∈ [n], s∗i ∈ [min(δi−1, δi),max(δi−1, δi)], where δ0 := δ1 and δn := δn−1 by241

convention.242

A geometric interpretation of Lemma 3 is that the optimal (left or right) slope in xi is between the243

line joining (xi−1, yi−1) with (xi, yi) and the line joining (xi, yi) with (xi+1, yi+1).244

5.1 Recovering a sparsest interpolator245

We now aim at characterising when the minimiser of Equation (3) is among the set of sparsest246

interpolators, in terms of number of kinks. Before describing the minimal number of kinks required247

to fit the data in Lemma 4, we partition [x1, xn) into intervals of the form [xnk
, xnk+1

) where248

n0 = 1 and for any k ≥ 0 such that nk < n,

nk+1 = min {j ∈ {nk + 1, . . . , n− 1} | sign(δj − δj−1) ̸= sign(δj−1 − δj−2)} ∪ {n}, (9)
and sign(0) := 0 by convention. If we note flin the canonical piecewise linear interpolator, it is either249

convex, concave or affine on every interval [xnk−1, xnk+1
]. This partitioning thus splits the space into250

convex, concave and affine parts of flin, as illustrated by Figure 2 on a toy example. This partition is251

crucial in describing the sparsest interpolators, thanks to Lemma 4.

−3 −2 −1 0 1 2 3 4 5
x

−1

0

1

2

3

4

5

6

y

xn0
xn1

xn2

convex
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xn4

convex

xn5

concave

flin

Figure 2: Partition given by (nk)k on a toy example.
252

Lemma 4. If we denote by ∥f ′′∥0 the cardinality of the support of the measure f ′′,253

min
f

∀i,f(xi)=yi

∥f ′′∥0 =
∑
k≥1

⌈
nk+1 − nk

2

⌉
1δnk−1 ̸=δnk

.

Lemma 4’s proof idea is that for any interval [xk−1, xk+1) where flin is convex (resp. concave) non254

affine, any function requires at least one positive (resp. negative) kink to fit the three data points in255

this interval. The result then comes from counting the number of such disjoint intervals and showing256

that a specific interpolator exactly reaches this number.257

The minimal number of kinks required to interpolate the data is given by Lemma 4. Before giving the258

main result of this section, we introduce the following assumption on the data (xk, yk)k∈[n].259

Assumption 1. For the sequence (nk)k defined in Equation (9):260

nk+1 − nk ≤ 3 or δnk
= δnk−1 for any k ≥ 0.
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Assumption 1 exactly means there are no 6 (or more) consecutive points xk, . . . , xk+5 such that261

flin is convex (without 3 aligned points) or concave on [xk, xk+5]. This assumption depends a lot262

on the structure of the true model function (if there is any). For example, it holds if the truth is263

given by a piecewise linear function, while it may not if the truth is given by a quadratic function.264

Theorem 3 below shows that under Assumption 1, the minimal cost interpolator is amongst the265

sparsest interpolators, in number of its kinks.266

Theorem 3. If Assumption 1 holds, then267

argmin
f

∀i,f(xi)=yi

∥
√
1 + x2f ′′∥TV ∈ argmin

f
∀i,f(xi)=yi

∥f ′′∥0. (10)

Theorem 3 states conditions under which the interpolating function f with the smallest representa-268

tional cost R1(f) also has the minimal number of kinks, i.e. ReLU hidden neurons, among the set of269

interpolators. It illustrates how norm regularisation, and in particular adding the biases’ norm to the270

weight decay, favors estimators with a small number of neurons. While training neural networks with271

norm regularisation, the final estimator can actually have many non-zero neurons, but they all align272

towards a few key directions. As a consequence, the obtained estimator is actually equivalent to a273

small width network, meaning they have the same output for every input x ∈ R.274

Recall that such a sparsity does not hold when the bias terms are not regularised. More precisely,275

some sparsest interpolators have a minimal representational cost in that case, but there are also276

minimal cost interpolators with an arbitrarily large (even infinite) number of kinks [Debarre et al.,277

2022]. There is thus no particular reason that the obtained estimator is sparse when minimising278

the representational cost without penalising the bias terms. Section 6 empirically illustrates this279

difference of sparsity in the recovered estimators, depending on whether or not the bias parameters280

are penalised in the norm regularisation.281

Remark 3. Theorem 3 states that sparse recovery, given by Equation (10), occurs if Assumption 1282

holds. When nk+1 − nk ≥ 4, i.e. there are convex regions of flin with at least 6 points, Appendix A283

gives a counterexample where Equation (10) does not hold. However, Equation (10) can still hold284

under weaker data assumptions than Assumption 1. In particular, Appendix A gives a necessary and285

sufficient condition for sparse recovery when there are convex regions with exactly 6 points. When we286

allow for convex regions with at least 7 points, it however becomes much harder to derive conditions287

where sparse recovery still occurs.288

Remark 4. The counterexample presented in Appendix A reveals an unexpected outcome: minimal289

representational cost interpolators may not necessarily belong to the sparest interpolators. This find-290

ing supports the idea that it may not be generally feasible to characterize minimal norm interpolators291

based on a specific measure [Vardi and Shamir, 2021], such as the number of kinks. We believe that292

this inherent limitation is one of the underlying reason for the different implicit regularization effects293

observed in settings such as matrix factorization [Gunasekar et al., 2017, Razin and Cohen, 2020, Li294

et al., 2020].295

5.2 Application to classification296

In the binary classification setting, max-margin classifiers, defined as the minimiser of the problem297

min
f
R(f) such that ∀i ∈ [n], yif(xi) ≥ 1, (11)

are known to be the estimators of interest. Indeed, gradient descent on the cross entropy loss298

l(ŷ, y) = log(1 + e−ŷy) converges in direction to such estimators [Lyu and Li, 2019, Chizat and299

Bach, 2020]. Theorem 3 can be used to characterise max- margin classifiers, leading to Corollary 1.300

Corollary 1.
argmin

f
∀i∈[n],yif(xi)≥1

R1(f) ∈ argmin
f

∀i∈[n],yif(xi)≥1

∥f ′′∥0,

where the left minimisation problem admits a unique minimiser.301

Theorem 3 yields that the max-margin classifier is unique and among the sparsest margin classifiers,302

when a free skip connection is allowed. We emphasise that no data assumptions are required for303

classification tasks, apart from being univariate.304
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6 Experiments305

This section compares, through Figure 3, the estimators that are obtained with and without counting306

the bias terms in the regularisation, when training a one-hidden ReLU layer neural network. The307

code is made available in the supplementary material. For this experiment, we train neural networks308

by minimising the empirical loss, regularised with the ℓ2 norm of the parameters (either with or309

without the bias terms) with a regularisation factor λ = 10−3. Each neural network has m = 200310

hidden neurons and all parameters are initialised i.i.d. as centered Gaussian variables of variance311
1/

√
m (similar results are observed for larger initialisation scales).4 There is no free skip connection312

here, which illustrates its benignity: the results that are expected by the above theory also happen313

without free skip connection. Experiments with a free skip connection are given in Appendix B and314

yield similar observations.
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(a) Penalising bias terms in the ℓ2 regularisation.
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(b) Ignoring the bias terms in the ℓ2 regularisation.

Figure 3: Final estimator when training one-hidden layer network with ℓ2 regularisation. The green
dots correspond to the data and the green line is the estimated function. Each blue star represents a
hidden neuron (wj , bj) of the network: its x-axis value is given by −bj/wj , which coincides with
the position of the kink of its associated ReLU; its y-axis value is given by the output weight aj .

