A.1 Notations

We first define some notations in the context of the model (1). For $p \geq 1$ and $d \geq 1$, define

$$\mathcal{A}_{p,d} := \left\{ \prod_{j=1}^{p} [\ell_j, u_j] \in \mathcal{A} \mid \# \{ j \in [p] \mid [\ell_j, u_j] \neq [0,1] \} \leq d \right\}$$

(21)

That is, each rectangle in $\mathcal{A}_{p,d}$ has at most d dimensions that are not the full interval $[0,1]$. Note that for a decision tree with depth d, each leaf node represents a rectangle in $\mathcal{A}_{p,d}$. Furthermore, for $\delta \in (0,1)$, define values

$$\bar{\ell}_1(\delta) = \bar{\ell}_1(\delta, n, d) := \frac{4}{n} \log(2p^d(n+1)^{2d}/\delta)$$

$$\bar{\ell}_2(\delta) = \bar{\ell}_2(\delta, n, d) := \frac{2\bar{\theta}e^2d}{n} \vee \log(p^d(n+1)^{2d}/\delta)$$

$$\bar{\ell}(\delta) = \bar{\ell}(\delta, n, d) := \bar{\ell}_1(\delta, n, d) \vee \bar{\ell}_2(\delta, n, d)$$

where $\bar{\theta}$ is the constant in Assumption 2.1. Note that we have $\bar{\ell}(\delta) \leq O(d \log(np/\delta)/n)$.

For two values $a, b > 0$, we write $a \lesssim b$ if there is a universal constant $C > 0$ such that $a \leq Cb$. We write $a \lesssim_{r} b$ if there is a constant C_r that only depends on r such that $a \leq C_r b$.

A.2 Technical lemmas

Now we can introduce the major technical results to establish the error bound.

Lemma A.1 Suppose Assumption [2,7] holds true. Suppose $\bar{\ell}_2(\delta/12) < 3/4$. Then with probability at least $1 - \delta$, it holds

$$\sup_{A \in \mathcal{A}_{p,d}} \sqrt{\mathbb{P}(X \in A)} \left| \mathbb{E}(f^*(X)|X \in A) - \bar{y}_{X \in A} \right| \leq 20U \sqrt{\bar{\ell}(\delta/12/12)}$$

(23)

The proof of Lemma A.1 is presented in Section [A.1.1]. Note that Lemma A.1 provides a uniform bound on the gap between the populational mean $\mathbb{E}(f^*(X)|X \in A)$ and the sample mean $\bar{y}_{X \in A}$. This is used to derive the geometric decrease of the bias, using the SID assumption.

Lemma A.2 Suppose Assumption [2,7] holds true. Given any $\delta \in (0,1)$, suppose $\bar{\ell}_2(\delta/4) < 3/4$. Then with probability at least $1 - \delta$ it holds

$$\sup_{A \in \mathcal{A}_{p,d}} \left| \sqrt{\mathbb{P}(X \in A)} - \sqrt{|A|/n} \right| \leq 5\sqrt{\bar{\ell}(\delta/4)}$$

(24)

The proof of Lemma A.2 is presented in Section [A.3]. Lemma A.2 provides a uniform deviation gap between the square root of probability and sample frequency over all sets in $\mathcal{A}_{p,d}$. Note that this uniform bound is stronger than a result without a square root (which can be obtained easily via Hoeffding’s inequality and a union bound), and is useful to prove the final error bound in Theorem 2.3.

For any rectangle $A \in \mathcal{A}$, $j \in [p]$ and $b \in \mathbb{R}$, define

$$\Delta_L(A, j, b) := \mathbb{P}(X \in A_L) \left(\mathbb{E}(f^*(X)|X \in A) - \mathbb{E}(f^*(X)|X \in A_L) \right)^2$$

$$\Delta_R(A, j, b) := \mathbb{P}(X \in A_R) \left(\mathbb{E}(f^*(X)|X \in A) - \mathbb{E}(f^*(X)|X \in A_R) \right)^2$$

$$\tilde{\Delta}_L(A, j, b) := \frac{|A_L|}{n} \left(\bar{y}_{X \in A_L} - \bar{y}_{X \in A} \right)^2$$

$$\tilde{\Delta}_R(A, j, b) := \frac{|A_R|}{n} \left(\bar{y}_{X \in A_R} - \bar{y}_{X \in A} \right)^2$$

We have the following identity regarding the impurity decrease of each split.

Lemma A.3 For any rectangle $A \in \mathcal{A}$, $j \in [p]$ and $b \in \mathbb{R}$, it holds

$$\Delta(A, j, b) = \Delta_L(A, j, b) + \Delta_R(A, j, b)$$

$$\tilde{\Delta}(A, j, b) = \tilde{\Delta}_L(A, j, b) + \tilde{\Delta}_R(A, j, b)$$

(25)
Proof. We just present the proof of the second equality. The proof of the first equality can be proved similarly.

Note that

\[
\hat{\Delta}(A, j, b) = \frac{1}{n} \sum_{i \in I_A} (y_i - \bar{y}_A)^2 - \frac{1}{n} \sum_{i \in I_{AL}} (y_i - \bar{y}_{AL})^2 - \frac{1}{n} \sum_{i \in I_{AR}} (y_i - \bar{y}_{AR})^2
\]

\[
= \frac{1}{n} \sum_{i \in I_{AL}} [(y_i - \bar{y}_A)^2 - (y_i - \bar{y}_{AL})^2] + \frac{1}{n} \sum_{i \in I_{AR}} [(y_i - \bar{y}_A)^2 - (y_i - \bar{y}_{AR})^2]
\]

(26)

For the first term, we have

\[
\frac{1}{n} \sum_{i \in I_{AL}} [(y_i - \bar{y}_A)^2 - (y_i - \bar{y}_{AL})^2] = \Delta_L(A, j, b)
\]

(27)

Similarly, we have

\[
\hat{\Delta}(A, j, b) = \frac{1}{n} \sum_{i \in I_{AR}} [(y_i - \bar{y}_A)^2 - (y_i - \bar{y}_{AR})^2] = \Delta_R(A, j, b)
\]

(28)

The proof is complete by combining (26), (27) and (28).

Lemma A.4 Suppose Assumption 2.1 holds true. Given a constant \(\alpha > 0\). Given any \(\delta \in (0, 1)\), suppose \(\bar{I} \delta /36 < 3/4\). Then with probability at least \(1 - \delta\), it holds

\[
\Delta(A, j, b) \leq (1 + \alpha)\Delta(A, j, b) + (1 + 1/\alpha) \cdot 5000U^2 \bar{t}(\delta/36) \quad \forall A \in A_{p, d-1}, j \in [p], b \in R
\]

(29)

and

\[
\hat{\Delta}(A, j, b) \leq (1 + \alpha)\Delta(A, j, b) + (1 + 1/\alpha) \cdot 5000U^2 \bar{t}(\delta/36) \quad \forall A \in A_{p, d-1}, j \in [p], b \in R
\]

(30)

Proof. For \(A \in A_{p, d-1}, j \in [p]\) and \(a \in R\), by Lemma A.3 we have

\[
\Delta(A, j, b) = \Delta_L(A, j, b) + \Delta_R(A, j, b)
\]

(31)

Define the events \(E_1\) and \(E_2\):

\[
E_1 := \left\{ \sup_{A \in A_{p, d}} \sqrt{P(X \in A)} |E^*(X)| X \in A - \bar{y}_A | \leq 20U \sqrt{\bar{t}(\delta/36)} \right\}
\]

\[
E_2 := \left\{ \sup_{A \in A_{p, d}} \sqrt{P(X \in A)} - \sqrt{|A|/n} \leq 5\sqrt{\bar{t}(\delta/12)} \right\}
\]

Then by Lemmas A.1 and A.2 we have \(P(E_i) \geq 1 - \delta/3\) for \(i = 1, 2\), so we have \(P(\cap_{i=1}^2 E_i) \geq 1 - \delta\). Below we prove (29) and (30) conditioned on the events \(E_1\) and \(E_2\).

Note that

\[
\sqrt{\Delta_L(A, j, a)} = \sqrt{P(X \in A)} |E(f^*(X))| X \in A - \bar{y}_A | \leq 20U \sqrt{\bar{t}(\delta/36)}
\]

(32)

To bound \(J_1\), we have

\[
J_1 \leq \sqrt{P(X \in A)} |E(f^*(X))| X \in A - \bar{y}_A | \leq 20U \sqrt{\bar{t}(\delta/36)}
\]

(33)

where the second inequality is by event \(E_1\). Similarly, to bound \(J_3\), we have

\[
J_3 = \sqrt{P(X \in A)} |\bar{y}_{AL} - E(f^*(X))| X \in A_L | \leq 20U \sqrt{\bar{t}(\delta/36)}
\]

(34)
To bound J_2, note that
\[
J_2 \leq \left| \frac{\mathbb{P}(X \in A_L)}{\sqrt{n} \Delta L} \right| \cdot |\bar{y}_L - \bar{y}_{L_A}| + \sqrt{\frac{\Delta L}{n}} \cdot |\bar{y}_L - \bar{y}_{L_A}| \tag{35}
\]
where the second inequality made use of the event E_2. Combining (32) – (35), we have
\[
\sqrt{\Delta L(A, j, b)} \leq 40U \sqrt{\tilde{t}(\delta/36)} + 10U \sqrt{\tilde{t}(\delta/12)} + \sqrt{\frac{\Delta L}{n}} \cdot |\bar{y}_L - \bar{y}_{L_A}| \leq 50U \sqrt{\tilde{t}(\delta/36)} + \sqrt{\frac{\Delta L}{n}} \cdot |\bar{y}_L - \bar{y}_{L_A}|
\]
which implies (by Young’s inequality)
\[
\Delta L(A, j, a) \leq (1 + 1/\alpha) \cdot 2500U^2 \tilde{t}(\delta/36) + (1 + \alpha) \frac{\Delta L}{n} \cdot |\bar{y}_L - \bar{y}_{L_A}|^2 \tag{36}
\]
By a similar argument, we have
\[
\Delta L(A, j, a) \leq (1 + 1/\alpha) \cdot 5000U^2 \tilde{t}(\delta/36) + (1 + \alpha) \Delta L(A, j, a)
\]
Summing up (36) and (37), and by (31), we have
\[
\Delta L(A, j, a) \leq (1 + 1/\alpha) \cdot 5000U^2 \tilde{t}(\delta/36) + (1 + \alpha) \Delta L(A, j, a)
\]
This completes the proof of (29). The proof of (30) is by a similar argument.

\[\square\]

Lemma \textbf{A.4} provides upper bounds between $\Delta L(A, j, a)$ and $\Delta L(A, j, b)$, which serves as a link to translate the population impurity decrease to sample impurity decrease. With all these technical lemmas at hand, we are ready to present the proof Theorem \textbf{2.3} as shown in the next subsection.

\subsection*{A.3 Completing the proof of Theorem \textbf{2.3}}

Define events
\[
E_1 := \left\{ \sup_{A \in A_{p,d}} \sqrt{\frac{\mathbb{P}(X \in A)}{\mathbb{E}[f^*(X)|X \in A]}} \right\} \leq 20U \sqrt{\frac{\tilde{t}(\delta/24)}}
\]
\[
E_2 := \left\{ \Delta(A, j, a) \leq (1 + 1/\alpha) \tilde{\Delta}(A, j, a) + (1 + 1/\alpha) \cdot 5000U^2 \tilde{t}(\delta/72) \quad \forall A \in A_{p,d-1}, j \in [p], a \in \mathbb{R} \right\}
\]
\[
E_3 := \left\{ \tilde{\Delta}(A, j, a) \leq (1 + 1/\alpha) \Delta(A, j, a) + (1 + 1/\alpha) \cdot 5000U^2 \tilde{t}(\delta/72) \quad \forall A \in A_{p,d-1}, j \in [p], a \in \mathbb{R} \right\}
\]
Then by Lemmas \textbf{A.1} and \textbf{A.4} and note that from the statement of Theorem \textbf{2.3}, $l_2(\delta/72) < 3/4$, so we have
\[
\mathbb{P}(E_1) \geq 1 - \delta/2 \quad \text{and} \quad \mathbb{P}(E_2 \cup E_3) \geq 1 - \delta/2,
\]
which implies $\mathbb{P}(U_{t=1}^T \mathcal{E}_t) \geq 1 - \delta$. In the following, we prove (10) using a deterministic argument conditioned on $U_{t=1}^T \mathcal{E}_t$.

