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A Theoretical Justification1

A.1 Proof on rectified estimation of xt in Equation 72

Equation 7 x′
t =
√
ᾱtA

†xA −
√
ᾱtA

†Ap+ (I−A†A)xt +A†A
√
1− ᾱtϵt.3

Proof. Based on xt =
√
ᾱtx0 +

√
1− ᾱtϵ, we have a nice property [15]:4

x0|t =
1√
ᾱt

(xt −
√
1− ᾱtϵt). (1)

To ensure that the approximated clean image x0|t based on the t-th step observation xt satisfies the5

constraint in Equation 6, we have:6

x0|t = A†xA −A†Ap+
(
I−A†A

)
x0|t. (2)

Combine the above two equations, we can have:7

1√
ᾱt

(xt −
√
1− ᾱtϵt) = A†xA −A†Ap+

(
I−A†A

)
(

1√
ᾱt

(xt −
√
1− ᾱtϵt)). (3)

Taking the derivative, we arrive at:8

x′
t =
√
ᾱtA

†xA −
√
ᾱtA

†Ap+ (I−A†A)xt +A†A
√
1− ᾱtϵt. (4)

9

A.2 Proof of Lemma 3.110

Lemma 3.1 Suppose the estimated noise output by gϕ(·) is Gaussian. Given gϕ(xt, t) = ϵt, we have11

gϕ((xt +
√
ᾱtA

†Ap), t) = ϵt + ϵ′t, where ϵt, ϵ
′
t are also Gaussian.12

Proof. Let us define the output of gϕ((xt + x′
t), t) as ϵ̂t, so we have gϕ((xt + x′

t), t) = ϵ̂t. Next,13

we define ϵt ∼ N(µ1, σ
2
1) and ϵ̂t ∼ N(µ2, σ

2
2).14

Since ϵ̂t also follows a Gaussian distribution, we can subtract ϵt from ϵ̂t to obtain ϵ′t, such that:15

ϵ′t = ϵ̂t − ϵt ∼ N(µ2 − µ1, σ
2
1 + σ2

2) (5)

This confirms that ϵ′t is also Gaussian, thus completing the proof.16
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A.3 Proof of Theorem 3.217

Theorem 3.2 Suppose that gϕ((xt +
√
ᾱtA

†Ap)) = ϵt + ϵ′t. We define the error at step t between18

x̂t and (xt +
√
ᾱtA

†Ap) as δ′t, i.e., δ′t = x̂t − (xt +
√
ᾱtA

†Ap). Let δt = Aδ′t, we have the19

following bound on its norm: ∥δt∥ ≤
(1−ᾱt)

√
αt+1√

1−ᾱt+1

∥A∥∥ϵ′t+1∥.20

Proof. We prove the above theorem by induction.21

1 The base case is when t = T , where we have x̂T − (xT +
√
ᾱTA

†Ap) = 0, which holds.22

2 Suppose for x̂t − (xt +
√
ᾱtA

†Ap) = A†δt, ∥δt∥ ≤
(1−ᾱt)

√
αt+1√

1−ᾱt+1

∥A∥∥ϵ′t+1∥ is true.23

3 Induction:24

xt−1 ←
1√
αt

(
√
ᾱtA

†xA−
√
ᾱtA

†Ap+(I−A†A)xt+A†A
√
1− ᾱtϵt−

1− αt√
1− ᾱt

ϵt)+σtϵ, (6)

x̂t−1 =
1√
αt

(
√
ᾱtA

†xA+(I−A†A)x̂t+A†A
√
1− ᾱt(ϵt+ϵ′t)−

1− αt√
1− ᾱt

(ϵt+ϵ′t))+σtϵ, (7)

x̂t−1−xt−1 ←
1√
αt

(
√
ᾱtA

†Ap+(I−A†A)(
√
ᾱtA

†Ap+A†δt)+A†A
√
1− ᾱtϵ

′
t−

1− αt√
1− ᾱt

ϵ′t)

(8)

By definition, we have x̂t−1 − (xt−1 +
√
ᾱt−1A

†Ap) = δ′t−1. Let δt−1 = Aδ′t−1, we have25

δt−1 = Aδ′t−1 = A(x̂t−1 − (xt−1 +
√
ᾱt−1A

†Ap)). Since A(I−A†A) = 0, we can have:26

δt−1 =
1√
αt

(A
√
1− ᾱtϵ

′
t −A

1− αt√
1− ᾱt

ϵ′t) =
(1− ᾱt−1)