315

As predicted by our theoretical study, penalising the bias terms in the ℓ2 regularisation enforces the316

sparsity of the final estimator. The estimator of Figure 3a indeed counts 2 kinks (the smallest number317

required to fit the data), while in Figure 3b, the directions of the neurons are scattered. More precisely,318

the estimator is almost smooth near x = −0.5, while the sparse estimator of Figure 3a is clearly not319

differentiable at this point. Also, the estimator of Figure 3b includes a clear additional kink at x = 0.320

Figure 3 thus illustrates that counting the bias terms in regularisation can lead to sparser estimators.321

7 Conclusion322

This work studies the importance of parameters’ norm for one hidden ReLU layer neural networks323

in the univariate case. In particular, the parameters’ norm required to represent a function is given324

by
∥∥√1 + x2f ′′

∥∥
TV

when allowing for a free skip connection. In comparison to weight decay,325

which omits the bias parameters in the norm, an additional
√
1 + x2 weighting term appears in326

the representational cost. This weighting is of crucial importance since it implies uniqueness of327

the minimal norm interpolator. Moreover, it favors sparsity of this interpolator in number of kinks.328

Minimising the parameters’ norm (with the biases), which can be either obtained by explicit or329

implicit regularisation when training neural networks, thus leads to sparse interpolators. We believe330

this sparsity is a reason for the good generalisation properties of neural networks observed in practice.331

Although these results provide some understanding of minimal norm interpolators, extending them to332

more general and difficult settings remains open. Even if the representational cost might be described333

in the multivariate case [as done by Ongie et al., 2019, without bias penalisation], characterising334

minimal norm interpolators seems very challenging in that case. Characterising minimal norm335

interpolators, with no free skip connection, also presents a major challenge for future work.336

4For small initialisations, both methods yield sparse estimators, since implicit regularisation of the bias terms
is significant in that case. Our goal is only to illustrate the differences in the minimisers of the two problems
(with and without bias penalisation), without any optimisation consideration.
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A Discussing Assumption 1414

Theorem 3 requires Assumption 1, which assumes that there are no convex (or concave) regions of415

flin with at least 6 data points. Actually, when there is a convex (or concave) region with exactly 6416

data points, i.e. nk+1 = nk + 4, Theorem 3 holds (for this region) if and only if for i = nk + 1:417

⟨ui, wi−1⟩⟨ui+1, wi+1⟩
∥wi−1∥ ∥wi+1∥

− ⟨ui, ui+1⟩ ≤
√

∥ui∥2 −
⟨ui, wi−1⟩2
∥wi−1∥2

√
∥ui+1∥2 −

⟨ui+1, wi+1⟩2
∥wi+1∥2

(12)
418

where ui = (xi, 1); wi−1 =
δi − δi−1

δi − δi−2
(xi, 1) +

δi−1 − δi−2

δi − δi−2
(xi−1, 1);

and ui+1 = (xi+1, 1); wi+1 =
δi+2 − δi+1

δi+2 − δi
(xi+2, 1) +

δi+1 − δi
δi+2 − δi

(xi+1, 1).

The proof of this result (omitted here) shows that the problem419

min
(si,si+1)∈[δi−1,δi]×[δi,δi+1]

gi(si, s
∗
i−1) + gi+1(si+1,si) + gi+2(s

∗
i+2, si+1)

is minimised for (si, si+1) = (δi, δi) if and only if Equation (12) holds, which corresponds to the420

(unique) sparsest way to interpolate the data on this convex region. To show that the minimum421

is reached at that point, we can first notice that s∗i−1 = δi−2 and s∗i+2 = δi+2. Then, it requires422

a meticulous study of the directional derivatives of the (convex but non-differentiable) objective423

function at the point (δi, δi).424

Figure 4 below illustrates a case of 6 data points, where the condition of Equation (12) does not hold.425

Clearly, the minimal norm interpolator differs from the (unique) sparsest interpolator in that case.426

0.0 0.5 1.0 1.5 2.0 2.5
x

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

y

min norm

sparsest

Figure 4: Case of difference between minimal norm interpolator and sparsest interpolator.

When considering more than 6 points, studying the minimisation problem becomes cumbersome427

and no simple condition of sparse recovery can be derived. When generating random data with428

large convex regions, e.g. 35 points, the minimal norm interpolator is rarely among the sparsest429

interpolators. Moreover, it seems that its number of kinks could be arbitrarily close to 34, which is430

the trivial upper bound of the number of kinks given by Lemma 3; while the sparsest interpolators431

only have 17 kinks.432

B Additional experiments433

Figure 5 shows the minimiser of Equation (3) on the toy example of Figure 2. The minimising434

function is computed thanks to the dynamic program given by Lemma 2. Although the variables of435

this dynamic program are continuous, we can efficiently solve it by approximating the constraint436

space of each slope si as a discrete grid of [δi−1, δi] thanks to Lemma 3. For the data used in Figure 5,437

Assumption 1 holds. It is clear that the minimiser is very sparse, counting only 4 kinks. The partition438

given by Figure 2 then shows that this is indeed the smaller possible number of kinks, thanks to439

Lemma 4. On the other hand, the canonical piecewise linear interpolator flin is is not as sparse and440

counts 7 kinks here.441

12



−3 −2 −1 0 1 2 3 4 5
x

−1

0

1

2

3

4

5

6

y

Min norm interpolator

Figure 5: Minimiser of Equation (3) on a toy data example.

Figure 6 considers the exact same setting as Figure 3 in Section 6. The only difference is that we here442

allow a free skip connection in the neural network architecture, which represents the setting exactly443

described by Theorem 3.444
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(a) Final estimator when penalising bias terms in
the ℓ2 regularisation.
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(b) Final estimators when training one-hidden
ReLU neural networks with ℓ2 regularisation and
a free skip connection.

Figure 6: Final estimators when training one-hidden ReLU neural networks with ℓ2 regularisation.
The green dots correspond to the data, while the green line is the estimated function. Each blue
star represents a hidden neuron (wj , bj) of the network: its x-axis value is given by −bj/wj , which
coincides with the position of the kink of its associated ReLU; its y-axis value is given by the output
layer weight aj .

Similar observations can be made: the obtained estimator when counting the bias terms in regular-445

isation only has 2 kinks, while the estimator obtained by omitting the biases in the regularisation446

is much smoother (and thus much less sparse in the number of kinks). The only difference is that447

the latter estimator here does not have a clear kink at x = 0, but is instead even smoother on the448

interval [−0.5, 0]. This is explained by the presence of more scattered kinks in this interval. Despite449

this slight difference, the main observation remains unchanged: the estimator is a sparsest one when450

counting the bias terms, while it counts a lot of kinks (and is even smooth) when omitting the biases.451

C Proofs of Section 3452

Theorem 4 below extends the characterisation of the representational cost R1(f) of Theorem 1.453

Theorem 4. For any Lipschitz function f : R → R,454

R1(f) =
∥∥∥√1 + x2f ′′

∥∥∥
TV

=

∫
R

√
1 + x2 d|f ′′|(x)

and R(f) =
∥∥∥√1 + x2f ′′

∥∥∥
TV

+D(xf , Cf ),
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where455

xf =

(
f ′(+∞) + f ′(−∞), f(0)−

∫
R
|x|df ′′(x)

)
Cf =

{∫
R
φ(x)df ′′(x),−

∫
R
xφ(x)df ′′(x) | ∥φ∥∞ ≤ 1

}
D(xf , Cf ) = inf

x∈Cf

∥x− xf∥.

For any non-Lipschitz function, R1(f) = R(f) = +∞.456

Proof. We only prove the equality onR(f) here. The other part of Theorem 4 can be directly deduced457

from this proof. First assume that R(f) is finite. We can then consider some µ ∈ M(S1) such458

that for any x ∈ R, f(x) =
∫
S1 σ(wx + b)dµ(w, b). Note that f is necessarily ∥µ∥TV-Lipschitz,459

which proves the second part of Theorem 4. Without loss of generality, we can parameterise S1 on460

θ ∈ [−π
2 ,

3π
2 ) with T−1(θ) = (cos θ, sin θ). If we note ν = T#µ the pushforward measure of µ461

by T , we then have462

f(x) =

∫ 3π
2

−π
2

σ(x cos θ + sin θ)dν(θ). (13)

Since the total variation of µ and thus ν is bounded, we can derive under the integral sign:463

f ′(x) =

∫ 3π
2

−π
2

cos θ1x cos θ+sin θ≥0dν(θ).

Now note that x cos θ+sin θ ≥ 0 if and only if θ ∈ [− arctan(x), π−arctan(x)] since θ ∈ [−π
2 ,

3π
2 ),464

i.e.465

f ′(x) =

∫ π−arctan x

− arctan x

cos θdν(θ).

When deriving this expression over x, we finally get for the distribution f ′′466

df ′′(x) = −cos (π − arctan(x)) dν (π − arctan(x))− cos (− arctan(x)) dν (− arctan(x))

1 + x2

=
cos(arctan(x))(dν (π − arctan(x)) + dν (− arctan(x)))

1 + x2
.

This equality is straightforward for continuous distributions ν. Extending it to any distribution467

ν requires some extra work but can be obtained following the typical definition of distributional468

derivative.469

Defining ν+(θ) = ν(θ) + ν(π + θ) for any θ ∈ [−π
2 ,

π
2 ) and noting that cos(arctanx) = 1√

1+x2
,470

∀x ∈ R,
√
1 + x2df ′′(x) =

dν+(− arctan(x))

1 + x2
.