For any $k \in [d]$ and any leave node t of $\hat{f}(k)$ (recall that $\hat{f}(k)$ is the decision tree by CART with depth k), let $A_t^{(k)}$ be the corresponding cube, that is, for any $x \in \mathbb{R}^p, x \in A_t^{(k)}$ if and only if x is routed to t in $\hat{f}(k)$. Let $\mathcal{L}^{(k)}$ be the set of all leave nodes of $\hat{f}(k)$. Then we have
\[
\hat{f}(k)(x) := \sum_{t \in \mathcal{L}^{(k)}} \bar{y}_t A_t^{(k)} 1_{x \in A_t^{(k)}} \tag{38}
\]
Define a function
\[
\bar{f}(k)(x) := \sum_{t \in \mathcal{L}^{(k)}} \mathbb{E}\left[f^*(X)|X \in A_t^{(k)}, X_t^n\right] 1_{x \in A_t^{(k)}} \tag{39}
\]
where X_t^n is the set of iid random variables $\{x_1, ..., x_n\}$, and X is a random variable having the same distribution as x_1 but independent of X_t^n. In other words, $\hat{f}(k)$ is a tree with the same splitting structure as $\bar{f}(k)$ and replaces the prediction value of each leave node as the populational conditional mean of f^*.

First, using Cauchy-Schwarz inequality, we have
\[
||\hat{f}(k) - f^*||^2_{L_2(X)} \leq 2||f^* - \bar{f}(k)||^2_{L_2(X)} + 2||\bar{f}(k) - \bar{f}(k)||^2_{L_2(X)} := 2J_1(k) + 2J_2(k) \tag{40}
\]
To bound $J_1(d)$, we derive recursive inequalities between $J_1(k)$ and $J_1(k+1)$ for all $0 \leq k \leq d-1$. Note that
\[
J_1(k) = \mathbb{E}\left[(f^*(X) - \bar{f}(k)(X))^2 | X_t^n\right] = \sum_{t \in \mathcal{L}^{(k)}} \mathbb{P}(X \in A_t^{(k)}) \cdot \text{Var}(f^*(X)|X \in A_t^{(k)}, X_t^n) \tag{41}
\]
For each \(t \in \mathcal{L}^{(k)} \), let \(t_L \) and \(t_R \) be the two children of \(t \), then we have
\[
\mathbb{P}(X \in A_t | \mathcal{X}_1^n) \cdot \text{Var}(f^*(X) | X \in A_t, \mathcal{X}_1^n) \\
= \mathbb{P}(X \in A_{t_L} | \mathcal{X}_1^n) \cdot \text{Var}(f^*(X) | X \in A_{t_L}, \mathcal{X}_1^n) + \mathbb{P}(X \in A_{t_R} | \mathcal{X}_1^n) \cdot \text{Var}(f^*(X) | X \in A_{t_R}, \mathcal{X}_1^n) + \Delta(A_t, \hat{J}_t, \hat{b}_t)
\]
where
\[
(\hat{J}_t, \hat{b}_t) \in \arg\max_{j \in [p], b \in R} \Delta(A_t, j, b)
\]
Let us define
\[
(\hat{J}_t, \hat{b}_t) \in \arg\max_{j \in [p], b \in R} \Delta(A_t, j, b)
\]
Then we have
\[
\Delta(A_t, \hat{J}_t, \hat{b}_t) \geq \frac{1}{1 + \alpha} \Delta(A_t, \hat{J}_t, \hat{b}_t) - (5000/\alpha)U^2i(\delta/72)
\]
\[
\geq \frac{1}{1 + \alpha} \Delta(A_t, \hat{J}_t, \hat{b}_t) - (5000/\alpha)U^2i(\delta/72)
\]
\[
\geq \frac{1}{(1 + \alpha)^2} \Delta(A_t, \hat{J}_t, \hat{b}_t) - \frac{2 + \alpha}{\alpha(1 + \alpha)} 5000U^2i(\delta/72)
\]
where the first inequality is by event \(\mathcal{E}_3 \), the second inequality is by the definition of \((\hat{J}_t, \hat{b}_t) \), and the third inequality is because of event \(\mathcal{E}_2 \). By Assumption 2.2, we have
\[
\Delta(A_t, j, b) = \sup_{j \in [p], b \in R} \Delta(A_t, j, b) \geq \lambda \cdot \mathbb{P}(X \in A_t | \mathcal{X}_1^n) \text{Var}(f^*(X) | X \in A_t, \mathcal{X}_1^n)
\]
Combining (42), (43) and (44), we have
\[
\mathbb{P}(X \in A_{t_L} | \mathcal{X}_1^n) \cdot \text{Var}(f^*(X) | X \in A_{t_L}, \mathcal{X}_1^n) + \mathbb{P}(X \in A_{t_R} | \mathcal{X}_1^n) \cdot \text{Var}(f^*(X) | X \in A_{t_R}, \mathcal{X}_1^n)
\]
\[
\leq \left(1 - \frac{\lambda}{(1 + \alpha)^2}\right) \mathbb{P}(X \in A_t | \mathcal{X}_1^n) \cdot \text{Var}(f^*(X) | X \in A_t, \mathcal{X}_1^n) + \frac{2 + \alpha}{\alpha(1 + \alpha)} 5000U^2i(\delta/72)
\]
Summing up the inequality above for all \(t \in \mathcal{L}^{(k)} \), we have
\[
J_1(k + 1) \leq \left(1 - \frac{\lambda}{(1 + \alpha)^2}\right) J_1(k) + 2^k \cdot \frac{2 + \alpha}{\alpha(1 + \alpha)} 5000U^2i(\delta/72)
\]
Using the inequality above recursively for \(k = 0, 1, \ldots, d - 1 \), we have
\[
J_1(d) \leq \left(1 - \frac{\lambda}{(1 + \alpha)^2}\right)^d J_1(0) + \frac{2 + \alpha}{\alpha(1 + \alpha)} 5000U^2i(\delta/72) \sum_{k=1}^{d} 2^{k-1} \leq \left(1 - \frac{\lambda}{(1 + \alpha)^2}\right)^d \text{Var}(f^*(X)) + 2^d \cdot \frac{2 + \alpha}{\alpha(1 + \alpha)} 5000U^2i(\delta/72)
\]
To bound \(J_2(d) \), we have
\[
J_2(d) = \sum_{t \in \mathcal{L}^{(d)}} \mathbb{P}(X \in A_t) \left(\mathbb{E}(f^*(X) | X \in A_t, \mathcal{X}_1^n) - \hat{g}_{\mathcal{A}_t} \right)^2 \leq 2^{2d} \cdot 400U^2i(\delta/24)
\]
where the inequality made use of event \(\mathcal{E}_1 \). Using (45) and (46), and recalling (40), we have
\[
\|\hat{f}^{(k)} - f^*\|_{L^2(X)}^2 \leq 2 \left(1 - \frac{\lambda}{(1 + \alpha)^2}\right)^d \text{Var}(f^*(X)) + 2^{d+1} \cdot \frac{2 + \alpha}{\alpha(1 + \alpha)} 5000U^2i(\delta/72) + 2^{d+1} \cdot 400U^2i(\delta/24)
\]
\[
\leq \text{Var}(f^*(X)) \cdot (1 - \lambda/(1 + \alpha)^2)^d + \frac{2 + \alpha}{\alpha(1 + \alpha)} \frac{2^d(d \log(np) + \log(1/\delta))}{n} U^2
\]
\[
\leq \text{Var}(f^*(X)) \cdot (1 - \lambda/(1 + \alpha)^2)^d + \frac{2^d(d \log(np) + \log(1/\delta))}{\alpha n} U^2
\]
This completes the proof of (10). To prove (11), by taking \(\alpha = 1/d \) and \(d = [\log_2(n)/(1 - \log_2(1 - \lambda))] \), we have
\[
\left(1 - \frac{\lambda}{(1 + \alpha)^2}\right)^d = (1 - \lambda)^d \left(1 + \frac{\lambda}{1 - \lambda} (1 - (1 + \alpha)^{-2})\right)^d
\]
\[
= (1 - \lambda)^d \left(1 + \frac{2/d + 1/d^2}{1 - \lambda (1 + d)}\right)^d \leq (1 - \lambda)^d
\]
Note that for \(s = \log_2(n)/(1 - \log_2(1 - \lambda)) \) we have \((1 - \lambda)^s = 2^s/n\), hence by taking \(d = \lceil \log_2(n)/(1 - \log_2(1 - \lambda)) \rceil \), we have

\[
(1 - \lambda)^d \leq \frac{\lambda^d}{n} \leq 2n^{-1 + \frac{1}{\log_2(1 - \lambda)}} = 2n^{-\phi(\lambda)}.
\]

Combining (47), (48) and (49) and note that \(\text{Var}(f^*(X)) \leq M < U \), we have

\[
\|f(k) - f^*\|_{\ell^2(X)} \leq \lambda, U \leq \frac{\lambda}{2n} d \log(np) + d \log(1/\delta)
\]

\[
\leq \lambda, U \leq \frac{\lambda}{2n} d \log(np) + \log(n) \log(1/\delta)
\]

this completes the proof of (11).

A.4 Proof of Lemma A.1

The main idea of proving Lemma A.1 is to find a proper finite net of the set \(A \), control the gap on this net, and finally prove the result for all \(A \in A_{p,d} \) based on the approximation gap of the net. We need a few auxiliary results. Let \(S := \{0, 1/n, 2/n, \ldots, (n - 1)/n, 1\} \), and define

\[
\tilde{A}_{p,d} := \left\{ \prod_{j=1}^p [\ell_j, u_j] \in A_{p,d} \mid \ell_j, u_j \in S \text{ for all } j \in [p] \right\}
\]

For any \(A = \prod_{j=1}^p [\ell_j, u_j] \in A_{p,d} \), define

\[
A' = \prod_{j=1}^p [\ell'_j, u'_j]
\]

where \(\ell'_j := \max \{ s \in S \mid s \leq \ell_j \} \), and \(u'_j := \min \{ s \in S \mid s \geq u_j \} \). Roughly speaking, \(A' \) is the smallest box with all edges in \(S \) that contains \(A \). For any \(A = \prod_{j=1}^p [\ell_j, u_j] \in \tilde{A}_{p,d} \) with \(\tilde{u}_j - \tilde{\ell}_j \geq 2/n \) for all \(j \in [p] \), define

\[
B(\tilde{A}) := \tilde{A} \setminus \prod_{j=1}^p \left[\tilde{\ell}_j + (1/n) \cdot 1_{\{\tilde{\ell}_j \neq 0\}}, \tilde{u}_j - (1/n) \cdot 1_{\{\tilde{u}_j \neq 1\}} \right].
\]

and define \(B_{p,d} \) to be the set of all such sets, that is

\[
B_{p,d} := \left\{ B(\tilde{A}) \mid \tilde{A} = \prod_{j=1}^p [\ell_j, u_j] \in \tilde{A}_{p,d} \text{ with } \tilde{u}_j - \tilde{\ell}_j \geq 2/n \right\}
\]

The following lemma can be easily verified from the definitions of \(\tilde{A}_{p,d} \) and \(B_{p,d} \).

