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A Supplementary Materials1

A.1 Ablation Study2

Effect of Target Mapping. In this section, we first investigate the significance of the target mapping3

module in our proposed DoRM. To evaluate the significance of the target mapping, we conduct4

an ablation study using the source mapping as a substitute for the target mapping, which remains5

frozen during the entire 10-shot generative domain adaptation training. As shown in Table 1, our6

results indicate a significant deterioration in the FID score without the target mapping, implying7

a considerable drop in the quality and diversity of the generated samples. Furthermore, Figure 18

illustrates that the generative domain adaptation barely occurs during training without the target9

mapping. This is because the target mapping plays a crucial role in capturing the representative10

attributes of the target domain and assisting in the acquisition of the domain shift during the adaptation11

process.12
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Figure 1: Qualitative ablation study of the target mapping. We compare the performance of
our DoRM method, shown in the first row, with a variant of the method where the frozen source
mapping is used as a substitute for the target mapping, depicted in the second row. We evaluate
the performance of both methods on three different target domains: Sketches, FFHQ-Babies, and
FFHQ-Sunglasses.

Table 1: Quantitative ablation study of the target mapping. The evaluation metric is FID (lower is
better). We compare the performance of our DoRM method, shown in the first row, with a variant of
the method where the frozen source mapping is used as a substitute for the target mapping, depicted
in the second row. The source generator is pre-trained on FFHQ[2], and the target domains include
FFHQ-Babies and FFHQ-Sunglasses.

Babies Sunglasses
DoRM 30.31 17.31

DoRM w/o Target Mapping 86.52 74.71

Effect of Re-Modulation Layers. Another crucial component of our proposed DoRM approach13

is the target affine module. To investigate the roles of the different target affines in DoRM, we14
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perform experiments where we drop the target affines in both the low-resolution and high-resolution15

feature maps. Specifically, we conduct 10-shot generative domain adaptation experiments to evaluate16

the Fréchet Inception Distance (FID) of the generated samples. For an image with a resolution of17

256× 256, the low-resolution feature maps include resolutions of 4× 4, 8× 8, 16× 16, and 32× 32.18

As presented in Table 2, our results demonstrate that all target affines are crucial for the performance19

of our DoRM approach and their removal leads to a significant drop in the quality and diversity of the20

generated samples.

Table 2: Quantitative ablation study of the target affine layers. The evaluation metric is FID
(lower is better). We compare the FID score of our proposed DoRM method, shown in the first row,
with two variants: one where the target affines are removed from the low-resolution feature maps,
shown in the second row, and another where the target affines are removed from the high-resolution
feature maps, shown in the third row. We use a source generator pre-trained on FFHQ [2] and evaluate
all three methods on two different target domains: FFHQ-Babies and FFHQ-Sunglasses.

babies sunglasses
DoRM 30.31 17.31

DoRM w/o target affines in low resolution 93.28 92.42
DoRM w/o target affines in high resolution 37.16 20.81

21

Effect of Re-Modulation Weight. The re-modulation weight is a crucial parameter that controls22

the strength of the acquired domain shift in our proposed DoRM approach. A small re-modulation23

weight leads to a lower strength of the domain shift, resulting in more attributes of the source domain24

being preserved during generative domain adaptation. To investigate the impact of the re-modulation25

weight, we conduct 10-shot generative domain adaptation experiments using different re-modulation26

weights. The results are presented in Table 3. Our results demonstrate that different domain gaps have27

different optimal re-modulation weights, indicating that the selection of the re-modulation weight28

should be tailored to the specific target domain.

Table 3: Quantitative ablation study of the re-modulation weight. The evaluation metric is FID
(lower is better). We conduct 10-shot generative domain adaptation experiments using our DoRM
approach with varying re-modulation weights. We use a source generator pre-trained on FFHQ [2]
and evaluate our method on two different target domains: FFHQ-Baby and FFHQ-Sunglasses.

Re-modulation weight α 0.5 0.2 0.05 0.005 0.001
FFHQ-Baby 37.9 36.1 34.0 30.3 32.3

FFHQ-Sunglasses 18.7 17.3 17.9 18.5 19.4

29

Effect of Target domain classifier. We investigate the effect of the target domain classifier on the30

performance of our proposed DoRM approach. Specifically, we experiment with different depths31

(e.g., number of MLP layers) and initialization methods for the target domain classifier in 10-shot32

generative domain adaptation. As presented in Table 4, our results indicate that the two-layer MLP33

target domain classifier achieves the best performance. This is because the one-layer MLP lacks the34

ability to classify the target domain effectively, while the three-layer MLP is prone to overfitting due35

to the limited number of training images.