√
αt√

1− ᾱt
Aϵ′t (9)

Based on the Cauchy–Schwarz inequality:27

∥δt−1∥ = ∥
(1− ᾱt−1)

√
αt√

1− ᾱt
Aϵ′t∥ ≤

(1− ᾱt−1)
√
αt√

1− ᾱt
∥A∥∥ϵ′t∥ (10)

28

A.4 Proof of Corollary 3.2.129

Corollary 3.2.1 When t = 0, we have x̂0 = x0 +A†Ap + δ′0, where Aδ′0 = 0.30

Proof. First, we have:31

x0 ←
1√
α1

(
√
ᾱ1A

†xA−
√
ᾱ1A

†Ap+(I−A†A)x1+A†A
√
1− ᾱ1ϵ1−

1− α1√
1− ᾱ1

ϵ1)+σ1ϵ, (11)

x̂0 =
1√
α1

(
√
ᾱ1A

†xA+(I−A†A)x̂1+A†A
√
1− ᾱ1(ϵ1+ϵ′1)−

1− α1√
1− ᾱ1

(ϵ1+ϵ′1))+σ1ϵ, (12)

Then we can have:32

Aδ′0 =
(1− α0)

√
α1√

1− ᾱ1
Aϵ′1. (13)

Since α0 = 1, then we have Aδ′0 = 0.33
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B Qualitative Results of Purification34

B.1 Qualitative Results of Purification on BadNet Attack35

(a) Attacked Image (b) Purified Image (c) Attacked Image (d) Purified Image

(e) Attacked Image (f) Purified Image (g) Attacked Image (h) Purified Image

(i) Attacked Image (j) Purified Image (k) Attacked Image (l) Purified Image

(m) Attacked Image (n) Purified Image (o) Attacked Image (p) Purified Image

Figure 1: Comparison of Purified and BadNet Attack Images(Part1).
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(a) Attacked Image (b) Purified Image (c) Attacked Image (d) Purified Image

(e) Attacked Image (f) Purified Image (g) Attacked Image (h) Purified Image

(i) Attacked Image (j) Purified Image (k) Attacked Image (l) Purified Image

(m) Attacked Image (n) Purified Image (o) Attacked Image (p) Purified Image

(q) Attacked Image (r) Purified Image (s) Attacked Image (t) Purified Image

(u) Attacked Image (v) Purified Image (w) Attacked Image (x) Purified Image

Figure 2: Comparison of Purified and BadNet Attack Images(Part2).
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(a) Attacked Image (b) Purified Image (c) Attacked Image (d) Purified Image

(e) Attacked Image (f) Purified Image (g) Attacked Image (h) Purified Image

(i) Attacked Image (j) Purified Image (k) Attacked Image (l) Purified Image

(m) Attacked Image (n) Purified Image (o) Attacked Image (p) Purified Image

(q) Attacked Image (r) Purified Image (s) Attacked Image (t) Purified Image

(u) Attacked Image (v) Purified Image (w) Attacked Image (x) Purified Image

Figure 3: Comparison of Purified and BadNet Attack Images(Part3).
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(a) Attacked Image (b) Purified Image (c) Attacked Image (d) Purified Image

(e) Attacked Image (f) Purified Image (g) Attacked Image (h) Purified Image

(i) Attacked Image (j) Purified Image (k) Attacked Image (l) Purified Image

(m) Attacked Image (n) Purified Image (o) Attacked Image (p) Purified Image

(q) Attacked Image (r) Purified Image (s) Attacked Image (t) Purified Image

(u) Attacked Image (v) Purified Image (w) Attacked Image (x) Purified Image

Figure 4: Comparison of Purified and BadNet Attack Images(Part4).
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B.2 Qualitative Results of Purification on Blended Attack36

(a) Attacked Image (b) Purified Image (c) Attacked Image (d) Purified Image

(e) Attacked Image (f) Purified Image (g) Attacked Image (h) Purified Image

(i) Attacked Image (j) Purified Image (k) Attacked Image (l) Purified Image

(m) Attacked Image (n) Purified Image (o) Attacked Image (p) Purified Image

Figure 5: Comparison of Purified and Blended Attack Images(Part1).
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(a) Attacked Image (b) Purified Image (c) Attacked Image (d) Purified Image