Lemma A.5 (1) For any \(A \in A_{p,d} \), there exists \(B \in B_{p,d} \) such that \(A' \setminus A \subseteq B \).

(2) \(\mathbb{P}(X \in B) \leq 2\delta d^d/n \) for all \(B \in B_{p,d} \).

(3) The cardinality

\[
|B_{p,d}| \leq |\tilde{A}_{p,d}| \leq \binom{p}{d}(n + 1)^{2d} \leq p^d(n + 1)^{2d}
\]

Finally, for any \(t \geq 0 \), we define

\[
A_{p,d}(t) := \left\{ A \in A_{p,d} \mid \mathbb{P}(X \in A) \leq t \right\}, \quad \text{and} \quad \tilde{A}_{p,d}(t) := \left\{ A \in \tilde{A}_{p,d} \mid \mathbb{P}(X \in A) \leq t \right\}
\]

Lemma A.6 Suppose Assumption 2.1 holds true. Let \(z_1, \ldots, z_n \) be i.i.d. bounded random variables with \(|z_i| \leq V < \infty \) almost surely. Assume that for each \(i \in [n] \), \(z_i \) is independent of \(\{x_j\}_{j \neq i} \), but may be dependent on \(x_i \). Given any \(\delta \in (0, 1) \), with probability at least \(1 - \delta \), it holds

\[
\max_{A \in \tilde{A}_{p,d} \setminus \tilde{A}_{p,d}(t_1)} \frac{1}{\mathbb{P}(X \in A)} \left| \frac{1}{n} \sum_{i=1}^{n} z_i 1_{\{x_i \in A\}} - \mathbb{E}(1_{\{x_1 \in A\}}) \right| \leq 2V \sqrt{t_1(\delta)}
\]

where \(U = M + n \).

Proof. For each fixed \(A \in \tilde{A}_{p,d} \setminus \tilde{A}_{p,d}(t_1(\delta)) \), note that

\[
\mathbb{E}\left[\left(z_1 1_{\{x_1 \in A\}} - \mathbb{E}(z_1 1_{\{x_1 \in A\}}) \right)^k \right] \leq (2V)^k \mathbb{P}(X \in A) \ \forall \ k \geq 2
\]
so by Lemma [D.1] with $t = 2V \sqrt{\mathbb{P}(X \in A) \sqrt{\ell_1(\delta)}}$, $\gamma^2 = (2V)^2 \mathbb{P}(X \in A)$ and $b = 2V$, we have

$$
\mathbb{P} \left(\frac{1}{n} \sum_{i=1}^{n} z_{i1_{\{x_i \in A\}}} - \mathbb{E}(z_{i1_{\{x_i \in A\}}}) > 2V \sqrt{\ell_1(\delta)} \right)
\leq \exp \left(-\frac{n}{4} \left(4V^2 \mathbb{P}(X \in A) \ell_1(\delta) \right) \right)
\leq \exp \left(-\frac{n}{4} \ell_1(\delta) \right) = \delta / (p^d(n+1)^{2d})
$$

where (i) is because $\mathbb{P}(X \in A) \geq \ell_1(\delta)$ (since $A \in A_{p,d} \setminus \bar{A}_{p,d}(\ell_1(\delta))$). As a result, we have

$$
\mathbb{P} \left(\max_{A \in A_{p,d} \setminus \bar{A}_{p,d}(\ell_1(\delta))} \frac{1}{n} \sum_{i=1}^{n} z_{i1_{\{x_i \in A\}}} - \mathbb{E}(z_{i1_{\{x_i \in A\}}}) > 2V \sqrt{\ell_1(\delta)} \right)
\leq \sum_{A \in A_{p,d} \setminus \bar{A}_{p,d}(\ell_1(\delta))} \mathbb{P} \left(\frac{1}{n} \sum_{i=1}^{n} z_{i1_{\{x_i \in A\}}} - \mathbb{E}(z_{i1_{\{x_i \in A\}}}) > 2V \sqrt{\ell_1(\delta)} \right)
\leq |\bar{A}_{p,d} \setminus \bar{A}_{p,d}(\ell_1(\delta))| \cdot \frac{\delta}{(p^d(n+1)^{2d})} \leq \delta
$$

where the last inequality makes use of Lemma [A.5](3).

\[\square\]

Lemma A.7 Let D be a finite collection of measurable subsets of $[0, 1]^p$ satisfying $\mathbb{P}(X \in D) \leq \bar{\alpha}$ for all $D \in D$ (for some constant $\alpha \in (0, 1)$). Given any $\delta \in (0, 1)$, if

$$
w(\bar{\alpha}, \delta) := (e^2 \bar{\alpha}) \sqrt{\log \left(\frac{|D|}{\delta} \right)} \leq 3/4
$$

then with probability at least $1 - \delta$ it holds

$$
\max_{D \in D} \left\{ \frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i \in D\}} \right\} \leq w(\bar{\alpha}, \delta)
$$

Proof. For any fixed $D \in D$, denote $\alpha = \mathbb{P}(X \in D)$, then by Lemma [D.2] for any $t \in (0, 3/4]$, we have

$$
\mathbb{P} \left(\frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i \in D\}} > t \right) \leq \exp \left(-n \left(t \log(t/\alpha) + (1-t) \log \left(\frac{1-t}{1-\alpha} \right) \right) \right)
\leq \exp \left(-n \left(t \log(t/\alpha) + (1-t) \log(1-t) \right) \right)
\leq \exp \left(-n \left(t \log(t/\alpha) + (1-t)(1-t) \right) \right)
= \exp \left(-n \left(t \log(t/\alpha) - 1 \right) \right)
\leq \exp \left(-nt \log(t/\alpha) \right)
$$

where the third inequality makes use of Lemma [D.3] and the assumption $t \leq 3/4$. Take $t = w(\bar{\alpha}, \delta)$, and note that

$$
\log(w(\bar{\alpha}, \delta)/\alpha) - 1 \geq \log(w(\bar{\alpha}, \delta)/\bar{\alpha}) - 1 \geq \log(e^2) - 1 \geq 1
$$

we have

$$
\mathbb{P} \left(\frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i \in D\}} > w(\bar{\alpha}, \delta) \right) \leq \exp \left(-nw(\bar{\alpha}, \delta) \right) \leq \delta / |D|
$$

where the last inequality is because of the definition of $w(\bar{\alpha}, \delta)$. Taking the union bound we have

$$
\mathbb{P} \left(\max_{D \in D} \left\{ \frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i \in D\}} \right\} > w(\bar{\alpha}, \delta) \right) \leq |D| \cdot \delta / |D| = \delta
$$

\[\square\]

Corollary A.8 Under Assumption [2.7] and given $\delta \in (0, 1)$, suppose $\tilde{\ell}_2(\delta) < 3/4$, then with probability at least $1 - \delta$, it holds

$$
\max_{B \in B_{p,d}} \left\{ \frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i \in B\}} \right\} \leq \tilde{\ell}_2(\delta)
$$
Proof. Apply Lemma A.7 with $D = B_{p,d}$ and $\bar{\alpha} = 2\bar{d}/n$, and note that $|B_{p,d}| \leq (n + 1)^{2d}/n$ (by Lemma A.5 (3)) and the definition $\bar{t}_1(\delta) = \frac{2\bar{d}^2d}{n} + \log(p(n + 1)^{2d}/\delta)$.

Lemma A.9 Suppose Assumption [A.7] holds true. Let z_1, \ldots, z_n be i.i.d. bounded random variables with $|Z| \leq V < \infty$ almost surely. Assume that for each $i \in [n]$, z_i is independent of $(x_j)_{j \neq i}$, but may be dependent on x_i. Given any $\delta \in (0, 1)$, suppose $\bar{t}_2(\delta/2) < 3/4$, then with probability at least $1 - \delta$, it holds

$$\sup_{A \in A_{p,d} \setminus A_{p,d}(\bar{t}_1(\delta/2))} \frac{1}{\sqrt{\mathbb{P}(X \in A)}} \left| \frac{1}{n} \sum_{i=1}^{n} z_i 1_{\{x_i \in A\}} - \mathbb{E}(z_1 1_{\{x_1 \in A\}}) \right| \leq 5\sqrt{V \bar{t}_2(\delta/2)}. \quad (50)$$

Proof. Define events \mathcal{E}_1 and \mathcal{E}_2:

$$\mathcal{E}_1 := \left\{ \max_{B \in B_{p,d}} \left\{ \frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i \in B\}} \right\} \leq \bar{t}_2(\delta/2) \right\}$$

$$\mathcal{E}_2 := \left\{ \max_{A \in \bar{A}_{p,d} \setminus A_{p,d}(\bar{t}_1(\delta/2))} \frac{1}{\sqrt{\mathbb{P}(X \in A)}} \left| \frac{1}{n} \sum_{i=1}^{n} z_i 1_{\{x_i \in A\}} - \mathbb{E}(z_1 1_{\{x_1 \in A\}}) \right| \leq V \sqrt{\bar{t}_1(\delta/2)} \right\}$$

Then by Lemma A.6 and Corollary A.8 we have $\mathbb{P}(\mathcal{E}_1) \geq 1 - \delta/2$ and $\mathbb{P}(\mathcal{E}_2) \geq 1 - \delta/2$, hence $\mathbb{P}(\mathcal{E}_1 \cap \mathcal{E}_2) \geq 1 - \delta$. Below we prove that when \mathcal{E}_1 and \mathcal{E}_2 hold true, inequality (50) holds true.

Note that for any $A \in A_{p,d} \setminus A_{p,d}(\bar{t}_1(\delta/2))$,

$$\frac{1}{\sqrt{\mathbb{P}(X \in A)}} \left| \frac{1}{n} \sum_{i=1}^{n} z_i 1_{\{x_i \in A\}} - \mathbb{E}(z_1 1_{\{x_1 \in A\}}) \right| \leq \frac{1}{\sqrt{\mathbb{P}(X \in A)}} \left| \frac{1}{n} \sum_{i=1}^{n} z_i 1_{\{x_i \in A\}} - 1 \frac{1}{n} \sum_{i=1}^{n} z_i 1_{\{x_i \in A'\}} \right|$$

$$+ \frac{1}{\sqrt{\mathbb{P}(X \in A)}} \left| \frac{1}{n} \sum_{i=1}^{n} z_i 1_{\{x_i \in A'\}} - \mathbb{E}(z_1 1_{\{x_1 \in A'\}}) \right|$$

$$+ \frac{1}{\sqrt{\mathbb{P}(X \in A)}} \left| \mathbb{E}(z_1 1_{\{x_1 \in A'\}}) - \mathbb{E}(z_1 1_{\{x_1 \in A\}}) \right|$$

$$:= T_1 + T_2 + T_3$$

To bound T_1, we have

$$T_1 = \frac{1}{\sqrt{\mathbb{P}(X \in A)}} \left| \frac{1}{n} \sum_{i=1}^{n} z_i 1_{\{x_i \in A \setminus A'\}} \right| \leq \frac{V}{\sqrt{\mathbb{P}(X \in A)}} \left(\frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i \in A \setminus A'\}} \right)$$

$$\leq \frac{V}{\sqrt{\mathbb{P}(X \in A)}} \max_{B \in B_{p,d}} \left\{ \frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i \in B\}} \right\} \leq \frac{V}{\sqrt{\mathbb{P}(X \in A)}} \bar{t}_2(\delta/2) \leq V \sqrt{\bar{t}_2(\delta/2)} \quad (52)$$

where the second inequality is because $A' \in \bar{A}_{p,d}$ and $\mathbb{P}(X \in A') \geq \mathbb{P}(X \in A) \geq \bar{t}_1(\delta/2)$. The third inequality is by inequality (50). The third inequality is by \mathcal{E}_1.