Table 4: Quantitative ablation study of the target domain classifier. The evaluation metric is FID
(lower is better). We experiment with different depths of the target domain classifier, using various
initialization methods. We use a source generator pre-trained on FFHQ [2] and evaluate our proposed
DoRM approach on 10-shot generative domain adaptation tasks.

FFHQ-Baby FFHQ-Sunglasses
MLP Depth source initial random initial source initial random initial

one layer 38.03 37.15 24.63 22.15
two layers 33.32 30.31 20.40 17.31

three layers — 33.25 — 20.42

36
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A.2 More Synthesis Results in 10-shot GDA37

Qualitative results on 10-shot generative domain adaptation. We present qualitative results of38

our proposed DoRM approach on more target datasets, including face caricatures, face paintings by39

Raphael, face paintings by Amedeo Modigliani, and face paintings by Otto Dix [4]. All training40

images are shown in Figure 2, and the qualitative results are presented in Figure 3. Our results41

demonstrate that our proposed DoRM approach achieves appealing synthesis quality in various target42

domains.43

Results of latent interpolation. We perform latent space interpolation to demonstrate that our44

DoRM is not harmful to the learned latent space. In Figure 4, the first and last columns show45

the generated images with two latent codes after 10-shot generative domain adaptation, while the46

remaining columns show the results obtained by linearly interpolating the two latent codes. Our47

results demonstrate that all intermediate synthesized images have high target-domain consistency and48

high cross-domain consistency. Moreover, the semantics of the generated images, such as gender,49

haircut, and pose, vary gradually throughout the interpolation, indicating that our proposed DoRM50

approach preserves the underlying semantic structure of the learned latent space.51

A.3 Hybrid-domain Generation52

In Figure 6, we present the results of generating hybrid domains using our proposed model. Our53

DoRM has a unique generator structure that is similar to the mechanism of the human brain. This54

structure endows the DoRM with two novel capabilities: memory and domain association. These55

capabilities enable the DoRM to not only retain knowledge from previously learned domains when56

generating images in new domains, but also integrate multiple learned domains and synthesize images57

in hybrid domains that were not encountered during training.58

A.4 Experiments on one-shot Generative Domain Adaptation59

Although our DoRM is mainly for few-shot generative domain adaptation, DoRM is also can be60

employed for one-shot generative domain adaptation. In the one-shot GDA, the training dataset is a61

single image, which is difficult for the backbone of discriminator to extract the main characters of62

the target domain because of the overfitting issue. In this case, we introduce a clip-based local-level63

adaptation loss Llocal from [6] to help to acquire the local-level characters and styles of the target64

domain. Concretely, we extract the intermediate tokens of the adapted image IB synthesized by65

DoRM and the single target image Itar from the k − th layer of CLIP image encoder. And align66

each of adapted token FB with its closest target token from Ftar, where FB = F 1
B , ..., F

n
B and67

Ftar = F 1
tar, ...F

m
tar are the extracted tokens. The clip-based local-level adaptation loss is defined as:68

Llocal = max(
1

n

∑
i

min
j

Ci,j ,
1

m

∑
j

min
i

Ci,j) (1)

where C is calculated as:69

Ci,j = 1− F i
B · F j

tar

|F i
B ||F

j
tar|

(2)

Furthermore, to better identify and maintain the domain-sharing attributes in one-shot generative70

domain adaptation, we also employ the inversion-based selective cross-modal consistency loss Lscc71

from [6]. Specifically, this loss function aims to identify and preserve domain-sharing attributes in72

the W+ space. The underlying assumption is that attributes that are similar in W+ space between73

the source and target domains during adaptation are more likely to be domain-sharing attributes. To74

achieve this, Lscc dynamically analyzes and retains these attributes. First, it inverts the source and75

corresponding target images into W+ latent codes, wA and wB , respectively, using a pre-trained76

inversion model such as pSp pr e4e, for each iteration. Next, it computes the difference ∆w, between77

the centers of a source queue of W+ latent codes, XA and the target queue of W+ latent codes,78