(e) Attacked Image (f) Purified Image (g) Attacked Image (h) Purified Image

(i) Attacked Image (j) Purified Image (k) Attacked Image (l) Purified Image

(m) Attacked Image (n) Purified Image (o) Attacked Image (p) Purified Image

(q) Attacked Image (r) Purified Image (s) Attacked Image (t) Purified Image

(u) Attacked Image (v) Purified Image (w) Attacked Image (x) Purified Image

Figure 6: Comparison of Purified and Blended Attack Images(Part2).
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(a) Attacked Image (b) Purified Image (c) Attacked Image (d) Purified Image

(e) Attacked Image (f) Purified Image (g) Attacked Image (h) Purified Image

(i) Attacked Image (j) Purified Image (k) Attacked Image (l) Purified Image

(m) Attacked Image (n) Purified Image (o) Attacked Image (p) Purified Image

(q) Attacked Image (r) Purified Image (s) Attacked Image (t) Purified Image

(u) Attacked Image (v) Purified Image (w) Attacked Image (x) Purified Image

Figure 7: Comparison of Purified and Blended Attack Images(Part3).
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(a) Attacked Image (b) Purified Image (c) Attacked Image (d) Purified Image

(e) Attacked Image (f) Purified Image (g) Attacked Image (h) Purified Image

(i) Attacked Image (j) Purified Image (k) Attacked Image (l) Purified Image

(m) Attacked Image (n) Purified Image (o) Attacked Image (p) Purified Image

(q) Attacked Image (r) Purified Image (s) Attacked Image (t) Purified Image

(u) Attacked Image (v) Purified Image (w) Attacked Image (x) Purified Image

Figure 8: Comparison of Purified and Blended Attack Images(Part4).
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C Details on Linear Transformations37

In this section, we discuss details of the linear transformation applied in our paper. Two practical38

examples are discussed to illustrate the simplicity and effectiveness of linear transformations, along39

with the corresponding operators used.40

Gray-scale Conversion: To convert an RGB image to gray-scale, the operator A = [1/3, 1/3, 1/3]41

can be defined as a pixel-wise operation that transforms each RGB channel pixel [r, g, b] into a gray-42

scale value r3+g3+b3. In this case, constructing a pseudo-inverse A† = [1, 1, 1]T is straightforward,43

satisfying the condition AA† ≡ I, where I represents the identity matrix.44

Image Blurring: Image blurring also involves linear transformations. For a blurring operation with45

scale n, the operator A is defined as the average-pooling operator [1/n2, ..., 1/n2]. This operator46

aggregates each patch of the image into a single value. Similarly, the pseudo-inverse A† can be built47

as A† = [1, ..., 1]T to fulfill the condition AA† ≡ I.48

Overall, these examples demonstrate how these two linear transformations, in conjunction with their49

respective operators, can be employed to destruct the trigger pattern without relying on a complex50

Fourier transform. In cases where the linear transformation is too complex to solve for its pseudo-51

inverse, the Singular Value Decomposition (SVD) method can be applied. For more details, please52

refer to papers [34, 21].53

D Algorithm for improved ZIP based on DDIM54

In this section, we include the modified algorithm based on DDIM, which is proposed to speed up the55

diffusion model inference speed.56

Algorithm 1 Zero-shot Image Purification (based on DDIM)

Require: Test image for purification xP ; liner transformation A1,A2, ...,An and their pseudo-
inverse A†

1,A
†
2, ...,A

†
n; diffusion model g; hyperparameter λ; speed-up pace S.

Ensure: xAn = Anx
P , n = 0, 1, ..., N

1: xT ∼ N (0, I)
2: for t = T, T − S, ..., S, 1 do
3: ϵ ∼ N (0, I) if t > 1, else ϵ = 0
4: ϵt = gϕ(xt, t)
5: for n = 1, 2, ..., N do
6: x̂n

t =
√
ᾱtA

†
1x

An + (I−A†
nAn)xt +A†

nAn

√
1− ᾱtϵt

7: end for
8: x̂t =

1
N (x̂1

t + x̂2
t+, ...,+x̂N

t )

9: x̃t = (1− ᾱλ
t )x̂t + ᾱλ

t xt

10: x̃0|t =
1√
ᾱt
(x̃t −

√
1− ᾱtϵt)

11: xt−1 ←
√
ᾱt−1x̃0|t +

√
1− ᾱt−1 − σ2

t ϵt + σtϵ
12: end for
13: return x0

E Experiments Settings57

E.1 Datasets Informaiton58

CIFAR-10 [22] The CIFAR-10 dataset is a widely-used benchmark in computer vision. It consists of59