To bound T_2, note that

$$T_2 = \sqrt{\frac{\mathbb{P}(X \in A')}{\mathbb{P}(X \in A)}} \sqrt{\frac{1}{\mathbb{P}(X \in A')}} \left| \frac{1}{n} \sum_{i=1}^{n} z_i 1_{\{x_i \in A'\}} - \mathbb{E}(z_1 1_{\{x_1 \in A'\}}) \right|$$

$$\leq \sqrt{\frac{\mathbb{P}(X \in A')}{\mathbb{P}(X \in A)}} \frac{2V}{\sqrt{\bar{t}_1(\delta/2)}} \quad (53)$$

where the inequality is by event \mathcal{E}_2 and because $A' \in \bar{A}_{p,d}$ and $\mathbb{P}(X \in A') \geq \mathbb{P}(X \in A) \geq \bar{t}_1(\delta/2)$. Note that

$$\mathbb{P}(X \in A') \leq \frac{2\bar{d}d}{n} \leq \bar{t}_2(\delta/2) \leq \mathbb{P}(X \in A) \quad (54)$$

where the first inequality is by Lemma A.5 (2); the second inequality is by the definition of $\bar{t}_2(\delta/2)$ in (22); the third inequality is because $A \in A_{p,d} \setminus A_{p,d}(\bar{t}_1(\delta/2))$. As a result of (53) and (54), we have

$$T_2 \leq \sqrt{\frac{\mathbb{P}(X \in A')}{\mathbb{P}(X \in A)}} \mathbb{P}(X \in A') \frac{2V}{\sqrt{\bar{t}_1(\delta/2)}} \leq 2\sqrt{2V \sqrt{\bar{t}_1(\delta/2)}} \quad (55)$$
To bound T_3, note that
\[
T_3 = \frac{1}{\sqrt{\mathbb{P}(X \in A)}} \left| \mathbb{E}(z_1 \mathbf{1}_{\{x_1 \in A \setminus \Lambda\}}) \right| \leq \frac{V}{\sqrt{\mathbb{P}(X \in A)}} \mathbb{P}(X \in A') \setminus A \right)
\leq V \sqrt{\mathbb{P}(X \in A') \setminus A \setminus A} \leq V \sqrt{\frac{2\delta d}{n}} \leq V \sqrt{t_2(\delta/2)}
\]

The proof is complete by combining inequalities (51), (52), (55) and (56), and note that
\[
2V \sqrt{t_2(\delta/2)} + 2\sqrt{2V \sqrt{t_1(\delta/2)}} \leq 5V \sqrt{t(\delta/2)}.
\]

Now we are ready to wrap up the proof of Lemma A.1.

Completing the proof of Lemma A.1

Define events \mathcal{E}_1 and \mathcal{E}_2:
\[
\mathcal{E}_1 := \left\{ \sup_{A \in \mathcal{A}_{p,d} \setminus \mathcal{A}_{p,d}(\alpha)} \frac{1}{\mathbb{P}(X \in A)} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{x_i \in A\}} - \mathbb{P}(X \in A) \right| \leq 5\sqrt{t(\delta/8)} \right\}
\]
\[
\mathcal{E}_2 := \left\{ \sup_{A \in \mathcal{A}_{p,d} \setminus \mathcal{A}_{p,d}(\alpha)} \frac{1}{\mathbb{P}(X \in A)} \left| \frac{1}{n} \sum_{i=1}^{n} y_i \mathbf{1}_{\{x_i \in A\}} - \mathbb{E}(y_i \mathbf{1}_{\{x_i \in A\}}) \right| \leq 5U \sqrt{t(\delta/8)} \right\}
\]

Then by Lemma A.9 with $z_i = y_i$ and $z_i = 1$ respectively, we know that $\mathbb{P}(\mathcal{E}_i) \geq 1 - \delta/4$ for all $i = 1, 2$. So we know $\mathbb{P}(\cap_{i=1}^{2} \mathcal{E}_i) \geq 1 - \delta$. Below we prove that inequality (23) is true when $\cap_{i=1}^{2} \mathcal{E}_i$ hold.

Define $\alpha := 100\bar{t}(\delta/8)$. Then it holds
\[
\sup_{A \in \mathcal{A}_{p,d}(\alpha)} \mathbb{P}(X \in A) \left| \mathbb{E}(f^*(X)|X \in A) - \bar{y}X_A \right| \leq 2U \sqrt{\alpha} = 20U \sqrt{t(\delta/8)} \tag{57}
\]

On the other hand, for any $A \in \mathcal{A}_{p,d} \setminus \mathcal{A}_{p,d}(\alpha)$, by event \mathcal{E}_1, we have
\[
\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{x_i \in A\}} \geq \mathbb{P}(X \in A) - 5\sqrt{t(\delta/8)} \mathbb{P}(X \in A) \geq \frac{1}{2} \mathbb{P}(X \in A) \tag{58}
\]
where the second inequality is because $\mathbb{P}(X \in A) \geq \alpha = 100\bar{t}(\delta/8)$. Therefore we know $\sum_{i=1}^{n} \mathbf{1}_{\{x_i \in A\}} > 0$, and we can write
\[
\mathbb{E}(f^*(X)|X \in A) - \bar{y}X_A = \frac{\mathbb{E}(y_i \mathbf{1}_{\{x_i \in A\}})}{\mathbb{P}(X \in A)} - \frac{1}{n} \sum_{i=1}^{n} y_i \mathbf{1}_{\{x_i \in A\}} = \frac{1}{\mathbb{P}(X \in A)} \left(\mathbb{E}(y_i \mathbf{1}_{\{x_i \in A\}}) - \frac{1}{n} \sum_{i=1}^{n} y_i \mathbf{1}_{\{x_i \in A\}} \right)
\]
\[+ \sum_{i=1}^{n} y_i \mathbf{1}_{\{x_i \in A\}} \frac{1}{\mathbb{P}(X \in A)} - \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{x_i \in A\}} - \mathbb{P}(X \in A) \right) := H_1(A) + H_2(A) \tag{59}
\]

By event \mathcal{E}_2, and note that $\alpha \geq \bar{t}(\delta/8)$, we have
\[
\sup_{A \in \mathcal{A}_{p,d} \setminus \mathcal{A}_{p,d}(\alpha)} \mathbb{P}(X \in A) |H_1(A)| \leq 5U \sqrt{t(\delta/8)} \tag{60}
\]

By event \mathcal{E}_1, and note that $\alpha \geq \bar{t}(\delta/8)$, we have
\[
\sup_{A \in \mathcal{A}_{p,d} \setminus \mathcal{A}_{p,d}(\alpha)} \mathbb{P}(X \in A) |H_2(A)| \leq 5U \sqrt{t(\delta/8)} \tag{61}
\]

Combining (59), (60) and (61), we have
\[
\sup_{A \in \mathcal{A}_{p,d} \setminus \mathcal{A}_{p,d}(\alpha)} \mathbb{P}(X \in A) \left| \mathbb{E}(f^*(X)|X \in A) - \bar{y}X_A \right| \leq 10U \sqrt{t(\delta/8)} \tag{54}
\]

Combining the inequality above with (57) we have
\[
\sup_{A \in \mathcal{A}_{p,d}} \mathbb{P}(X \in A) \left| \mathbb{E}(f^*(X)|X \in A) - \bar{y}X_A \right| \leq 20U \sqrt{t(\delta/8)} \leq 20U \sqrt{t(\delta/12)}
\]
543 A.5 Proof of Lemma [A.2]

544 Define \(a := \bar{t}(\delta/4) \) and \(b := a + \frac{2\delta d}{n} \). Define events \(E_1 \) and \(E_2 \):

\[
E_1 := \left\{ \max_{A \in \mathcal{A}_{p,d}(b)} \frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i \in A\}} \leq (\varepsilon^2 b) + \frac{\log (2(n+1)^2d\delta/n)}{n} \right\}
\]

\[
E_2 := \left\{ \sup_{A \in \mathcal{A}_{p,d}(a) \setminus \mathcal{A}_{p,d}(b)} \frac{1}{\sqrt{\mathbb{P}(X \in A)}} \left| \mathbb{P}(X \in A) - \frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i \in A\}} \right| \leq 5\sqrt{\bar{t}(\delta/4)} \right\}
\]

Then by Lemmas [A.7] and [A.9] we know that \(\mathbb{P}(E_1) \geq 1 - \delta/2 \) and \(\mathbb{P}(E_2) \geq 1 - \delta/2 \), so \(\mathbb{P}(E_1 \cap E_2) \geq 1 - \delta \).

Below we prove \((24)\) when \(E_1 \cap E_2 \) holds.

547 For \(A \in \mathcal{A}_{p,d} \), if \(\mathbb{P}(X \in A) \leq a \), then \(\mathbb{P}(A') \leq a + \frac{2\delta d}{n} = b \). So we have

\[
\sup_{A \in \mathcal{A}_{p,d}(a)} \frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i \in A\}} \leq \sup_{A \in \mathcal{A}_{p,d}(a)} \frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i \in A'\}} \leq \sup_{A \in \mathcal{A}_{p,d}(a)} \frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i \in A\}}
\]

\[
\leq \left(e^{2\bar{t}(\delta/4)} + 2e^2 \bar{b}d/n \right) + \frac{\log (2(n+1)^2d\delta/n)}{n}
\]

\[
\leq (e^{2} + 1)\bar{t}(\delta/4) \leq 25\bar{t}(\delta/4)
\]

where the third inequality is by event \(E_1 \) and the definition of \(b \); the fourth inequality is because

\[
\bar{t}(\delta/4) \geq \bar{t}_1(\delta/4) \geq \frac{1}{n} \log (2p^d(n+1)^2d\delta/n) \quad \text{and} \quad \bar{t}(\delta/4) \geq \bar{t}_2(\delta/4) \geq 2e^2 \bar{b}d/n.
\]

548 As a result, we have

\[
\sup_{A \in \mathcal{A}_{p,d}(a)} \left| \sqrt{\mathbb{P}(X \in A)} - \frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i \in A\}} \right| \leq \sup_{A \in \mathcal{A}_{p,d}(a)} \max \left\{ \sqrt{\mathbb{P}(X \in A)}, \left| \frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i \in A\}} \right| \right\} \leq 5\sqrt{\bar{t}(\delta/4)}
\]

where the second inequality made use of \((62)\).

549 On the other hand,

\[
\sup_{A \in \mathcal{A}_{p,d} \setminus \mathcal{A}_{p,d}(a)} \left| \sqrt{\mathbb{P}(X \in A)} - \frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i \in A\}} \right| = \sup_{A \in \mathcal{A}_{p,d} \setminus \mathcal{A}_{p,d}(a)} \left| \frac{\mathbb{P}(X \in A) - \frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i \in A\}}}{\sqrt{\mathbb{P}(X \in A)} + \sqrt{\frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i \in A\}}}} \right|
\]

\[
\leq \sup_{A \in \mathcal{A}_{p,d} \setminus \mathcal{A}_{p,d}(a)} \frac{1}{\sqrt{\mathbb{P}(X \in A)}} \left| \mathbb{P}(X \in A) - \frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i \in A\}} \right| \leq 5\sqrt{\bar{t}(\delta/4)}
\]

where the last inequality is by event \(E_2 \).

550 Combining \((63)\) and \((64)\) the proof is complete.
For any interval $E \in \mathcal{E}$ and any univariate function g on $[0, 1]$, let $V_g(E)$ be the total variation of g on E. For the additive model \cite{14} and a rectangle $A = \prod_{j=1}^{p} E_j \in \mathcal{A}$, define $V_{f^*}(A) = \sum_{j=1}^{p} V_{f^*_j}(E_j)$. Recall that X is a random variable with the same distribution as x_i, and $X^{(j)}$ is the j-th coordinate of X.