XB , where XA and XB are dynamically updated with wA and wB during training. The loss function79

then encourages wA and wB to be consistent in channels with less difference, thereby facilitating the80

preservation of domain-sharing attributes. The inversion-based selective cross-modal consistency81

loss Lscc is defined as follows:82

Lscc = ||mask(∆w,α) · (wB − wA)||1 (3)

3



where α represents the proportion of preserved attributes, and mask(∆w,α) determines which83

channels to retain. Specifically, let |∆wsαN
| be the αN − th largest element of ∆w. Then, each84

dimension of mask(∆w,α) is calculated as follows:85

mask(∆w,α)i =

{
1 |∆wi| ≤ |∆wsαN

|
0 |∆wi| ≥ |∆wsαN

| (4)

We compare our DoRM++ approach which denotes introducing the two new loss terms into training86

with state-of-the-art one-shot generative domain adaptation (GDA) methods, including JoJoGAN87

[1], Generalized One-shot Domain Adaptation [7], DynaGAN[3] and DiFa [6]. Figure 5 shows88

the comparison results. Our results indicate that JoJoGAN, DynaGAN and Generalized One-shot89

Domain Adaptation fail to achieve GDA when the target image is FFHQ-Baby and FFHQ-Sunglasses,90

and the synthesis quality of DynaGAN is limited. Similarly, DiFa also fails to achieve GDA when the91

target image is FFHQ-Sunglasses, and the synthesis diversity is unsatisfactory when the target image92

is FFHQ-Baby.93

In contrast, our DoRM++ approach achieves one-shot GDA among all the reference images, resulting94

in high-quality and diverse synthesis, while maintaining appealing cross-domain consistency. More-95

over, our DoRM++ generator has memory to realize multiple target domains’ generation, which saves96

a significant amount of storage space. Our DoRM++ generator also has the ability to integrate the97

learned knowledge of multiple target domains to synthesize images in hybrid domains that are unseen98

in the target domains. As shown in Figure 6, the DoRM++ generator can synthesize high-quality99

and diverse images in hybrid domains while maintaining the domain-sharing attributes (e.g, pose,100

identity).101

A.5 Experiments on Other Source Domains102

In addition to the experiments on FFHQ, we conduct other 10-shot generative domain adaptation103

experiments to qualitatively evaluate the effectiveness of our proposed DoRM approach. Specifically,104

we pre-trained a StyleGAN2 on the LSUN-church [5] dataset and adapted the pre-trained GAN to105

generate haunted house images. The results of our experiments are presented in Figure 7.106
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Figure 2: Training images in 10-shot generative domain adaptation experiments.
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Figure 3: 10-shot generative domain Adaptation on FFHQ. We use a source generator pre-trained
on the FFHQ [2] dataset and evaluate our proposed DoRM approach on various target domains,
including FFHQ-Sunglasses, face caricatures, face paintings by Raphael, face paintings by Amedeo
Modigliani, and face paintings by Otto Dix [4]. The training images are shown in Figure 2. Our results
demonstrate that our proposed DoRM approach can maintain cross-domain consistency between the
source domain and different target domains.
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Figure 4: Latent interpolation using the generators adapted to different target domains in 10-shot
generative domain adaptation (the first line is the source images). The first and last columns are the
generated images with two latent codes after 10-shot generative domain adaptation. The remaining
columns are the results by linearly interpolating the two latent codes. According to the figure, all the
semantics (e.g., the gender, the haircut and the pose) vary gradually.
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Figure 5: Qualitative comparison on one-shot GDA. The source domain is FFHQ, and the target
domains include different reference images, as shown in the first row of the figure. We compare
our method with JoJoGAN [1], Generalized One-shot Domain Adaption [7], DynaGAN[3] and
DiFa[6]. Our method not only achieves better synthesis quality and diversity but also maintains
higher cross-domain consistency than other methods.
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Figure 6: One-shot generative domain adaptation and domain association on FFHQ. The source
domain is FFHQ, and the target domains include different reference images, as shown in the first
column of the figure. Once our DoRM++ generator learns to synthesize images in multiple target
domains, it can integrate the knowledge from the learned multiple domains and synthesize images in
hybrid domains which are unseen in the target domains.
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Haunted House Source images

Target images

Figure 7: 10-shot generative domain adaptation on LSUN-Church[5]. The source generator is
pretrained on LSUN-Church[5]. The target domain is haunted house (10 training images are shown on
the left side). The result shows that our method can maintain the cross-domain consistency between
the source domain and the target domain.
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