Or equivalently, for any θ ∈ (−π
2 ,

π
2 )471

df ′′(− tan θ)

cos θ
= cos2(θ) dν+(θ). (14)

Similarly to the proof of Savarese et al. [2019], f ′′ fixes ν+ and the only degree of freedom is on472

ν⊥(θ) := ν(θ)− ν(π + θ). The proof now determines which valid ν⊥ minimises ∥µ∥TV = ∥ν∥TV.473

Equation (13) implies the following condition on ν⊥474

f(x) =
1

2

∫ π
2

−π
2

σ(−x cos θ − sin θ)d(ν+ + ν⊥)(θ) +
1

2

∫ π
2

−π
2

σ(x cos θ + sin θ)d(ν+ − ν⊥)(θ)

=
1

2

∫ π
2

−π
2

|x cos θ + sin θ|dν+(θ) +
x

2

∫ π
2

−π
2

cos θdν⊥(θ) +
1

2

∫ π
2

−π
2

sin θdν⊥(θ).

While ν+ is given by f ′′, ν⊥ holds for affine part of f . The above equality directly leads to the475

following condition on ν⊥476 {∫ π
2

−π
2
cos θ dν⊥(θ) = f ′(+∞) + f ′(∞)∫ π

2

−π
2
sin θ dν⊥(θ) = f(0)−

∫ π
2

−π
2
| sin θ|dν+(θ)

. (15)
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Now note that 2 ∥µ∥TV = ∥ν+ + ν⊥∥TV + ∥ν+ − ν⊥∥TV, so that R(f) is given by477

2R(f) = min
ν⊥

∥ν+ + ν⊥∥TV + ∥ν+ − ν⊥∥TV such that ν⊥ verifies Equation (15).

Lemma 5 below then implies5478

R(f) = ∥ν+∥TV +D(xf , Cf ),
where xf and Cf are defined in Theorem 4. Equation (14) leads with a simple change of variable479

when R(f) is finite to480

R(f) =
∥∥∥√1 + x2f ′′

∥∥∥
TV

+D(xf , Cf ).

Reciprocally, when
∥∥√1 + x2f ′′

∥∥
TV

is finite, we can define ν+ as in Equation (14) and ν⊥ as a sum481

of Diracs in −π
2 and 0 verifying Equation (15). The corresponding µ is then of finite total variation,482

implying that R(f) is finite. This ends the proof of the first part of Theorem 4:483

R(f) =
∥∥∥√1 + x2f ′′

∥∥∥
TV

+D(xf , Cf ).

For R1(f), the analysis is simpler since there is no constraint on ν⊥, whose optimal choice is then484

given by ν⊥ = 0.485

Lemma 5. The minimisation program486

min
ν⊥

∫ π
2

−π
2

d|ν+ + ν⊥|+
∫ π

2

−π
2

d|ν+ − ν⊥|

such that

(∫ π/2

−π/2
cos θ dν⊥(θ),

∫ π/2

−π/2
sin θ dν⊥(θ)

)
= (a, b)

(16)

is equivalent to487

2

∫ π
2

−π
2

d|ν+|+ 2min
u∈C

∥(a, b)− u∥,

where C =

{(∫ π
2

−π
2

cos(θ)φ(θ)dν+(θ),

∫ π
2

−π
2

sin(θ)φ(θ)dν+(θ)

)
| ∥φ∥∞ ≤ 1

}
.

(17)

Proof. For any ν⊥ in the constraint set of Equation (16), we can use a decomposition ν⊥ = φν++µ2488

where ∥φ∥∞ ≤ 1. It then comes pointwise489

|ν+ + ν⊥|+ |ν+ − ν⊥| ≤ 2|µ2|+ |(1 + φ)ν+|+ |(1− φ)ν+| (18)
= 2|µ2|+ 2|ν+|.

As a consequence, if we note v the infimum given by Equation (16):490

v ≤ 2

∫ π
2

−π
2

d|ν+|+ 2 min
(φ,µ2)∈Γ

∫ π
2

−π
2

d|µ2|,

where491

Γ =

{
(φ, µ2)

∣∣∣ ∥φ∥∞ ≤ 1 and
∫ π/2

−π/2
(cos θ, sin θ) (φ(θ)dν+(θ) + dµ2(θ)) = (a, b)

}
.

Moreover for a fixed ν⊥, we can choose (φ, µ2) as:492 {
φ = sign(dν⊥dν+

)min
(∣∣∣dν⊥dν+

∣∣∣ , 1) ,
µ2 = ν⊥ − φν+,

where dν⊥
dν+

denotes by abuse of notation the Radon-Nikodym derivative dνa
dν+

, with the Lebesgue493

decomposition ν⊥ = νa + νs with νa ≪ ν+ and νs ⊥ ν+. For this choice, Equation (18) becomes494

an equality, which directly implies that495

v = 2

∫ π
2

−π
2

d|ν+|+ 2 min
(φ,µ2)∈Γ

∫ π
2

−π
2

d|µ2|.

5A change of variable is also necessary to observe that the min of Lemma 5 is equal to D(xf , Cf ).
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It now remains to prove that min
u∈C

∥(a, b)− u∥2 = min
(φ,µ2)∈Γ

∫ π
2

−π
2
d|µ2|. Fix in the following φ such496

that ∥φ∥∞ ≤ 1 and note497 {
x = a−

∫ π/2
−π/2 cos θ φ(θ)dν+(θ),

y = b−
∫ π/2
−π/2 sin θ φ(θ)dν+(θ).

It now suffices to show that for any fixed φ:498

min
µ2 s.t. (φ,µ2)∈Γ

∫ π
2

−π
2

d|µ2| = ∥(x, y)∥ .

The constraint set is actually
{
µ2 |

∫ π/2
−π/2(cos θ, sin θ) dµ2(θ) = (x, y)

}
. Now define499

θ∗ = arcsin

(
sign(x)y√
x2 + y2

)
and µ∗

2 = sign(x)
√
x2 + y2δθ∗ ,

where δθ∗ is the Dirac distribution located at θ∗. This definition is only valid if x ̸= 0, otherwise we500

choose µ∗
2 = −yδ−π

2
.501

Note that µ∗
2 is in the constraint set and

∫ π
2

−π
2
d|µ2| = ∥(x, y)∥, i.e.502

min
µ2 s.t. (φ,µ2)∈Γ

∫ π
2

−π
2

d|µ2| ≤ ∥(x, y)∥ .

Now consider any µ2 in the constraint set and decompose µ2 = µ+
2 − µ−

2 with (µ+
2 , µ

−
2 ) ∈503

M+([−π
2 ,

π
2 ))

2. Define504

(x+, y+) =

(∫ π
2

−π
2

cos θ dµ+
2 ,

∫ π
2

−π
2

sin θ dµ+
2

)

(x−, y−) =

(∫ π
2

−π
2

cos θ dµ−
2 ,

∫ π
2

−π
2

sin θ dµ−
2

)
By Cauchy-Schwarz inequality,505 ∫

cos2(θ) dµ+
2 (θ)

∫
dµ+

2 (θ) ≥ x2+,∫
sin2(θ) dµ+

2 (θ)

∫
dµ+

2 (θ) ≥ y2+.

Summing these two inequalities yields∫
dµ+

2 ≥
√
x2+ + y2+.

Similarly, we have ∫
dµ−

2 ≥
√
x2− + y2−.

Recall that
∫
d|µ2| =

∫
dµ+

2 +
∫
dµ−

2 . By triangle inequality, this yields:506 ∫
d|µ2| ≥ ∥(x+, y+)∥+ ∥(x−, y−)∥

≥ ∥(x+, y+)− (x−, y−)∥ = ∥(x, y)∥.
As a consequence:507

min
µ2 s.t. (φ,µ2)∈Γ

∫ π
2

−π
2

d|µ2| ≥ ∥(x, y)∥ .