B Proofs in Section 3

B.1 Technical lemmas

Lemma B.1 For any rectangle $A \subseteq [0, 1]^p$, any $j \in [p]$ and any $b \in \mathbb{R}$, it holds

\[
\Delta(A, j, b) = \left(\mathbb{E}(f^*(X)1_{X \in A}) - \mathbb{E}(f^*(X)|X \in A)\mathbb{P}(X \in A) \right)^2 \frac{\mathbb{P}(X \in A)}{\mathbb{P}(X \in A)\mathbb{P}(X \in A)}
\]

where $A_L = A_{L}(j, b)$ and $A_R = A_{R}(j, b)$.

Proof. We use the notations $\nu := \mathbb{E}(f^*(X)|X \in A), \nu_L := \mathbb{E}(f^*(X)|X \in A_L)$ and $\nu_R := \mathbb{E}(f^*(X)|X \in A_R)$. First, note that

\[
\mathbb{E} \left((f^*(X) - \nu)^2 1_{X \in A_L} \right) = \mathbb{E} \left((f^*(X) - \nu_L + \nu_L - \nu)^2 1_{X \in A_L} \right)
\]

Similarly, we have

\[
\mathbb{E} \left((f^*(X) - \nu_R)^2 1_{X \in A_R} \right) + (\nu_R - \nu)^2 \mathbb{P}(X \in A_R)
\]

Summing up (65) and (66) we have

\[
(\nu_L - \nu)^2 \mathbb{P}(X \in A) + (\nu_R - \nu)^2 \mathbb{P}(X \in A_R)
\]

Noting that

\[
(\nu_L - \nu)^2 \mathbb{P}(X \in A_L) = \left(\mathbb{E}(f^*(X)1_{X \in A_L}) - \mathbb{E}(f^*(X)|X \in A_L)\mathbb{P}(X \in A_L) \right)^2 \mathbb{P}(X \in A_L)^{-1}
\]

Combining (67) and (68) we have

\[
\Delta(A, j, b) = (\nu_L - \nu)^2 \frac{\mathbb{P}(X \in A_L)^2}{\mathbb{P}(X \in A)} + (\nu_R - \nu)^2 \mathbb{P}(X \in A_R) = (\nu_R - \nu)^2 \mathbb{P}(X \in A \cap A_R) \frac{\mathbb{P}(X \in A)}{\mathbb{P}(X \in A_L)}
\]

Lemma B.2 Suppose Assumption 2.7 holds true, and f^* has the additive structure in (14). Then for any $A = \prod_{j=1}^{p} [\ell_j, u_j] \subseteq [0, 1]^p$, it holds

\[
\max_{j \in [p], k \in \mathbb{R}} \sqrt{\Delta(A, j, b)} \geq \frac{\sqrt{\mathbb{P}(X \in A)\text{Var}(f^*(X)|X \in A)}}{\sum_{k=1}^{p} \int_{\ell_k}^{u_k} \sqrt{q^{(b)}_A(t)(1 - q^{(b)}_A(t))} dV_{f^*}(\{\ell_j, t\})}
\]

where $q^{(b)}_A(t) := \mathbb{P}(X^{(k)} \leq t|x_i \in A)$.

Proof. For a fixed $A = \prod_{j=1}^{p} [\ell_j, u_j] \subseteq [0, 1]^p$, without loss of generality, assume $\mathbb{E}(f^*(X)|X \in A) = 0$.

Note that for any $j \in [p]$,

\[
\max_{b \in \mathbb{R}} \sqrt{\Delta(A, j, b)} \geq \frac{\int_{\ell_j}^{u_j} \sqrt{q^{(b)}_A(s)(1 - q^{(b)}_A(s))} dV_{f^*}(\{\ell_j, s\})}{\int_{\ell_j}^{u_j} \sqrt{q^{(b)}_A(s)(1 - q^{(b)}_A(s))} dV_{f^*}(\{\ell_j, s\})}
\]

(69)
where \(s \) is the integration variable. Because \(q_A^{(j)}(s) = \mathbb{P}(X \in A_L(j,s)) / \mathbb{P}(X \in A) \), using Lemma B.1 and recall that we have assumed \(\mathbb{E}(f^*(X)|X \in A) = 0 \), we have

\[
\int_{\ell_j}^{u_j} \sqrt{q_A^{(j)}(s)(1 - q_A^{(j)}(s))} \sqrt{\Delta(A, j, s)} \, dV_{f^*}([\ell_j, s])
\]

\[
= \frac{1}{\mathbb{P}(X \in A)} \int_{\ell_j}^{u_j} \left| \mathbb{E}(f^*(X)1_{X \in AR(j,s)}) \right| \, dV_{f^*}([\ell_j, s])
\]

\[
= \frac{1}{\mathbb{P}(X \in A)} \int_{\ell_j}^{u_j} \left| \mathbb{E}(f^*(X)1_{X(\cdot) > s}) \right| \, dV_{f^*}([\ell_j, s])
\]

\[
\geq \frac{1}{\mathbb{P}(X \in A)} \int_{\ell_j}^{u_j} \mathbb{E}(f^*(X)(f^*_j(X)^{(j)} - f^*_j(\ell_j))1_{X(\cdot) > s}) \, dV_{f^*}([\ell_j, s])
\]

\[
= \frac{1}{\mathbb{P}(X \in A)} \mathbb{E}(f^*(X)f^*_j(X)^{(j)}1_{X(\cdot) > s})
\]

where the last equality makes use of the assumption that \(\mathbb{E}(f^*(X)|X \in A) = 0 \). Combining the inequality above with (69), we have

\[
\max_{b \in \mathbb{R}} \sqrt{\Delta(A, j, b)} \geq \frac{1}{\mathbb{P}(X \in A)} \int_{\ell_j}^{u_j} \sqrt{q_A^{(j)}(s)(1 - q_A^{(j)}(s))} \, dV_{f^*}([\ell_j, s])
\]

As a result, we have

\[
\max_{j \in [p], b \in \mathbb{R}} \sqrt{\Delta(A, j, b)} \geq \frac{1}{\mathbb{P}(X \in A)} \sum_{j=1}^{p} \mathbb{E}(f^*(X)f^*_j(X)^{(j)}1_{X(\cdot) > s}) \geq \mathbb{P}(X \in A) \mathbb{E}(f^*(X)|X \in A)
\]

Combining (70) and (71), the proof is complete. \(\square \)

Lemma B.3 Suppose Assumption 2.1 holds true, and \(f^* \) has the additive structure in (13). If for any \(A = \prod_{j=1}^{p} [\ell_j, u_j] \subseteq [0, 1]^p \) and any \(k \in [p] \) it holds

\[
\left(\int_{\ell_k}^{u_k} \sqrt{q_k^{(b)}(t)(1 - q_k^{(b)}(t))} \, dV_k^*([\ell_k, t]) \right)^2 \leq \frac{\tau^2}{\ell_k - \ell_k} \inf_{w \in \mathbb{R}} \int_{\ell_k}^{u_k} |f_k^*(t) - w|^2 \, dt
\]

Then Assumption 2.2 is satisfied with \(\lambda = \theta/(pr^2 \theta) \).

Proof. Given \(A = \prod_{j=1}^{p} [\ell_j, u_j] \subseteq [0, 1]^p \), without loss of generality, assume \(\mathbb{E}(f^*(X)|X \in A) = 0 \). Let \(p_X(\cdot) \) be the density of \(X \) on \([0,1]^p\). Then we have

\[
\mathbb{E}(f^*(X)|X \in A) = \frac{1}{\mathbb{P}(X \in A)} \int_A (f^*(z))^2 p_X(z) \, dz \geq \frac{\theta}{\mathbb{P}(X \in A)} \int_A (f^*(z))^2 \, dz
\]

where the second inequality made use of Assumption 2.1 (i). Denote \(c_j := \frac{1}{u_j - \ell_j} \int_{\ell_j}^{u_j} f_j^*(t) \, dt \) and \(c := \sum_{j=1}^{p} c_j \), then we have

\[
\int_A (f^*(z))^2 \, dz = \int_A \left(c + \sum_{j=1}^{p} f_j^*(z) - c_j \right)^2 \, dz_1 \cdot \ldots \cdot dz_p
\]

\[
= c^2 + \sum_{j=1}^{p} (f_j^*(z) - c_j)^2 \, dz_1 \cdot \ldots \cdot dz_p
\]

\[
\geq \sum_{j=1}^{p} \prod_{k=1}^{p} \frac{u_k - \ell_k}{u_j - \ell_j} \int_{\ell_j}^{u_j} (f_j^*(t) - c_j)^2 \, dt
\]

\[
\geq \frac{\mathbb{P}(X \in A)}{\theta} \sum_{j=1}^{p} \frac{1}{u_j - \ell_j} \int_{\ell_j}^{u_j} (f_j^*(t) - c_j)^2 \, dt
\]
Combining the inequality above with (73) we have
\[\text{Var}(f^*(X)|X \in A) \geq \frac{\theta}{\theta^2} \sum_{j=1}^{p} \frac{1}{u_j - \ell_j} \int_{\ell_j}^{u_j} (f_j(t) - c_j)^2 \, dt \]
(74)

We use H_k^2 to denote the LHS of (72), then (72) implies
\[\frac{1}{u_j - \ell_j} \int_{\ell_j}^{u_j} (f_j(t) - c_j)^2 \, dt \geq \frac{1}{\tau^2} H_j^2 \]
(75)

As a result of (74) and (75), we have
\[\text{Var}(f^*(X)|X \in A) \geq \frac{\theta}{\theta^2} \sum_{j=1}^{p} H_k^2 \]
(76)

By Lemma B.2 we have
\[\Delta(A, b, \ell) \geq \frac{\mathbb{P}(X \in A) \text{Var}(f^*(X)|X \in A)^2}{\left(\sum_{k=1}^{p} H_k\right)^2} \]
\[\geq \frac{\theta}{\theta^2} \sum_{j=1}^{p} H_k^2 \mathbb{P}(X \in A) \text{Var}(f^*(X)|X \in A) \]
\[\geq \frac{\theta}{\theta^2} \mathbb{P}(X \in A) \text{Var}(f^*(X)|X \in A) \]
where the second inequality is by (76), and the last inequality made use of the Cauchy-Schwarz inequality.

\[\square \]

B.2 Proof of Proposition 3.1

For any $A = \prod_{j=1}^{p} [\ell_j, u_j] \subseteq [0, 1]^p$ and any $k \in [p]$ it holds
\[\left(\int_{\ell_k}^{u_k} \sqrt{q_k^*(t)}(1 - q_k^*(t)) \, dV^*_{\ell_k}([\ell_k, t]) \right)^2 \leq \frac{1}{4} \left(\int_{\ell_k}^{u_k} |f_k^*(t)| \, dt \right)^2 \]
\[\leq \frac{\tau^2}{4} \inf_{w \in \mathbb{R}} \int_{\ell_k}^{u_k} |f_k^*(t) - w|^2 \, dt \]
(77)

where the first inequality is by Cauchy-Schwarz inequality, and the second is because $f_k^* \in LRP([0, 1], \tau)$.

Using Lemma B.3 the proof of complete.

B.3 Proof of Proposition 3.2

For any $A = \prod_{j=1}^{p} [\ell_j, u_j] \subseteq [0, 1]^p$ and any $k \in [p]$, we prove that
\[\left(\int_{\ell_k}^{u_k} \sqrt{q_k^*(t)}(1 - q_k^*(t)) \, dV^*_{\ell_k}([\ell_k, t]) \right)^2 \leq 2r \max \left\{ \frac{\theta}{\theta} \frac{r^2}{\alpha} \right\} \inf_{w \in \mathbb{R}} \int_{a}^{b} (g(t) - w)^2 \, dt \]
(78)

Then the conclusion follows Lemma B.3.