60,000 color images of size 32x32 pixels, belonging to 10 different classes, with 6,000 images per60

class. The dataset is divided into 50,000 training images and 10,000 test images, with a balanced61

distribution of classes.62

GTSRB [31] The German Traffic Sign Recognition Benchmark (GTSRB) dataset is designed for63

traffic sign classification tasks. It comprises more than 50,000 images of traffic signs captured under64

various real-world conditions. The images have different sizes and aspect ratios, but they are resized65

11



to 32x32 pixels for our model training and evaluation. The dataset is divided into training and test66

sets, with its official split ratio.67

Imagenette [17] The Imagenette is a subset of the larger ImageNet dataset and is commonly used68

as a smaller-scale alternative for image classification tasks. It consists of 10 classes with a total of69

13,000 images. The images in Imagenette have varying sizes, but they are resized to 256x256 pixels70

for consistency. The dataset is split into training and validation sets, following a predefined split ratio.71

Table 1: Properties of datasets.
Dataset Classes Image Size Train Split Test Split

CIFAR-10 10 32x32 50,000 10,000
GTSRB 43 32x32 39,209 12,630

Imagenette 10 256x256 9,480 3,936

E.2 Attacks Implementation72

In this section, we discuss the implementation details of three different backdoor attack methods73

employed in our study: BadNet, Blended, and PhysicalBA. We implement these backdoor attacks74

using the Backdoorbox framework [24], which is under GNU general public license.75

BadNet [11] The BadNet attack injects specific trigger patterns into the training data. In our76

implementation, we set the poisoned rate to 5%, i.e., 5% of the training samples are selected as attack77

samples and have the trigger pattern added to them. The trigger pattern size is set to 2x2 for 32x3278

pixels images and 9x9 for 256x256 pixels images. The trigger patterns are randomly generated.79

Blended [7] The Blended attack is a more sophisticated variant aimed at making the backdoor less80

conspicuous and harder to detect. Following the suggestion in BackdoorBox, we set the blended rate81

to 0.2 and the poisoned rate to 5%. The blended pattern is randomly generated, seamlessly blending82

the trigger pattern into the attack samples.83

PhysicalBA [25] The PhysicalBA (Physical Backdoor Attack) is a specific type of attack that84

introduces variations in the location and appearance of the attack pattern embedded in the test samples85

during inference time. In our implementation, we apply the same attack pattern size as the BadNet86

attack, using a 2x2 pattern for 32x32 pixels images and a 9x9 pattern for 256x256 pixels images. The87

attack patterns are generated randomly. We set the poisoned rate to 5% for this attack.88

All other attack settings follow the default configurations in Backboorbox [24].89

E.3 Purification Implementation90

We utilize a pre-trained model provided by OpenAI [8] under the MIT license. The algorithm91

described in Algorithm 1 is employed to accelerate the inference process, allowing us to generate92

high-quality images within just 20 steps, and the speed-up pace is set to 50. We set the hyperparameter93

λ to a value of 2 for Blended attack defense, and 10 for BadNet and PhysicalBA attack defense.94

Specifically, for the CIFAR-10 dataset, we apply both blur and gray-scale conversion as linear trans-95

formations. For the GTSRB and Imagenette datasets, we solely apply blur as the linear transformation.96

Additional implementation details can be found in the code we have provided.97

F Ablation Study Settings98

F.1 Enhanced Attack Settings99

In the enhanced attack settings, our first step is to extract 5% of the training dataset and inject the100

attack’s trigger pattern into these images. We then proceed to purify this subset of data using blur101

and grayscale as linear transformations during the first stage of our proposed purification. Once the102

attacked images have been successfully purified, we modify their labels to reflect the attack label.103

Following this, we introduce these purified images as poisoned samples into the training set and train104

a classification model from scratch. This comprehensive procedure is referred to as the enhanced105

attack process.106
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F.2 Purification Speed Settings107

This paper focuses on defending against backdoor attacks during the inference phase using purification108

techniques. To evaluate the purification speed, we conduct experiments using a workstation that109

features an Intel(R) Core(TM) i9-10900X CPU and an NVIDIA RTX3070 GPU with 8GB of memory.110

During our experiments, we measure the classification time, which represents the duration taken by111

the classifier model to perform inference on a single image. Additionally, we measure the purification112

time, which indicates the time required by the purification model to purify a single image.113