We finally showed that508

min
µ2 s.t. (φ,µ2)∈Γ

∫ π
2

−π
2

d|µ2| =
∥∥∥∥∥(a, b)−

(∫ π/2

−π/2
cos θ φ(θ)dν+(θ),

∫ π/2

−π/2
sin θ φ(θ)dν+(θ)

)∥∥∥∥∥ .
This leads to Lemma 5 when taking the infimum over φ.509
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D Proof of Section 4510

D.1 Proof of Lemma 1511

We first need to show the existence of a minimum. Using the definition of R1(f) and Theorem 1,512

Equation (3) is equivalent to513

inf
µ,a,b

∥µ∥TV such that for any i ∈ [n], fµ,a,b(xi) = yi. (19)

Consider a sequence (µj , aj , bj)j such that fµj ,aj ,bj (xi) = yi for any i and j and ∥µj∥TV converges514

to the infimum of Equation (19). The sequence ∥µj∥TV is necessarily bounded. This also implies that515

both (aj) and (bj) are bounded6. Since the space of finite signed measures on S1 is a Banach space,516

there is a subsequence converging weakly towards some (µ, a, b). By weak convergence, (µ, a, b) is517

in the constraints set of Equation (19) and ∥µ∥TV = limj ∥µj∥TV. (µ, a, b) is thus a minimiser of518

Equation (19). We thus proved the existence of a minimum for Equation (3), which is reached for519

fµ,a,b.520

Define for the sake of the proof the activation cones Ci as521

C0 =
{
θ ∈ R2 | ∀i = 1, . . . , n, ⟨θ, (xi, 1)⟩ ≥ 0

}
,

Ci =
{
θ ∈ R2 | ⟨θ, (xi+1, 1)⟩ ≥ 0 > ⟨θ, (xi, 1)⟩

}
for any i = 1, . . . , i0 − 2,

Ci0−1 =
{
θ ∈ R2 | ⟨θ, (xi0 , 1)⟩ > 0 > ⟨θ, (xi0−1, 1)⟩

}
,

Ci =
{
θ ∈ R2 | ⟨θ, (xi+1, 1)⟩ > 0 ≥ ⟨θ, (xi, 1)⟩

}
for any i = i0, . . . , n− 1,

Cn =
{
θ ∈ R2 \ {0} | ∀i = 1, . . . , n, ⟨θ, (xi, 1)⟩ ≤ 0⟩

}
.

As the xi are ordered, note that (C0, C1,−C1, . . . , Cn−1,−Cn−1, Cn) forms a partition of R2. To522

prove Lemma 1, it remains to show that any minimiser (µa, b) of Equation (19) has a function fµ,a,b523

of the form524

fµ,a,b(x) = ãx+ b̃+

n−1∑
i=1

ãiσ(⟨θi, (x, 1)⟩) where θi ∈ Ci.

Let f be a minimiser of Equation (3). Let µ, a, b be a minimiser of Equation (19) such that fµ,a,b = f .525

Define µ̃, ã, b̃ as526

dµ̃(θ) =


dµ(θ) + dµ(−θ) for θ ∈ Ci for any i = 1, . . . , n− 1

0 for θ ∈ −Ci for any i = 1, . . . , n− 1

dµ(θ) otherwise,

ã = a−
n−1∑
j=1

∫
−Cj

θ1dµ(θ),

b̃ = b−
n−1∑
j=1

∫
−Cj

θ2dµ(θ).

Thanks to the identity σ(u)− u = σ(−u), fµ,a,b = fµ̃,ã,b̃. Moreover, ∥µ̃∥TV ≤ ∥µ∥TV, so we can527

assume w.l.o.g. that the support of µ is included7 in
⋃n
i=0 Ci. In that case, for any i =, 1 . . . , n528

f(xi) = axi + b+

i−1∑
j=0

∫
Cj

⟨θ, (xi, 1)⟩dµ(θ)

= axi + b+

i−1∑
j=0

⟨
∫
Cj

θdµ(θ), (xi, 1)⟩. (20)

6To see that, we can first consider the difference fµj ,aj ,bj (x1)−fµj ,aj ,bj (x2) to show that (aj)j is bounded.
This then leads to the boundedness of (bj)j when considering fµj ,aj ,bj (x1).

7We here transform the triple (µ, a, b), but the corresponding function f remains unchanged.
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First, the reduction529

ã = a+

∫
C0

θ1dµ(θ)

b̃ = b+

∫
C0

θ2dµ(θ)

µ̃ = µ|
⋃n−1

i=1 Ci
,

does not increase the total variation of µ and still interpolates the data. As a consequence, the support530

of µ is included in
⋃n−1
i=1 Ci. Now let µ = µ+ − µ− be the Jordan decomposition of µ and define for531

any i ∈ [n− 1]532

αi =

∫
Ci

θdµ+(θ) and βi =

∫
Ci

θdµ−(θ).

Note that αi and βi are both in the positive convex cone Ci. For θi := αi−βi, Equation (20) rewrites533

f(xi) = axi + b+

i−1∑
j=1

⟨θi, (xi, 1)⟩.

If θi ∈ Ci ∪ −Ci, we can then define534

µ̃ = µ− µ|Ci
+ ∥θi∥δ θi

∥θi∥
.

Thanks to Equation (20), the function fµ̃,a,b still interpolates the data and535

∥µ̃∥TV ≤ ∥µ∥TV −
∥∥µ|Ci

∥∥
TV

+ ∥θi∥.
By minimisation of ∥µ∥TV, this is an equality. Moreover as µ is a measure on the sphere,536 ∥∥µ|Ci

∥∥
TV

=

∫
Ci

∥θ∥dµ+(θ) +

∫
Ci

∥θ∥dµ−(θ)

≥
∥∥∥∥∫

Ci

θdµ+(θ)

∥∥∥∥+ ∥∥∥∥∫
Ci

θdµ−(θ)

∥∥∥∥
= ∥αi∥+ ∥βi∥ ≥ ∥θi∥.

By minimisation, all inequalities are equalities. Jensen’s case of equality implies for the first inequality537

that both µ+ |Ci
and µ− |Ci

are Diracs, while the second inequality implies that either αi = 0 or538

βi = 0. Overall, µ|Ci
is at most a single Dirac.539

Now if θi ̸∈ Ci ∪ −Ci, assume first that ⟨θi, (xi+1, 1)⟩ > 0. This implies ⟨θi, (xi, 1)⟩ > 0 since540

θi ̸∈ Ci ∪ −Ci. This then implies that either αi ∈
◦
Ci or βi ∈

◦
Ci, depending on whether i ≥ i0 or541

i < i0. Assume first that βi ∈
◦
Ci (i ≥ i0) and define542

t = sup
{
t′ ∈ [0, 1] | t′αi − βi ∈ −Ci

}
.

By continuity, tαi − βi ∈ −Ci. Moreover 0 < t < 1 , since βi ∈
◦
Ci and θi ̸∈ −Ci. We now define543

µ̃ = µ− µ|Ci
+ (1− t)∥αi∥δ αi

∥αi∥
+ ∥tαi − βi∥δ tαi−βi

∥tαi−βi∥
.

The function fµ̃,a,b still interpolates the data. Similarly to the case θi ∈ Ci ∪ −Ci, the minimisation544

of ∥µ∥TV implies that µ|Ci
is at most a single Dirac.545

If αi ∈
◦
Ci instead, similar arguments follow defining546

t = sup
{
t′ ∈ [0, 1] | αi − t′βi ∈ Ci

}
.

Symmetric arguments also hold if ⟨θi, (xi+1, 1)⟩ < 0. In any case, µ|Ci
is at most a single Dirac.547

This holds for any i = 1, . . . , n− 1, which finally leads to Lemma 1.548

D.2 Proof of Lemma 2549

Before proving Lemma 2, let us show a one to one mapping from the parameterisation given by550

Lemma 1 to a parameterisation given by the sequences of slopes in the points xi. Let us define the551
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sets552

S =

{
(s1, . . . , sn) ∈ Rn |∀i = 1, . . . , i0 − 2, si ∈ Si(si+1),

(si0−1, si0) ∈ Λ and ∀i = i0, . . . , n− 1, si+1 ∈ Si(si)

} (21)

and553

I =

{
(a, b, (ai, τi)i=1,...,n−1) |∀j = 1, . . . , n, axj + b+

n−1∑
i=1

ai(xj − τi)+ = yj , τi0−1 ∈ (xi0−1, xi0),

τi =
xi + xi+1

2
if ai = 0, ∀i ∈ {1, . . . , i0 − 2}, τi ∈ (xi, xi+1]

and ∀i ∈ {i0, . . . , n− 1}, τi ∈ [xi, xi+1)

}
.

The condition τi = xi+xi+1

2 if ai = 0 in the definition of I is just to avoid redundancy, as any554

arbitrary value of τi would yield the same interpolating function. Lemma 6 below gives a one to one555

mapping between these two sets.556

Lemma 6. The function557

ψ :
I → S
(a0, b0, (ai, τi)i=1,...,n−1) 7→ (

∑i−1
j=0 aj)i=1,...,n−1

is a one to one mapping. Its inverse is given by558

ψ−1 :
S → I
(si)i∈[n] 7→ (a0, b0, (ai, τi)i∈[n−1])

where559

a0 = s1; b0 = y1 − s1x1; ai = si+1 − si for any i ∈ [n− 1];

τi =

{
si+1−δi
si+1−sixi+1 +

δi−si
si+1−sixi if si+1 ̸= si

xi+xi+1

2 otherwise
.