For fixed A and $k \in [p]$, to simplify the notation, we denote $g := f_k^*, a := \ell_k, b := u_k, q(t) := q_k^*(t)$ for all $t \in [\ell_k, u_k]$, and $t_j := t^{(k)}_j$ for $j = 0, 1, \ldots, r$. Then (77) can be written as
\[\left(\int_{a}^{b} \sqrt{q(t)(1 - q(t))} \, dV_{g}([a, t]) \right)^2 \leq 2r \max \left\{ \frac{\theta}{\theta} \frac{r^2}{\alpha} \right\} \inf_{w \in \mathbb{R}} \int_{a}^{b} (g(t) - w)^2 \, dt \]
(78)

For any $s \in (0, 1)$, define $\Delta g(s) := \lim_{t \to s^+} g(t) - \lim_{t \to s^-} g(t)$. Let $j', j'' \in [r]$ such that $t_{j'-1} \leq a < t_{j'}$ and $t_{j''-1} < b \leq t_{j''}$, and define $r' = j'' - j' + 1$, and
\[z_0 = a, z_1 = t_{j'}, z_2 = t_{j'+1}, \ldots, z_{r'-1} = t_{j''-1}, z_{r'} = b. \]

Then we have
\[\left(\int_{a}^{b} \sqrt{q(t)(1 - q(t))} \, dV_{g}([a, t]) \right)^2 \]
\[= \left(\sum_{j=1}^{r'} \int_{j-1}^{j} \sqrt{q(t)(1 - q(t))} \, dt \right)^2 \]
\[\leq 2r' \sum_{j=1}^{r'} \left(\int_{j-1}^{j} \sqrt{q(t)(1 - q(t))} \, dt \right)^2 \]
(79)

\[+ 2(r' - 1) \sum_{j=1}^{r' - 1} q(z_j)(1 - q(z_j)) |\Delta g(z_j)|^2 \]

We have the following 4 claims bounding the terms in the last line of the display above.

Claim B.4 For $j \in \{1, r'\}$, it holds
\[
\left(\int_{z_{j-1}}^{z_j} \sqrt{q(t)(1-q(t))} |g'(t)| \, dt \right)^2 \leq \frac{\bar{\theta} \beta^2}{\theta (b-a)} \inf_{w \in \mathbb{R}} \int_{z_{j-1}}^{z_j} (g(t) - w)^2 \, dt
\]

Proof of Claim B.4 We just prove the claim for $j = 1$. The proof for $j = r'$ follows a similar argument. To prove the claim for $j = 1$, we discuss two cases.

(Case 1) $q(z_1) \leq 1/2$. Then we have $\sqrt{q(t)(1-q(t))} \leq \sqrt{q(z_1)(1-q(z_1))}$, hence
\[
\left(\int_{a}^{z_1} \sqrt{q(t)(1-q(t))} |g'(t)| \, dt \right)^2 \leq q(z_1)(1-q(z_1)) \left(\int_{a}^{z_1} |g'(t)| \, dt \right)^2
\]
\[
\leq q(z_1)(1-q(z_1)) \frac{\beta^2}{z_1-a} \inf_{w \in \mathbb{R}} \int_{a}^{z_1} (g(t) - w)^2 \, dt
\]
\[
\leq \frac{\bar{\theta} \beta^2}{\theta (b-a)} \inf_{w \in \mathbb{R}} \int_{a}^{z_1} (g(t) - w)^2 \, dt
\]
where the second inequality is because $g \in LRP((a, z_1), \beta)$; and the last inequality makes use of the fact $q(z_1) \leq \bar{\theta} (z_1 - a)/(\theta (b-a))$.

(Case 2) $q(z_1) > 1/2$. Then we have
\[
z_1 - a \geq \frac{\theta (b-a)}{\bar{\theta}} q(z_1) \geq \frac{\theta (b-a)}{2\theta}
\]
As a result,
\[
\left(\int_{a}^{z_1} \sqrt{q(t)(1-q(t))} |g'(t)| \, dt \right)^2 \leq \frac{1}{4} \left(\int_{a}^{z_1} |g'(t)| \, dt \right)^2 \leq \frac{\beta^2}{4(z_1-a)} \inf_{w \in \mathbb{R}} \int_{a}^{z_1} (g(t) - w)^2 \, dt
\]
\[
\leq \frac{\bar{\theta} \beta^2}{2\theta (b-a)} \inf_{w \in \mathbb{R}} \int_{a}^{z_1} (g(t) - w)^2 \, dt
\]
where the first inequality is by Cauchy-Schwarz inequality; the second inequality is because $g \in LRP((a, z_1), \beta)$; the third inequality is by (81).

Combining (Case 1) and (Case 2), the proof of Claim B.4 is complete.

Claim B.5 For $j \in \{1, r' - 1\}$, it holds
\[
q(z_j)(1-q(z_j)) |\Delta g(z_j)|^2 \leq \max \left\{ \frac{4 \bar{\theta}}{\theta}, \frac{r}{\alpha} \right\} \max \{\beta^2, 4\} \inf_{w \in \mathbb{R}} \int_{x_0}^{x_j} (g(t) - w)^2 \, dt
\]

Proof of Claim B.5 We just prove the claim for $j = 1$. The proof for $j = r' - 1$ follows a similar argument. To prove the claim for $j = 1$, we discuss two cases.

(Case 1) $|\Delta g(z_1)| > 4 \max \{\int_{x_0}^{x_1} |g'(t)| \, dt, \int_{z_1}^{x_1} |g'(t)| \, dt\}$. Then by Lemma D.6 we have
\[
\inf_{w \in \mathbb{R}} \int_{x_0}^{x_1} (g(t) - w)^2 \, dt \geq \min \{z_1 - z_0, z_2 - z_1\} \cdot \frac{(\Delta g(z_1))^2}{16}
\]
\[
(82)
\]
Note that
\[
\min \{z_1 - z_0, z_2 - z_1\} \geq \min \left\{ \frac{\theta q(z_1)}{\bar{\theta}}, \frac{\alpha}{r} (b-a) \right\} \geq \min \left\{ \frac{\theta q(z_1)}{\bar{\theta}}, \frac{\alpha}{r} \right\} (b-a)
\]
\[
(83)
\]
So by (82) and (83) we have
\[
|\Delta g(z_1)|^2 \leq \max \left\{ \frac{4 \bar{\theta}}{\theta}, \frac{r}{\alpha} \right\} \frac{16}{b-a} \inf_{w \in \mathbb{R}} \int_{x_0}^{x_1} (g(t) - w)^2 \, dt
\]
As a result,
\[
q(z_1)(1-q(z_1)) |\Delta g(z_1)|^2
\]
\[
\leq \max \left\{ \frac{\bar{\theta}}{\theta}, \frac{r}{\alpha} q(z_1)(1-q(z_1)) \right\} \frac{16}{b-a} \inf_{w \in \mathbb{R}} \int_{x_0}^{x_1} (g(t) - w)^2 \, dt
\]
\[
\leq \max \left\{ \frac{\bar{\theta}}{\theta}, \frac{r}{4\alpha} \right\} \frac{16}{b-a} \inf_{w \in \mathbb{R}} \int_{x_0}^{x_1} (g(t) - w)^2 \, dt
\]
where the second inequality is by Cauchy-Schwarz inequality.

\[(\text{Case 2}) \quad |\Delta g(z_t)| \leq 4 \max\{ \int_{z_0}^{z_1} |g'(t)| \, dt : \int_{z_1}^{z_2} |g'(t)| \, dt \} \]

Then we have

\[q(z_t)(1 - q(z_t))|\Delta g(z_t)|^2 \leq 4q(z_t)(1 - q(z_t)) \max\left\{ \int_{z_0}^{z_1} |g'(t)| \, dt , \int_{z_1}^{z_2} |g'(t)| \, dt \right\}^2 \tag{84} \]

By the same argument in [80], we have

\[4q(z_t)(1 - q(z_t))\left(\int_{z_0}^{z_1} |g'(t)| \, dt \right)^2 \leq \frac{4\delta^2}{\theta(b - a)} \inf_{w \in \bar{R}} \int_{z_0}^{z_1} (g(t) - w)^2 \, dt \tag{85} \]

On the other hand,

\[4q(z_t)(1 - q(z_t))\left(\int_{z_0}^{z_1} |g'(t)| \, dt \right)^2 \leq \left(\int_{z_1}^{z_2} |g'(t)| \, dt \right)^2 \]

\[\leq \frac{\beta^2}{\alpha^2} \inf_{w \in \bar{R}} \int_{z_1}^{z_2} (g(t) - w)^2 \, dt \leq \frac{r\beta^2}{\alpha(b - a)} \inf_{w \in \bar{R}} \int_{z_1}^{z_2} (g(t) - w)^2 \, dt \tag{86} \]

where the second inequality is because \(g \in LRP((z_1, z_2), \beta) \); the last inequality is because \(z_2 - z_1 \geq \alpha/r \geq (\alpha/r)(b - a). \) By (84), (85) and (86), we have

\[q(z_t)(1 - q(z_t))|\Delta g(z_t)|^2 \leq \max\left\{ \frac{4\delta^2}{\theta} \frac{r}{\alpha} \frac{\beta^2}{b - a} \inf_{w \in \bar{R}} \int_{z_0}^{z_1} (g(t) - w)^2 \, dt \right\} \]

Combining (Case 1) and (Case 2), the proof of Claim B.5 is complete.

\[\square \]

Claim B.6 For \(2 \leq j \leq r' - 1 \), it holds

\[\left(\int_{z_{j-1}}^{z_j} \sqrt{q(t)(1 - q(t))|g'(t)|} \, dt \right)^2 \leq \frac{r\beta^2}{4\alpha(b - a)} \inf_{w \in \bar{R}} \int_{z_{j-1}}^{z_j} (g(t) - w)^2 \, dt \]

Proof of Claim B.6 Note that

\[\left(\int_{z_{j-1}}^{z_j} \sqrt{q(t)(1 - q(t))|g'(t)|} \, dt \right)^2 \leq \frac{1}{4} \left(\int_{z_{j-1}}^{z_j} |g'(t)| \, dt \right)^2 \leq \frac{\beta^2}{4(z_j - z_{j-1})} \inf_{w \in \bar{R}} \int_{z_{j-1}}^{z_j} (g(t) - w)^2 \, dt \]

\[\leq \frac{r\beta^2}{4\alpha(b - a)} \inf_{w \in \bar{R}} \int_{z_{j-1}}^{z_j} (g(t) - w)^2 \, dt \]

where the first inequality is by Cauchy-Schwarz inequality; the second inequality is because \(g \in LRP((z_{j-1}, z_j), \beta) \); the last inequality is by the assumption that \(t_j - t_{j-1} \geq \alpha/r \).

\[\square \]

Claim B.7 For \(2 \leq j \leq r' - 2 \), it holds

\[q(z_j)(1 - q(z_j))|\Delta g(z_j)|^2 \leq \frac{r \max\{\beta^2, 4\}}{\alpha} \inf_{w \in \bar{R}} \int_{z_{j-1}}^{z_{j+1}} (g(t) - w)^2 \, dt \]

Proof of Claim B.7 We discuss two cases.