For the combination of purification with detection, we utilize the Scale-up method [13] as our chosen114

detection technique. Furthermore, the dataset used for speed evaluation consists of 5% poisoned115

images. Following previous settings [13], we set a batch size of one for the classifier model and116

report the average time based on 640 runs.117

G Related Work118

G.1 Backdoor Attack119

Existing backdoor attack methods involve the injection of poisoned samples into the training process120

of Deep Neural Networks (DNNs). These attacks can target various types of models, including image121

classification models, object detection models [4, 26], contrastive learning models [2], and language122

models [27, 29, 41, 5]. The attackers exploit vulnerabilities by embedding adversary-specified123

trigger patterns into carefully selected benign samples. Backdoor attacks are characterized by their124

stealthiness, as the attacked models behave normally on benign samples, making the hidden triggers125

difficult to detect and purify.126

There are mainly two categories of backdoor attacks for image classification tasks: patch-based127

and non-patch-based attacks. Patch-based attacks are attacks with triggers embedded as patches128

or overlays within the input samples. For example, Souri et al. [30] propose the Sleeper Agent129

attack, which is a sophisticated backdoor attack where an adversary subtly injects hidden triggers130

into an image classification model during training, remaining dormant until specific conditions131

activate malicious behavior. Non-patch-based attacks are attacks where triggers are integrated without132

explicit patching, often relying on specific input sequences or subtle modifications in the feature133

space [40, 16, 14]. For example, Doan et al. [9] introduce Wasserstein backdoor attack, an extension134

of the imperceptible backdoor concept to the latent representation. Their proposed attack manipulates135

inputs with imperceptible noise, matching latent representations to achieve high attack success rates136

while remaining stealthy in both the input and latent spaces.137

G.2 Backdoor Defense138

Existing defense methods for backdoor models can be broadly categorized into two approaches: (1)139

detection-based methods and (2) purification-based methods.140

Detection-based methods focus on identifying the presence of backdoors in trained models. These141

methods typically involve analyzing the model’s behavior and inputs to detect any suspicious patterns142

or triggers that indicate the existence of a backdoor [1]. Various techniques such as anomaly143

detection [10, 18, 38], and statistical analysis [12, 6] have been employed to detect backdoors. The144

goal of detection-based methods is to provide an early warning system to identify and mitigate the145

risks posed by backdoor attacks.146

On the other hand, purification-based methods aim to remove or neutralize the effects of backdoors147

from the model. These methods involve modifying the model or its training process to eliminate the148

influence of the backdoor triggers on the model’s behavior [19]. Some purification approaches focus149

on retraining the model using clean or carefully selected training data to reduce the impact of the150

backdoor [39, 35, 23, 20, 32]. Other methods aim to directly identify and neutralize the backdoor151

triggers within the model’s parameters or hidden representations [33, 3, 37, 36, 28]. The objective of152

purification-based methods is to restore the integrity and reliability of the model by eliminating the153

malicious behavior induced by the backdoor.154
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H Qualitative Results Comparison with Image Restoration Methods155

We conducted a comparative analysis of the purification effect between our proposed method and156

DDNM [34], which is a state-of-the-art image restoration technique. In order to ensure a fair compar-157

ison, we implemented DDNM using their official code and applied identical linear transformations,158

diffusion steps, and schedules to both methods. The qualitative results, which demonstrate the159

effectiveness of our proposed approach, are presented below.160

(a) Attack Image (b) Restored by DDNM (c) Purified by ZIP

(d) Attack Image (e) Restored by DDNM (f) Purified by ZIP

(g) Attack Image (h) Restored by DDNM (i) Purified by ZIP

Figure 9: Comparison of DDNM and ZIP on defending Blended attack.

I Limitations161

Due to our reliance on a pre-trained diffusion model to implement zero-shot purification, the effec-162

tiveness of generating purified images may be weakened when our model is applied to highly specific163

images that fall outside the distribution of pre-processed data. To mitigate this issue, we suggest164

two possible solutions in future work: 1) replacing the current pre-trained diffusion model with a165

14



(a) Attack Image (b) Restored by DDNM (c) Purified by ZIP

(d) Attack Image (e) Restored by DDNM (f) Purified by ZIP

(g) Attack Image (h) Restored by DDNM (i) Purified by ZIP

Figure 10: Comparison of DDNM and ZIP on defending BadNet attack.
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more suitable pre-trained model for such specific images, and 2) collecting a subset of highly specific166

images to perform fine-tuning on the pre-trained model.167
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