Proof. For (a0, b0, (ai, τi)i=1,...,n−1) ∈ I, let f be the associated interpolator:560

f(x) = a0x+ b0 +

n−1∑
i=1

ai(x− τi)+

and let (si)i∈[n] = ψ(a0, b0, (ai, τi)i). Given the definition of ψ, it is straightforward to check that561

si corresponds to the left (resp. right) derivative of f at xi ≥ 0 (resp. xi < 0). We actually have the562

two following inequalities linking the parameters (a0, b0, (ai, τi)i) and (si)i for any i ∈ [n− 1]:563

si + ai = si+1,

yi + si(xi+1 − xi) + ai(xi+1 − τi) = yi+1.

The first equality comes from the (left or right) derivatives of f in xi, while the second equality is564

due to the interpolation of the data by f . These two equalities imply that an interpolator with ReLU565

parameters in I (i.e., f ) can be equivalently described by its (left or right) derivatives in each xi. A566

straightforward computation then allows to show that ψ and ψ−1 are well defined and indeed verify567

ψ ◦ ψ−1 = IS and ψ−1 ◦ ψ = II .568

Using this bijection from I to S, we can now prove Lemma 2. Note for the remaining of the proof569

α = min f
∀i∈[n],f(xi)=yi

∫
R
√
1 + x2d|f ′′(x)|. Thanks to Lemma 1, we have the first equivalence:570

α = min
(a0,b0,(ai,τi)i=1,...,n−1)∈I

n−1∑
i=1

|ai|
√
1 + τ2i .

For any (a0, b0, (ai, τi)i=1,...,n−1) ∈ I, we can define thanks to Lemma 6 (si)i =571

ψ(a0, b0, (ai, τi)i) ∈ S. We then have (a0, b0, (ai, τi)i) = ψ−1((si)i). Moreover, by definition572
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of ψ−1, we can easily check that573

|ai|
√
1 + τ2i =

√
a2i + (aiτi)2

=
√
(si+1 − si)2 + ((si+1 − δi)xi+1 + (si − δi)xi)2

= gi+1(si+1, si). (22)
As ψ is a one to one mapping, we have for any function h the equivalence minu∈ψ−1(S) h(u) =574

mins∈S h(ψ
−1(s)). In particular, thanks to Equation (22):575

min
(a0,b0,(ai,τi)i=1,...,n−1)∈I

n−1∑
i=1

|ai|
√

1 + τ2i = min
(si)i∈S

n−1∑
i=1

gi+1(si+1, si). (23)

From there, define for any i ≥ i0,576

di(si) = min
(s̃)j∈S

s.t. s̃i=si

n−1∑
j=i

gj+1(s̃j+1, s̃j);

and for any i < i0577

di(si) = min
(s̃)j∈S

s.t. s̃i=si

i−1∑
j=1

gj+1(s̃j+1, s̃j).

Obviously, we have from Equation (23) and the definition of S that578

α = min
(si0−1,si0 )∈Λ

gi0(si0 , si0−1) + di0−1(si0−1) + di0(si0). (24)

It now remains to show by induction that for any i that ci = di. This is obviously the case for i = n.579

Let us now consider i ∈ {i0, . . . , n− 1}. The definition of di leads to580

di(si) = min
(s̃)j∈S

s.t. s̃i=si

n−1∑
j=i

gj+1(s̃j+1, s̃j)

= min
si+1∈Si(si)

min
(s̃)j∈S

s.t. s̃i=si
s̃i+1=si+1

gi+1(si+1, si) +

n−1∑
j=i+1

gj+1(s̃j+1, s̃j)

= min
si+1∈Si(si)

gi+1(si+1, si) + min
(s̃)j∈S

s.t. s̃i=si
s̃i+1=si+1

n−1∑
j=i+1

gj+1(s̃j+1, s̃j). (25)

Now note that for any si+1 ∈ Si(si), we have the equality of the sets581 {
(s̃j)j≥i+1 | (s̃)j∈[n−1] ∈ S s.t. s̃i = si and s̃i+1 = si+1

}
=
{
(s̃j)j≥i+1 | (s̃)j∈[n−1] ∈ S s.t. s̃i+1 = si+1

}
Since the last term in Equation (25) only depends on (s̃j)j≥i+1, this implies that582

di(si) = min
si+1∈Si(si)

gi+1(si+1, si) + min
(s̃)j∈S

s.t. s̃i+1=si+1

n−1∑
j=i+1

gj+1(s̃j+1, s̃j)

= min
si+1∈Si(si)

gi+1(si+1, si) + di+1(si+1).

By induction, it naturally comes from the definition of ci that ci = di for any i ≥ i0. Symmetric583

arguments hold for any i < i0, which finally gives ci = di for any i ∈ [n]. Equation (24) then yields584

Lemma 2.585
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E Proof of Section 5586

The proofs of this section are shown in the case where x1 < 0 and xn ≥ 0. When all the x are587

positive, i.e., x1 ≥ 0, the adapted version of Lemma 2 would yield for i0 = 1 the equivalence8588

min
f

∀i∈[n],f(xi)=yi

∫
R

√
1 + x2d|f ′′(x)| = min

si0∈R
ci0(si0).

The proofs of Appendix E can then be easily adapted to this case (and similarly if xn < 0).589

Appendix E.5 at the end of the section more precisely states how to adapt them to this case.590

E.1 Proof of Theorem 2591

Before proving Theorem 2, Lemma 7 below provides important properties verified by the functions592

ci defined in Equation (7).593

Lemma 7. For each i ∈ {i0, . . . , n − 1}, the function ci is convex,
√
1 + x2i -Lipschitz on R and594

minimised for si = δi.595

Moreover, on both intervals (−∞, δi] and [δi,+∞):596

1. either ci(si) =
√
1 + x2i |si − δi| + ci+1(δi) for all si in the considered interval, or ci is597

strictly convex on the considered interval;598

2. |ci(si)− ci(s
′
i)| ≥ 1+xixi+1√

1+x2
i+1

|si − s′i| for all si, s′i in the considered interval.599

Similarly, for each i ∈ {1, . . . , i0 − 2}, the function ci+1 is convex,
√
1 + x2i+1-Lipschitz on R and600

and minimised for si+1 = δi.601

Moreover, on both intervals (−∞, δi] and [δi,+∞):602

1. either ci+1(si+1) =
√
1 + x2i+1|si+1 − δi|+ ci(δi) for all si+1 in the considered interval,603

or ci+1 is strictly convex on the considered interval;604

2. |ci+1(si+1) − ci+1(s
′
i+1)| ≥ 1+xixi+1√

1+x2
i

|si+1 − s′i+1| for all si+1, s
′
i+1 in the considered605

interval.606

Proof. For any i ∈ {1, . . . , i0 − 2}, we prove the result by (backward) induction. Since cn = 0, a607

straightforward calculation gives9608

cn−1(sn−1) =
√

1 + x2n−1|sn−1 − δn−1|,
which gives the wanted properties for i = n− 1.609

Now consider i ∈ {i0, . . . , n−2} such that ci+1 verifies all the properties in the first part of Lemma 7.610

We first show the Lipschitz property of ci. Let si, s′i < δi first. By inductive assumption, the function611

si+1 7→ gi+1(si+1, si) + ci+1(si+1) reaches a minimum on [δi,+∞). Consider si+1 ≥ δi such that612

ci(si) = gi+1(si+1, si) + ci+1(si+1).

Also by minimisation, ci(s′i) ≤ gi+1(si+1, s
′
i) + ci+1(si+1). For the vectors u = (xi+1, 1) and613

v = (xi, 1), it then holds:614

ci(s
′
i)− ci(si) ≤ gi+1(si+1, s

′
i)− gi+1(si+1, si)

= ∥(si+1 − δi)u− (s′i − δi)v∥ − ∥(si+1 − δi)u− (si − δi)v∥

≤ ∥(si − s′i)v∥ =
√
1 + x2i |si − s′i|.

The first equality comes from the definition of gi+1 as a norm and the second inequality comes from615

the triangle inequality. By symmetry, we showed |ci(s′i)− ci(si)| ≤
√

1 + x2i |si− s′i| for si, s′i < δi.616

8Note that in that case c1 ̸≡ 0. Instead, c1 is defined through the recursion given in Equation (7).
9This calculation uses the fact that both xn−1 and xn are positive, which implies that the minimal sn in the

definition of cn−1 is δn−1
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Note that if si = δi, then si+1 = δi and we show similarly that ci(s′i)− ci(δi) ≤
√

1 + x2i |δi − s′i|.617

Moreover,618

ci(s
′
i)− ci(δi) = min

s′i+1≥δi
∥(s′i+1 − δi)u− (s′i − δi)v∥+ ci+1(s

′
i+1)− ci+1(δi)

≥ min
s′i+1≥δi

∥(s′i+1 − δi)u− (s′i − δi)v∥ − ∥(s′i+1 − δi)u∥

≥ 0.