Case 1 \(|\Delta g(z_j)| > 4 \max\{ \int_{z_{j-1}}^{z_j} |g'(t)| \, dt : \int_{z_j}^{z_{j+1}} |g'(t)| \, dt \} \). Then by Lemma D.6, we have

\[\inf_{w \in \bar{R}} \int_{z_{j-1}}^{z_{j+1}} (g(t) - w)^2 \, dt \geq \min\{ z_j - z_{j-1}, z_{j+1} - z_j \} \cdot \frac{(\Delta g(z_j))^2}{16} \geq \frac{\alpha}{r} \frac{(\Delta g(z_j))^2}{16} \]

As a result,

\[q(z_j)(1 - q(z_j))|\Delta g(z_j)|^2 \leq \frac{16r}{\alpha} q(z_j)(1 - q(z_j)) \inf_{w \in \bar{R}} \int_{z_{j-1}}^{z_{j+1}} (g(t) - w)^2 \, dt \]

\[\leq \frac{4r}{\alpha} \inf_{w \in \bar{R}} \int_{z_{j-1}}^{z_{j+1}} (g(t) - w)^2 \, dt \]
By Claims B.5 and B.7, we have
\[g(z_j)(1 - q(z_j)) |\Delta g(z_j)|^2 \]
\[\leq 4q(z_j)(1 - q(z_j)) \max \left\{ \int_{z_{j-1}}^{z_j} |g'(t)| \, dt, \int_{z_j}^{z_{j+1}} |g'(t)| \, dt \right\}^2 \]
\[\leq \max \left\{ \int_{z_{j-1}}^{z_j} |g'(t)| \, dt, \int_{z_j}^{z_{j+1}} |g'(t)| \, dt \right\}^2 \]
\[\leq \max \left\{ \int_{z_{j-1}}^{z_j} |g'(t)| \, dt, \int_{z_j}^{z_{j+1}} |g'(t)| \, dt \right\} \leq \frac{\beta^2}{\alpha} \max \left\{ \inf_{w \in \mathbb{R}} \int_{z_{j-1}}^{z_j} (g(t) - w)^2 \, dt, \inf_{w \in \mathbb{R}} \int_{z_j}^{z_{j+1}} (g(t) - w)^2 \, dt \right\} \]
\[\leq \frac{\beta^2 r}{\alpha} \max \left\{ \inf_{w \in \mathbb{R}} \int_{z_{j-1}}^{z_j} (g(t) - w)^2 \, dt, \inf_{w \in \mathbb{R}} \int_{z_j}^{z_{j+1}} (g(t) - w)^2 \, dt \right\} \]
\[\leq \frac{\beta^2 r}{\alpha} \int_{z_{j-1}}^{z_{j+1}} (g(t) - w)^2 \, dt \]
where the second inequality is by Cauchy-Schwarz inequality; the third inequality is because \(g \in LRP((z_{j-1}, z_j), \beta) \) and \(g \in LRP((z_j, z_{j+1}), \beta) \).

Combining (Case 1) and (Case 2), and note that \(b - \alpha \leq 1 \), the proof of Claim B.7 is complete.

\[\square \]

Completion of the Proof of Proposition 3.2

By (79) and note that \(r' \leq r \), we have
\[\left(\int_a^b \sqrt{q(t)(1 - q(t))} \, dV_g([a, t]) \right)^2 \]
\[\leq 2r \sum_{j=1}^{r'} \left(\int_{z_{j-1}}^{z_j} \sqrt{q(t)(1 - q(t))} |g'(t)| \, dt \right)^2 + 2r \sum_{j=1}^{r'-1} q(z_j)(1 - q(z_j)) |\Delta g(z_j)|^2 \]

By Claims B.4 and B.6 we have
\[\sum_{j=1}^{r'} \left(\int_{z_{j-1}}^{z_j} \sqrt{q(t)(1 - q(t))} |g'(t)| \, dt \right)^2 \]
\[\leq \max \left\{ \frac{\beta^2}{\alpha} \sum_{j=1}^{r'} \left(\int_{z_{j-1}}^{z_j} (g(t) - w)^2 \, dt \right) \right\} \]
\[\leq \max \left\{ \frac{\beta^2 r}{\alpha} \int_{z_{j-1}}^{z_j} (g(t) - w)^2 \, dt \right\} \]

By Claims B.5 and B.7 we have
\[\sum_{j=1}^{r'-1} q(z_j)(1 - q(z_j)) |\Delta g(z_j)|^2 \]
\[\leq \max \left\{ \frac{\beta^2}{\alpha} \int_{z_{j-1}}^{z_j} (g(t) - w)^2 \, dt \right\} \]
\[\leq \max \left\{ \frac{\beta^2 r}{\alpha} \int_{z_{j-1}}^{z_j} (g(t) - w)^2 \, dt \right\} \]
\[= \max \left\{ \frac{\beta^2 r}{\alpha} \int_{z_{j-1}}^{z_j} (g(t) - w)^2 \, dt \right\} \]

By (87), (88) and (89) we have
\[\left(\int_a^b \sqrt{q(t)(1 - q(t))} \, dV_g([a, t]) \right)^2 \]
\[\leq 2r \max \left\{ \frac{\beta^2 r}{\alpha} \int_{z_{j-1}}^{z_j} (g(t) - w)^2 \, dt \right\} \]

Hence (75) is true, and the proof of Proposition 3.2 is complete.
We first prove the conclusion when \(a \), where the last step is by Cauchy-Schwarz inequality.

B.5 Proof of Example 3.3

It suffices to prove that for any \(a, b \),

\[
\int_{a}^{b} (g(t))^{2} \, dt \geq \int_{a}^{b} (c_{1}(t - t_{0}))^{2} \, dt = \frac{c_{1}^{2}}{3} (b - t_{0})^{3}
\]

Similarly,

\[
\int_{a}^{t_{0}} (g(t))^{2} \, dt \geq \int_{a}^{t_{0}} (c_{1}(t_{0} - t))^{2} \, dt = \frac{c_{1}^{2}}{3} (t_{0} - a)^{3}
\]

As a result, we have

\[
\int_{a}^{b} (g(t))^{2} \, dt \geq \frac{c_{1}^{2}}{3} ((b - t_{0})^{3} + (t_{0} - a)^{3}) \geq \frac{2c_{1}^{2}}{3} \frac{b-a}{2}^{3} = \frac{c_{1}^{2}}{12} (b-a)^{3}
\]

(90)

On the other hand, since \(|g'(t)| \leq c_{2} \), we have

\[
\left(\int_{a}^{b} |g'(t)| \, dt \right)^{2} \leq c_{2}^{2} (b-a)^{2}
\]

(91)

Combining (90) and (91), we have

\[
\left(\int_{a}^{b} |g'(t)| \, dt \right)^{2} \leq \frac{12c_{2}^{2}}{c_{1}^{2}(b-a)^{3}} \int_{a}^{b} (g(t))^{2} \, dt
\]

B.6 Proof of Example 3.2

It suffices to prove that there exists a constant \(C_{r} \) such that for any univariate polynomial with a degree at most \(r \) and for any \(a < b \),

\[
\left(\int_{a}^{b} |g'(t)| \, dt \right)^{2} \leq \frac{C_{r}}{b-a} \int_{a}^{b} |g(t)|^{2} \, dt
\]

(92)

We first prove the conclusion when \(a = 0 \) and \(b = 1 \). Let \(\mathcal{P}(r) \) be the set of all univariate polynomials with degree at most \(r \). Note that \(\mathcal{P}(r) \) is a finite-dimensional linear space, and the differential operator \(\Phi : g \mapsto g' \) is a linear mapping on \(\mathcal{P}(r) \). As a result, there exists \(C_{r} \) such that

\[
\int_{0}^{1} |g'(t)| \, dt \leq \sqrt{C_{r}} \int_{0}^{1} |g(t)| \, dt
\]

for all \(g \in \mathcal{P}(r) \).

For general \(a < b \), given \(g \in \mathcal{P}(r) \), define \(h(s) := g(a + (b-a)s) \), then \(h \in \mathcal{P}(r) \). So we have

\[
\int_{0}^{1} |h'(s)| \, ds \leq \sqrt{C_{r}} \int_{0}^{1} |h(s)| \, ds
\]

(93)

Note that

\[
\int_{0}^{1} |h'(s)| \, ds = (b-a) \int_{0}^{1} |g'(a+(b-a)s)| \, ds = \int_{a}^{b} |g'(t)| \, dt
\]

(94)

and

\[
\int_{0}^{1} |h(s)| \, ds = \int_{0}^{1} |g(a+(b-a)s)| \, ds = \frac{1}{b-a} \int_{a}^{b} |g(t)| \, dt
\]

(95)

Combining (93), (94) and (95), we know that

\[
\left(\int_{a}^{b} |g'(t)| \, dt \right)^{2} \leq \left(\sqrt{\frac{C_{r}}{b-a}} \int_{a}^{b} |g(t)| \, dt \right)^{2} \leq \frac{C_{r}}{b-a} \int_{a}^{b} |g(t)|^{2} \, dt
\]

where the last step is by Cauchy-Schwarz inequality.

B.7 Proof of Example 3.1

It suffices to prove that for any \(a, b \in [0, 1] \) with \(a < b \), it holds

\[
\int_{a}^{b} |g'(t)| \, dt \leq \frac{10(L/\sigma)}{b-a} \int_{a}^{b} |g(t)| \, dt
\]

(96)

Once (96) is proved, the conclusion is true via Jensen’s inequality.
Below we prove (96). Denote $C = L/10$. For given $a, b \in [0, 1]$, without loss of generality, we assume the median of g on $[a, b]$ is 0, i.e., \(\int_a^b 1_{(g(t) \geq 0)} \, dt = \int_a^b 1_{(g(t) < 0)} \, dt = (b - a)/2 \) (otherwise translate by a constant).

We discuss two different cases. We denote $m := \min_{t \in [a, b]} \{|g'(t)|\}$ and $M := \max_{t \in [a, b]} \{|g'(t)|\}$.

(Case 1) $m \geq C(b - a)$. Since g is L-smooth on $[0, 1]$, we have

\[M \leq m + L(b - a) \]

Hence we have

\[\frac{M}{m} \leq 1 + \frac{L(b - a)}{m} \leq 1 + \frac{L}{C} \]

where the second inequality is by the assumption of (Case 1). Since $\min_{t \in [a, b]} \{|g'(t)|\} = m > 0$, without loss of generality, we assume that $g'(t) > 0$ for all $t \in [a, b]$. Denote $t_0 = (a + b)/2$. By our assumption that the median of g on $[a, b]$ is 0, we know that $g(t_0) = 0$. Since g is convex, for any $t \in [a, t_0]$, we have

\[g(t_0) - g(t) \geq \frac{t_0 - t}{t_0 - a} (g(t_0) - g(a)) \]

which implies $g(t) \leq \frac{t_0 - t}{t_0 - a} (g(a) - g(t_0)) \leq 0$. As a result, we have

\[\int_a^{t_0} |g(t)| \, dt \geq |g(t_0) - g(a)| \frac{t_0 - t}{2} \geq \frac{(t_0 - a)^2}{2} m = \frac{(b - a)^2}{8} m \]

(98)

On the other hand,

\[\int_a^b |g'(t)| \, dt \leq M(b - a) \]

(99)

Combining (98) and (99) we have

\[(b - a) \int_a^b |g'(t)| \, dt \leq \frac{8M}{m} \int_a^b |g(t)| \, dt \leq 8(1 + L/C) \int_a^b |g(t)| \, dt = 88 \int_a^b |g(t)| \, dt \]

where the second inequality made use of (97).