The first inequality comes from the Lipschitz property of ci+1. The second from the fact that619

(s′i+1 − δi)u and (s′i − δi)v are negatively correlated, since xi and xi+1 are both positive. As a620

consequence, ci is
√
1 + x2i -Lipschitz on (−∞, δi]. Symmetrically, it is also

√
1 + x2i -Lipschitz on621

[δi,+∞), which finally implies it is
√
1 + x2i -Lipschitz on R. Moreover, the last calculation also622

shows that ci is minimised for si = δi.623

Let us now show that ci verifies the first point on (−∞, δi]. By continuity, we only have to show it624

on (−∞, δi). Let si ∈ (−∞, δi), we then have by definition625

ci(si) = min
si+1≥δi

gi+1(si+1, si) + ci+1(si+1).

If δi+1 ≤ δi, note that both functions gi+1(·, si) and ci+1 are increasing on [δi,+∞)10. The minimum626

is thus reached for si+1 = δi and627

ci(si) =
√
1 + x2i |si − δi|+ ci+1(δi).

If δi+1 > δi, both functions gi+1(·, si) and ci+1 are increasing on [δi+1,+∞). As a consequence,628

we can then rewrite629

ci(si) = min
si+1∈[δi,δi+1]

gi+1(si+1, si) + ci+1(si+1). (26)

Assume first that ci+1(si+1) =
√

1 + x2i+1|si+1 − δi+1| + ci+2(δi+1) on [δi, δi+1]. By triangle630

inequality, we actually have631

gi+1(si+1, si) ≥ gi+1(δi+1, si)−
√
1 + x2i+1|δi+1 − si+1|.

This leads for si+1 ∈ [δi, δi+1] to632

gi+1(si+1, si) + ci+1(si+1) ≥ gi+1(δi+1, si) + ci+2(δi+1).

The minimum in Equation (26) is thus reached for si+1 = δi+1, which finally gives for any si ≤ δi633

ci(si) = gi+1(δi+1, si) + ci+2(δi+1).

Since δi+1 > δi, it is easy to check that gi+1(δi+1, ·) is strictly convex on (−∞, δi) and so is ci.634

Let us now assume the last case, where ci+1 is strictly convex on [δi, δi+1]. By contradiction, assume635

that the first point on (−∞, δi] does not hold. Note in the following h(si+1, si) = gi+1(si+1, si) +636

ci+1(si+1). For si, s′i < δi, by continuity of h, let si+1, s
′
i+1 ∈ [δi, δi+1] be such that637

ci(si) = h(si+1, si) and ci(s
′
i) = h(s′i+1, s

′
i).

For any t ∈ (0, 1), by convexity of h:638

ci(tsi + (1− t)s′i) ≤ h(t(si+1, si) + (1− t)(si+1, si))

≤ th(si+1, si) + (1− t)h(s′i+1, s
′
i)

= tci(si) + (1− t)ci(s
′
i).

ci is thus convex on (−∞, δi]. Moreover, the case of equality corresponds to the case of equality for639

both gi+1 and ci+1:640

gi+1(t(si+1, si) + (1− t)(si+1, si)) = tgi+1(si+1, si) + (1− t)gi+1(s
′
i+1, s

′
i)

ci+1(tsi+1 + (1− t)s′i+1) = tci+1(si+1) + (1− t)ci+1(s
′
i+1).

The former leads to the colinearity of the vectors (si+1 − δi, si − δi) and (s′i+1 − δi, s
′
i − δi); the641

latter gives si+1 = s′i+1 by strict convexity of ci+1. Two cases are then possible642 {
either si+1 = δi = s′i+1

or si = s′i.

10Here again, we use the fact that xi and xi+1 are positive.
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The former case then implies that ci(si) =
√
1 + x2i |si − δi|+ ci+1(δi). Since ci(δi) = ci+1(δi), ci643

is
√
1 + x2i -Lipschitz and convex on (−∞, δi], this leads to ci(s) =

√
1 + x2i |s− δi|+ ci+1(δi) for644

any s ∈ (−∞, δi]. This contradicts the assumption that the first point does not hold on (−∞, δi]. Nec-645

essarily, we have si = s′i. So ci is strictly convex on (−∞, δi], which leads to another contradiction:646

the first point does hold on (−∞, δi].647

Finally, we just showed that in any case, ci is either strictly convex or equal to si 7→
√
1 + x2i |si−δi|648

on (−∞, δi]. Symmetric arguments yield the same on [δi,+∞). ci is thus minimised in δi,
√

1 + x2i -649

Lipschitz and verifies the first point on both intervals (−∞, δi] and [δi,+∞). This directly implies650

that ci is convex on R.651

It now remains to show the second point on the two intervals. Let us show it on (−∞, δi]: on652

(−∞, δi) is actually sufficient by continuity. Consider si < s′i < δi and si+1 ∈ [δi,+∞) such that653

ci(si) = gi+1(si+1, si) + ci+1(si+1).

By definition of ci,654

ci(si)− ci(s
′
i) ≥ gi+1(si+1, si)− gi+1(si+1, s

′
i).

Straightforward computations yield that the function655

h2 :
(−∞, δi] → R+

s 7→ gi+1(si+1, s)

is convex and h′2(δi) = − 1+xixi+1√
1+x2

i+1

. Thus, h′2 ≤ − 1+xixi+1√
1+x2

i+1

, which finally implies656

ci(si)− ci(s
′
i) ≥ h(si)− h(s′i)

≥ 1 + xixi+1√
1 + x2i+1

(s′i − si).

The second point is thus verified on (−∞, δi) and on (−∞, δi] by continuity. Symmetric arguments657

lead to the same property on [δi,+∞).658

By induction, this implies the first part of Lemma 7. Symmetric arguments lead to the second part of659

Lemma 7 for i ≤ i0 − 2.660

We can now prove Theorem 2. Following the proof of Lemma 2, there is a unique minimiser of661

Equation (3) if and only if the following problem admits a unique minimiser:662

min
s∈S

n−1∑
i=1

gi+1(si+1, si). (27)

We already know that the minimum is attained thanks to Lemma 1. By construction of the functions663

ci, any minimum s̃ of Equation (27) verifies664

s̃i ∈ argmin
si∈Si(s̃i+1)

gi+1(s̃i+1, si) + ci(si) for any i ∈ [i0 − 2] (28)

(s̃i0−1, s̃i0) ∈ argmin
(si0−1,si0 )∈Λ

gi0(si0 , si0−1) + ci0−1(si0−1) + ci0(si0) (29)

s̃i+1 ∈ argmin
si+1∈Si(s̃i)

gi+1(si+1, s̃i) + ci+1(si+1) for any i ∈ {i0, . . . , n− 1}

It now remains to show that all these problems admit unique minimisers. First assume Equation (29)665

admits different minimisers (si0−1, si0) and (s′i0−1, s
′
i0
). Note in the following hi0−1 : (s, s′) 7→666

gi0(s, s
′) + ci0−1(s

′) + ci0(s). By minimisation and convexity of the three functions gi0 , ci0−1, ci0 ,667

for any t ∈ (0, 1):668

hi0−1(t(si0−1, si0) + (1− t)(s′i0−1, s
′
i0)) ≤ thi0−1(si0−1, si0) + (1− t)hi0−1(s

′
i0−1, s

′
i0) (30)

= hi0−1(si0−1, si0). (31)
The whole segment joining (si0−1, si0) and (s′i0−1, s

′
i0
) is then a minimiser. Without loss of gener-669

ality, we can thus assume that both si0 and s′i0−1 are on the same side of δi0−1 (e.g. smaller than670

δi0−1) and both si0 and s′i0 are on the same side of δi0 .671

Moreover, Equation (31) implies an equality on gi0 that leads to the colinearity of the vectors672

(si0−1 − δi0−1, si0 − δi0−1) and (s′i0−1 − δi0−1, s
′
i0

− δi0−1). In particular, both si0 ̸= s′i0 and673
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si0−1 ̸= s′i0−1. Moreover, we have equality cases on both ci0−1 and ci0 implying, thanks to the first674

point of Lemma 7675

|ci0−1(si0−1)− ci0−1(s
′
i0−1)| =

√
1 + x2i0−1|si0−1 − si0−1|

|ci0(si0)− ci0(s
′
i0)| =

√
1 + x2i0 |si0 − si0 |.

(32)

For u = (xi0−1, 1) and v = (xi0 , 1), we have by (positive) colinearity of (si0−1− δi0−1, si0 − δi0−1)676

and (s′i0−1 − δi0−1, s
′
i0
− δi0−1):677

|gi0(si0 , si0−1)− gi0(s
′
i0 , s

′
i0−1)| =

∣∣∥(si0 − δi0−1)v − (si0−1 − δi0−1)u∥ − ∥(s′i0 − δi0−1)v − (s′i0−1 − δi0−1)u∥
∣∣

= ∥(si0 − s′i0)v − (si0−1 − s′i0−1)u∥.
Since si0 ̸= s′i0 and si0−1 ̸= s′i0−1, the triangle inequality gives both strict inequalities678 ∣∣∣√1 + x2i0 |si0 − s′i0 | −

√
1 + x2i0−1|si0−1 − s′i0−1|

∣∣∣ < |gi0(si0 , si0−1)− gi0(s
′
i0 , s

′
i0−1)|,√

1 + x2i0 |si0 − s′i0 |+
√
1 + x2i0−1|si0−1 − s′i0−1| > |gi0(si0 , si0−1)− gi0(s

′
i0 , s

′
i0−1)|.

Using this with Equation (32), this yields679

gi0(si0 , si0−1)− gi0(s
′
i0 , s

′
i0−1) ̸= ci0(si0)− ci0(s

′
i0) + ci0−1(si0−1)− ci0−1(s

′
i0−1).

This contradicts the fact that (si0−1, si0) and (s′i0−1, s
′
i0
) both minimise Equation (29). Hence,680

Equation (29) admits a unique minimiser.681

Also the minimisation problem682

min
si+1∈Si(s̃i)

gi+1(si+1, s̃i) + ci+1(si+1)

admits a unique minimiser for any i ∈ {i0, . . . , n − 1}. Indeed, either s̃i = δi in which case the683

constraint set is a singleton, or the function si+1 7→ gi+1(si+1, s̃i) is strictly convex for s̃i ̸= δi. A684

symmetric argument exists for the minimisation problem of Equation (26). It thus concludes the685

proof of Theorem 2.686

E.2 Proof of Lemma 3687

Let i ∈ {i0, . . . , n− 1}. Recall that688

s∗i+1 = argmin
si+1∈Si(s∗i )

gi+1(si+1, s
∗
i ) + ci+1(si+1).

If i = n− 1, the objective is obviously minimised for s∗n = δn−1 as both xn−1 and xn are positive.689

Otherwise, assume for example that s∗i > δi. Thanks to Lemma 7, the objective is decreasing690

on (−∞,min(δi, δi+1)] and Si(s∗i ) = [δi,+∞) which yields that s∗i+1 ∈ [min(δi, δi+1), δi] ⊂691

[min(δi, δi+1),max(δi, δi+1)]. The case s∗i = δi is trivial and similar arguments hold for s∗i < δi.692

Now consider i = i0 − 1. Assume first that s∗i0−1 > δi0−1, then693

s∗i0 = argmin
si0<δi0−1

gi0(si0 , s
∗
i0−1) + ci0(si0).

Thanks to the last point of Lemma 7694

ci0(si0)− ci0(s
′
i0) ≥

1 + xi0xi0+1√
1 + x2i0+1

(si0 − s′i0) for any si0 < s′i0 ≤ δi0 . (33)

Note that the function695

h :
(−∞, δi0−1] → R+

s 7→ gi0(s, s
∗
i0−1)

is convex and verifies h′(δi0−1) = − 1+xi0−1xi0√
1+x2

i0−1

. Since xi0−1 < 0 ≤ xi0+1, it comes696

−1 + xi0−1xi0√
1 + x2i0−1

≤ xi0 ≤ 1 + xi0xi0+1√
1 + x2i0+1

.

Thanks to Equation (33), the function si0 7→ gi0(si0 , s
∗
i0−1) + ci0(si0) is thus decreasing on697

(−∞,min(δi0−1, δi0)]. As above, this implies that s∗i0 ∈ [min(δi0−1, δi0),max(δi0−1, δi0)]. The698

case s∗i0−1 = δi0−1 is trivial and similar arguments hold if s∗i0−1 < δi0−1.699
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We showed s∗i+1 ∈ [min(δi, δi+1),max(δi, δi+1)] for any i ∈ {i0, . . . , n}. Symmetric arguments700

hold for i ∈ [i0 − 1]. This concludes the proof of Lemma 3.701

E.3 Proof of Lemma 4702

Let us first prove that any sparsest interpolator f has at least a number of kinks given by the right703

sum. For that, we actually show that for k ≥ 1, on any interval (xnk−1, xnk+1
) with δnk−1 ̸= δnk

,704

f has at least
⌈
nk+1−nk

2

⌉
kinks, whose signs are given by sign(δnk

− δnk−1). Consider any k ≥ 1705

such that δnk−1 ̸= δnk
. Assume w.l.o.g. that δnk−1 < δnk

. By the definition of Equation (9):706

δj > δj−1 for any j ∈ {nk, . . . , nk+1 − 1}.
Obviously, f must count at least one positive kink on each interval of the form11 (xj−1, xj+1) for707

any nk ≤ j ≤ nk+1 − 1. Note that we can build
⌈
nk+1−nk

2

⌉
disjoint such intervals. Thus, f has at708

least
⌈
nk+1−nk

2

⌉
positive kinks on (xnk−1, xnk+1

).709

The intervals of the form (xnk−1, xnk+1
) with δnk−1 < δnk

are disjoint by definition. As a conse-710

quence, f has a total number of positive kinks at least711 ∑
k≥1

⌈
nk+1 − nk

2

⌉
1δnk−1<δnk

.

Similarly, f has a total number of negative kinks at least712 ∑
k≥1

⌈
nk+1 − nk

2

⌉
1δnk−1>δnk

,

which leads to the first part of Lemma 4713

min
f

∀i,f(xi)=yi

∥f ′′∥0 ≥
∑
k≥1

⌈
nk+1 − nk

2

⌉
1δnk−1 ̸=δnk

.

We now construct an interpolating function that has exactly the desired number of kinks. Note that714

the problem considered in Lemma 4 is shift invariant (which is not the case of Equation (3)). As a715

consequence, we can assume without loss of generality that x1 ≥ 0. This simplifies the definition of716

the following sequence of slopes s ∈ S:717

s1 = δ1

and for any i ∈ {2, . . . , n}, si =

{
δi−1 if (si−1 = δi−1 or i = nk for some k ≥ 1)

si = δi otherwise.

It is easy to check that s ∈ S. We now consider the function f associated to the sequence of718

slopes by the mapping of Lemma 6 and an interval [xnk−1, xnk+1
) with δnk−1 ̸= δnk

. By definition,719

snk+1+2p = δnk+1+2p for any p such that nk+1 ≤ nk+1+2p < nk+1. This implies that f has no720

kink in the interval [xnk+1+2p, xnk+2+2p). From there, a simple calculation shows that f has at most721 ⌈
nk+1−nk

2

⌉
kinks on [xnk

, xnk+1
). Moreover, as si = δi−1 if i = nk, f has no kink on intervals722

[xnk
, xnk+1

) when δnk−1 = δnk
. f is thus an interpolating function with at most723 ∑
k≥1

⌈
nk+1 − nk

2

⌉
1δnk−1 ̸=δnk

,

kinks, which concludes the proof of Lemma 4.724

E.4 Proof of Theorem 3725

Let f be the minimiser of Equation (3). The proof of Theorem 3 separately shows that f has exactly726 ⌈
nk+1−nk

2

⌉
1δnk−1 ̸=δnk

kinks on each (xnk−1, xnk+1
). Fix in the following k ≥ 0.727

11Otherwise, the derivative would be weakly decreasing on the interval, contradicting interpolation.
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Assume first that δnk−1 = δnk
. Then Lemma 3 along with the definitions of nk and nk+1 directly728

imply that s∗i = δnk−1 for any i = nk, . . . , nk+1 − 1. This then implies that the associated729

interpolator, i.e. f has no kink on (xnk−1, xnk+1
).730

Now assume that δnk−1 ̸= δnk
. Without loss of generality, assume δnk−1 < δnk

. By the definition731

of Equation (9):732

δj > δj−1 for any j ∈ {nk, . . . , nk+1 − 1}.
Moreover, by definition of nk, we have733 {

either nk = 1

or δnk−1 ≤ δnk−2
and

{
either nk+1 = n

or δnk+1
≤ δnk+1−1

Since nk+1 ≤ nk + 3 by Assumption 1, Lemma 8 below states that for all the cases, f has exactly734 ⌈
nk+1−nk