(Case 2) $m < C(b - a)$. Then by the L-smoothness of g we have

\[M \leq (C + L)(b - a) \]

so we have

\[\int_a^b |g'(t)| \, dt \leq M(b - a) \leq (C + L)(b - a)^2 \]

(100)

Define interval $[t_1, t_2] := \{ t \in [a, b] \mid g(t) \leq 0 \}$. By our assumption that the median of g on $[0, 1]$ is 0, we have $t_2 - t_1 = (b - a)/2$. Denote $t_0 = \arg\min_{t \in [a, b]} g(t)$. Define function f on $[t_1, t_2]$:

\[f(t) := \begin{cases} g(t_0) \cdot (t - t_1)/(t_0 - t_1) & t \in [t_1, t_0] \\ g(t_0) \cdot (t_2 - t)/(t_2 - t_0) & t \in [t_0, t_2] \end{cases} \]

Then $0 \geq f(t) \geq g(t)$ for all $t \in [t_1, t_2]$ (because g is convex). Note that

\[\int_{t_1}^{t_2} f(t) \, dt = \frac{1}{2} g(t_0) (t_2 - t_1) + \frac{1}{2} g(t_0) (t_2 - t_1 - t_0) = \frac{1}{2} g(t_0) (t_2 - t_1) = \frac{1}{2} \int_{t_1}^{t_2} g(t_0) \, dt \]

(101)

As a result,

\[\int_{t_1}^{t_2} |g(t)| \, dt \geq \int_{t_1}^{t_2} |f(t)| \, dt = - \int_{t_1}^{t_2} f(t) \, dt = \int_{t_1}^{t_2} f(t) - g(t_0) \, dt \geq \int_{t_1}^{t_2} g(t) - g(t_0) \, dt \]

(102)

where the first and last inequalities are because $0 \geq f(t) \geq g(t)$ for all $t \in [t_1, t_2]$; the second equality is by (101). Note that for any $t \in [t_1, t_2]$,

\[g(t) - g(t_0) \geq g'(t_0)(t - t_0) + \frac{\sigma}{2}(t - t_0)^2 \geq \frac{\sigma}{2}(t - t_0)^2 \]

(103)

where the first inequality is because g is σ-strongly-convex, and the second is because t_0 is the minimizer of g on $[t_1, t_2]$. By (102) and (103), we have

\[\int_{t_1}^{t_2} |g(t)| \, dt \geq \frac{\sigma}{2} \int_{t_1}^{t_2} (t - t_0)^2 \, dt \geq 2 \cdot \frac{\sigma}{2} \int_0^{(t_2 - t_1)/2} s^2 \, ds = \frac{\sigma}{24} (t_2 - t_1)^3 = \frac{\sigma}{192} (b - a)^3 \]

Since g is convex on $[a, b]$, the median of g on $[a, b]$ is 0, and $[t_1, t_2] = \{ t \in [a, b] \mid g(t) \leq 0 \}$, it is not hard to check that

\[\int_a^b |g(t)| \, dt \geq 2 \int_{t_1}^{t_2} |g(t)| \, dt \geq \frac{\sigma}{96} (b - a)^3 \]

(104)

Combining (100) and (104) we have

\[\int_a^b |g'(t)| \, dt \leq \frac{1}{b - a} \int_a^b |g(t)| \, dt \leq \frac{96(C + L)}{\sigma} \int_a^b |g(t)| \, dt \leq \frac{110(L/\sigma)}{b - a} \int_a^b |g(t)| \, dt \]

where the last inequality made use of $C = L/10$.

The proof is complete by combining the discussions in (Case 1) and (Case 2).
C Comparison of Theorem 2.3 and Theorem 1 of [10]

We first restate Theorem 1 of [10] in the setting of fitting a single tree (note that [10] discussed random forest).

Proposition C.1 (Theorem 1 of [10]) Suppose Assumptions 2.2, 2.1 and 2.1 hold true. Let \(\hat{f}^{(d)}(\cdot) \) be the tree estimated by CART with depth \(d \). Fixed constants \(\alpha_2 > 1, 0 < \eta < 1/8, 0 < c < 1/4 \) and \(\delta > 0 \) with \(2\eta < \delta < 1/4 \). Then there exists constant \(C > 0 \) such that for all \(n, d \) satisfying \(1 < d < c \log_2(n) \), it holds

\[
\mathbb{E}(|\hat{f}^{(d)} - f^*|^2 L^2(\mu)) \leq C \left(n^{-\eta} + (1 - \alpha_2^{-1}) \delta + n^{-\delta + c} \right)
\]

(105)

In particular, the RHS of (105) is lower bounded by

\[
\Omega(n^{-\eta} + n^{-\delta + c} + n^{c \log_2(1 - \delta)})
\]

(106)

Note that (106) follows (105) by the fact that noises are bounded. In addition, the dependence on \(p \) was not explicitly stated in the bound (105), which seems to be hidden in the constant \(C \).

To compare our error bound with the error bound in (106), since the \(\| \hat{f}^{(d)} - f^* \|_2 L^2(\mu) \) is bounded almost surely, it is not hard to transform the high-probability bound in (11) to an bound in expectation, and we have

\[
\mathbb{E}(|\hat{f}^{(d)} - f^*|^2 L^2(\mu)) \leq O(n^{-\phi(\lambda)} \log(np) \log^2(n))
\]

(107)

Below we discuss two different cases.

- (Case 1) \(\lambda \geq 1/2 \). Then it holds

\[
\phi(\lambda) = \frac{-\log_2(1 - \lambda)}{1 - \log_2(1 - \lambda)} \geq \frac{-\log_2(1/2)}{1 - \log_2(1/2)} = 1/2
\]

(108)

So our convergence rate in (107) is \(O(n^{-1/2} \log(np) \log^2(n)) \), but the rate in (106) is

\[
\Omega(n^{-\eta} + n^{-\delta + c} + n^{c \log_2(1 - \lambda)}) \geq \Omega(n^{-\eta}) \geq \Omega(n^{-1/8})
\]

(109)

- (Case 2) \(0 < \lambda \leq 1/2 \). Then it holds

\[
1 - \log_2(1 - \lambda) \leq 1 - \log_2(1/2) = 2
\]

(110)

and hence \(\phi(\lambda) \geq \log_2(1 - \lambda)/2 \). So our rate in (107) is \(O(n^{\log_2(1 - \lambda)/2} \log(np) \log^2(n)) \), but the rate in (106) is

\[
\Omega(n^{-\eta} + n^{-\delta + c} + n^{c \log_2(1 - \lambda)}) \geq \Omega(n^{c \log_2(1 - \lambda)}) \geq \Omega(n^{1/2 \log_2(1 - \lambda)})
\]

(111)

D Auxiliary results

Lemma D.1 (Bernstein’s inequality) Let \(Z_1, \ldots, Z_n \) be i.i.d. random variables satisfying \(|\mathbb{E}((Z_1 - \mathbb{E}(Z_1))^k)| \leq (1/2)k!\gamma^{-k} \) for some constants \(\gamma, b > 0 \) and for all \(k \geq 2 \). Then for any \(t > 0 \),

\[
\mathbb{P}\left(\left| \frac{1}{n} \sum_{i=1}^{n} Z_i - \mathbb{E}(Z_i) \right| > t \right) \leq 2 \exp\left(-\frac{n}{4} \left(\frac{t^2}{\gamma^2} \wedge \frac{t}{b} \right) \right)
\]

Lemma D.2 (Binomial tail bound) Let \(Z_1, \ldots, Z_n \) be i.i.d. random variables with \(\mathbb{P}(Z_i = 1) = \alpha \) and \(\mathbb{P}(Z_i = 0) = 1 - \alpha \). Then for any \(t \in (0, 1) \),

\[
\mathbb{P}\left(\left| \frac{1}{n} \sum_{i=1}^{n} Z_i \right| > t \right) \leq \exp\left(-n \left[t \log \left(\frac{t}{\alpha} \right) + (1 - t) \log \left(\frac{1 - t}{1 - \alpha} \right) \right] \right)
\]

Lemma D.3 For any \(t \in (0, 3/4) \), \(\log(1 - t) > - t^2 \).

Proof. For \(t \in (0, 3/4) \),

\[
\log(1 - t) + t^2 = \frac{t^2}{2} - \sum_{k=3}^{\infty} \frac{t^k}{k!} \geq \frac{t^2}{2} - \frac{1}{6} \sum_{k=3}^{\infty} t^k = \frac{t^2}{2} - \frac{t^3}{6(1 - t)} > 0.
\]

□
Lemma D.4 Suppose Z is a random variable satisfying $\mathbb{E}(e^{\lambda Z}) \leq e^{\lambda^2 \sigma^2 / 2}$ for all $\lambda \in \mathbb{R}$, where $\sigma > 0$ is a constant; then

$$\mathbb{E}(|Z|^k) \leq 9\sigma^k k!$$

Proof. By Chernoff inequality it holds $\mathbb{P}(|Z| > t) \leq 2 \exp(-t^2/(2\sigma^2))$ for all $t > 0$. As a result,

$$\mathbb{E}(|Z|^k)/(k!\sigma^k) \leq \mathbb{E}(e^{\lambda |Z|/\sigma}) = \int_0^\infty e^t \mathbb{P}(|Z| > t) \, dt$$

$$\leq \int_0^\infty 2 \exp\left(\frac{t^2}{2}\right) \, dt = 2\sqrt{e} \int_0^\infty \exp(-t^2/2) \, dt$$

$$\leq 2\sqrt{e} \int_{-\infty}^\infty \exp(-t^2/2) \, dt = 2\sqrt{2\pi e} \leq 9$$

□

Lemma D.5 For any integer $k \geq 2$ it holds $\frac{1}{k^2} - \frac{4}{(k+1)^2} \leq \frac{1}{(k+1)^2}$.

Proof. For any $k \geq 2$ it holds

$$\frac{(2k+1)(k+1)}{2k^2} = \left(1 + \frac{1}{2k}\right)(1 + \frac{1}{k}) \leq \left(1 + \frac{1}{4}\right)(1 + \frac{1}{2}) < 2$$

Multiplying $2/(k+1)^2$ in the display above, we have

$$\frac{2k+1}{2k(k+1)^2} < \frac{4}{(k+1)^2}$$

The proof is complete by noting that $\frac{2k+1}{2k(k+1)^2} = \frac{1}{k^2} - \frac{1}{(k+1)^2}$. □

Lemma D.6 Let $[a, b]$ be a sub-interval of $[0, 1]$, and $c \in (a, b)$. Let h be a function on $[a, b]$ such that h is differentiable on (a, c) and (c, b), but can be discontinuous at c. Denote $\Delta h(c) := \lim_{t \to c+} h(t) - \lim_{t \to c-} h(t)$. Suppose

$$\Delta h(c) > 4 \max\left\{\int_a^c |h'(t)| \, dt, \int_c^b |h'(t)| \, dt\right\}$$ \hspace{1cm} (112)

Then it holds

$$\inf_{w \in \mathbb{R}} \int_a^b (h(t) - w)^2 \, dt \geq \min\{c-a, b-c\}(\Delta h(c))^2/16$$

Proof. We assume that h is not continuous at c, since otherwise, the conclusion holds true trivially. We use the notation $h(c+) := \lim_{t \to c+} h(t)$ and $h(c-) := \lim_{t \to c-} h(t)$. Without loss of generality, assume $h(c+) > h(c-)$. For $w \geq (1/2)(h(c+) + h(c-))$, it holds $w - h(c-) \geq (1/2)\Delta h(c)$. By (112), we know that for any $t \in (a, c)$,

$$|h(t) - h(c-)| \leq \int_a^c |h'(\tau)| \, d\tau \leq \frac{1}{4} \Delta h(c)$$

Hence for all $t \in (a, c)$,

$$w - h(t) = w - h(c-) + h(c-) - h(t) \geq \frac{1}{2} \Delta h(c) - \frac{1}{4} \Delta h(c) = \frac{1}{4} \Delta h(c)$$

As a result,

$$\int_a^b (h(t) - w)^2 \, dt \geq \int_a^c (h(t) - w)^2 \, dt \geq (c-a)(\Delta h(c))^2/16$$ \hspace{1cm} (113)

For $w < (1/2)(h(c+) + h(c-))$, similarly, we can prove

$$\int_a^b (h(t) - w)^2 \, dt \geq (b-c)(\Delta h(c))^2/16$$ \hspace{1cm} (114)

The proof is complete by combining (113) and (114). □