2

⌉
kinks on (xnk−1, xnk+1

).735

Symmetric arguments hold if δnk−1 > δnk
. In conclusion, f has exactly

⌈
nk+1−nk

2

⌉
1δnk−1 ̸=δnk

736

kinks on each (xnk−1, xnk+1
). This implies that f has at most737 ∑

k≥1

⌈
nk+1 − nk

2

⌉
1δnk−1 ̸=δnk

kinks in total. This concludes the proof of Theorem 3, thanks to Lemma 4.738

Lemma 8. For any k ≥ 0, if δnk−1 < δnk
, then the minimiser of Equation (3) f has739

1. 1 kink on (xnk−1, xnk+1
) if nk+1 = nk + 1;740

2. 1 kink on (xnk−1, xnk+1
) if nk+1 = nk + 2;741

3. 2 kinks on (xnk−1, xnk+1
) if nk+1 = nk + 3.742

Lemma 8 is written in this non-compact way since its proof shows separately (with similar arguments)743

the three cases.744

Proof. 1) Consider nk+1 = nk + 1. First assume that xnk
≥ 0. Lemma 3 implies that s∗nk+1 ∈745

[δnk+1, δnk
] and s∗nk

∈ [δnk−1, δnk
]. In particular, s∗nk

≤ δnk
, which implies that s∗nk+1 = δnk

.746

Similarly, s∗nk−1 ≥ δnk−1, which implies that s∗nk
= δnk−1. Using the mapping from Lemma 6, both747

values s∗nk
and s∗nk+1 yield that the associated function f has exactly one kink on (xnk−1, xnk+1),748

which is located at xnk
. Similar arguments hold if xnk

< 0.749

2) Consider now nk+1 = nk + 2.750

First assume that xnk+2 < 0. Thanks to Lemma 3, we can show similarly to the case 1) that751

s∗nk+1 = δnk+1.752

Now assume that xnk+2 ≥ 0. Similarly to the case 1), s∗nk+2 = δnk+1. The minimisation problem of753

the slopes becomes on s∗i+1 for i = nk:754

s∗i+1 = argmin
s∈S̃

gi+1(s, s
∗
i ) + gi+2(δi+1, s),

where S̃ = Si(s
∗
i ) if xi+1 ≥ 0, and S̃ = {δi+1} otherwise. Note that gi+1(s, s

∗
i ) is

√
1 + x2i+1-755

Lipschitz in its first argument, while gi+2(δi+1, s) =
√

1 + x2i+1|s − δi+1|. Moreover, s∗nk
∈756

[δnk−1, δnk
]. As a consequence, either xnk+1 ≥ 0 and s∗nk

= δnk
= s∗nk+1; or s∗nk+1 = δnk+1.757

Symmetrically, when reasoning on the points xnk−1, xnk
:758

• either s∗nk
= δnk−1;759

• or (xnk
< 0 and s∗nk

= δnk
= s∗nk+1).760

There are thus two possible cases in the end:761
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• either (s∗nk
= δnk−1 and s∗nk+1 = δnk+1);762

• or (s∗nk
= δnk

= s∗nk+1 and xnk
< 0 ≤ xnk+1).763

In the case where xnk
< 0 ≤ xnk+1, we also have s∗nk−1 = δnk−1 and s∗nk+2 = δnk+1. A764

straightforward computation then yields a smaller cost on the functions gi for the choice of slopes765

s∗nk
= δnk−1 and s∗nk+1 = δnk+1.766

As a consequence, s∗nk
= δnk−1 and s∗nk+1 = δnk+1 in any case. The mapping of Lemma 6 then767

yields that f has exactly one kink on (xnk−1, xnk+2), which is located in (xnk
, xnk+1). Indeed, we768

either have ank−1 = 0 or τnk−1 = xnk−1; similarly either ank+1 = 0 or τnk+1 = xnk+2.769

3) Consider now nk+1 = nk + 3. Similarly to the case 2), we have both770 {
either s∗nk+2 = δnk+2

or (s∗nk+1 = δnk+1 = s∗nk+2 and x∗nk+2 ≥ 0)

and
{

either s∗nk
= δnk−1

or (s∗nk
= δnk

= s∗nk+1 and xnk
< 0).

When considering all the possible cases, the mapping of Lemma 6 implies that f has exactly two771

kinks on (xnk−1, xnk+3), which are located in [xnk
, xnk+2].772

E.5 Adapted analysis for the case x1 ≥ 0773

This section explains how to adapt the analysis of this section to the easier case where all x are774

positive. Lemma 7 holds under the exact same terms (but its second part is useless) in that case. From775

there, the proof of Theorem 2 consists in just showing the uniqueness of the minimisation problems776

for any s̃ ∈ S:777

min
si0∈R

ci0(si0)

min
si+1∈Si(s̃i)

gi+1(si+1, s̃i) + ci+1(si+1) for any i ∈ {i0, . . . , n− 1}.

The unique solution of the first problem is δi0 thanks to Lemma 7, while same arguments as in778

Appendix E.1 hold for the second problem.779

For the proof of Lemma 3, the exact same arguments as in Appendix E.2 hold for any i ≥ i0 + 1. For780

i = i0 = 1, it is obvious in that case that s∗1 = δ1, leading to Lemma 3.781

Finally, the proof of Theorem 3 follows the same lines when x1 ≥ 0.782

E.6 Proof of Corollary 1783

Remark 5. Unfortunately, it does not seem possible to directly derive the uniqueness result of784

Corollary 1 from Theorem 3. We thus restate below the corrected version of Corollary 1, which785

states that all max-margin classifiers are among the sparsest margin classifiers, without uniqueness786

consideration. We believe that uniqueness can still be proven with a thorough analysis, using an787

adapted dynamic programming reformulation. The uniqueness property is yet of minor interest. We788

thus prefer to focus on a direct corollary of Theorem 3, given below.789

Corollary 1 (corrected).
argmin

f
∀i∈[n],yif(xi)≥1

R1(f) ⊂ argmin
f

∀i∈[n],yif(xi)≥1

∥f ′′∥0.

Proof of Corollary 1 (corrected). For classification, the natural partition to define is the following:790

n1 = 1 and for any k ≥ 0 such that nk < n+ 1,

nk+1 = min {j ∈ {nk + 1, . . . , n} | ynk
̸= yj} ∪ {n+ 1}. (34)
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This partition splits the data so that for any k, yi has a the same value for i ∈ {nk, nk+1− 1}. Denote791

K the number of nk defined in Equation (34), i.e., nK = n+ 1. From there, by simply noting that792

any margin classifier has at least a kink in [xnk
, xnk+1

) for k ∈ [K − 2]:793

min
f

∀i∈[n],yif(xi)≥1

∥f ′′∥0 = K − 2.

Similarly to the proof of Lemma 1, we can first show the existence of a minimum.12 Let us now794

consider f a minimiser of795

min
f

∀i∈[n],yif(xi)≥1

∥∥∥√1 + x2f ′′
∥∥∥
TV

. (35)

Define the set
S =

{
nk | k ∈ {2, . . . ,K − 1}} ∪ {nk − 1 | k ∈ {2, . . . ,K − 1}

}
.

By continuity of f , we can choose an alternative training set (x̃i, ỹi) satisfying:796

x̃i ∈ [xnk−1, xnk
] for any i ∈ {nk − 1, nk},

yi = f(x̃i) for any i ∈ S.

Then, a direct application of Theorem 2 yields that the minimisation problem797

min
f̃

∀i∈S,yi=f̃(x̃i)

∥∥∥√1 + x2f̃ ′′
∥∥∥
TV

, (36)

admits a unique minimiser, that we denote freg. But also note that this unique minimiser is also in798

the constraint set of Equation (35) thanks to Lemma 3, so that799 ∥∥∥√1 + x2f ′′reg

∥∥∥
TV

≥
∥∥∥√1 + x2f ′′

∥∥∥
TV

.

However, since f is in the constraint set of Equation (36), we actually have an equality, and by unicity800

of the minimiser of Equation (36),801

freg = f.

Moreover, it is easy to check that Assumption 1 holds for the data (x̃i, yi)i∈S , with nk+1 = nk + 2.802

As a consequence, Theorem 3 implies that the minimiser of Equation (36) is among the sparsest803

interpolators for the set (x̃i, yi)i∈S , i.e. it exactly counts K − 2 kinks. This then implies that804

∥f ′′∥0 = K − 2, so that805

argmin
f

∀i∈[n],yif(xi)≥1

R1(f) ⊂ argmin
f

∀i∈[n],yif(xi)≥1

∥f ′′∥0. (37)

806

12Proving that the sequence (aj , bj) is bounded is here a bit more tricky. Either the data is linearly separable,
in which case the minimum is 0, or the data is not linearly separable. When the data is not linearly separable,
then (aj , bj) is necessarily bounded, since (µj , aj , bj) would behave as a linear classifier for arbitrarily large
(aj , bj).
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