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Abstract

Distributional reinforcement learning algorithms have attempted to utilize estimated1

uncertainty for exploration, such as optimism in the face of uncertainty. However,2

using the estimated variance for optimistic exploration may cause biased data3

collection and hinder convergence or performance. In this paper, we present a4

novel distributional reinforcement learning that selects actions by randomizing5

risk criterion without losing the risk-neutral objective. We provide a perturbed6

distributional Bellman optimality operator by distorting the risk measure. Also,7

we prove the convergence and optimality of the proposed method with the weaker8

contraction property. Our theoretical results support that the proposed method9

does not fall into biased exploration and is guaranteed to converge to an optimal10

return. Finally, we empirically show that our method outperforms other existing11

distribution-based algorithms in various environments including Atari 55 games.12

1 Introduction13

Figure 1: Illustrative example of why a biased
risk criterion (naïve optimism) can degrade per-
formance. Suppose two actions have similar ex-
pected returns, but different variances (intrinsic
uncertainty). (Left) If an agent does not specify
the risk criterion at the moment, the probability of
selecting each action should be similar. (Right)
As OFU principle encourages to decide uncertain
behaviors, the empirical variance from quantiles
was used as an estimate of uncertainty. [17, 19, 21].
However, optimistic decision based on empirical
variance inevitably leads a risk-seeking behavior,
which causes biased action selection.

Distributional reinforcement learning (DistRL)14

learns the stochasticity of returns in the rein-15

forcement learning environments and has shown16

remarkable performance in numerous bench-17

mark tasks. DistRL agents model the approxi-18

mated distribution of returns, where the mean19

value implies the conventional Q-value [1, 4, 11]20

and provides more statistical information (e.g.,21

mode, median, variance) for control. Precisely,22

DistRL aims to capture intrinsic (aleatoric) un-23

certainty which is an inherent and irreducible24

randomness in the environment. Such learned25

uncertainty gives rise to the notion of risk-26

sensitivity, and several distributional reinforce-27

ment learning algorithms distort the learned dis-28

tribution to create a risk-averse or risk-seeking29

decision making [6, 10].30

Despite the richness of risk-sensitive informa-31

tion from return distribution, only a few DistRL32

methods [9, 19, 22, 31, 38] have tried to employ its benefits for exploration strategies which is essen-33

tial in deep RL to find an optimal behavior within a few trials. The main reason is that the exploration34

strategies so far is based on parametric (epistemic) uncertainty which arise from insufficient or35

inaccurate data. In particular, Optimism in the face of uncertainty (OFU) is one of the fundamental36
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Figure 2: An illustrative example of proposed algorithm (PQR). Each distribution represents the
empirical PDF of return. PQR benefits from excluding inferior actions and promoting unbiased
selection with regards to high intrinsic uncertainty through randomized risk criterion.

exploration principles that employs parametric uncertainty to promote exploring less understood37

behaviors and to construct confidence set. In bandit or tabular MDP settings, OFU-based algorithms38

select an action with the highest upper-confidence bound (UCB) of parametric uncertainty which can39

be considered as the optimistic decision at the moment [3, 8].40

However, in deep RL, it is hard to trivially estimate the parametric uncertainty accurately due to41

the black-box nature of neural networks and high-dimensionality of state-action space. Without42

further computational task, the estimated variance from distribution is extracted as a mixture of two43

types of uncertainty, making it difficult to decompose either component. Although several studies try44

to develop the OFU approach without explicitly estimating parametric uncertainty, we found that45

the side effect exists as the optimism also forces the agent to chase the intrinsic uncertainty (risk)46

simultaneously due to the entanglement of two distinct uncertainties. For example, DLTV [19] was47

proposed as a distribution-based OFU exploration that decays bonus rate to suppress the effect of48

intrinsic uncertainty, which unintentionally induces a risk-seeking policy. While DLTV is the first49

attempt to overcome the issue by taking advantage of distributions based on OFU criterion, keeping50

optimism itself without filtering intrinsic uncertainty still causes biased exploration. Analogously, it51

implies that relying on a specific risk criteria causes a one-sided tendency on risk which may degrade52

performance.53

In this paper, we introduce Perturbed Distributional Bellman Operator (PDBOO) to address the54

issue of biased exploration caused by a one-sided tendency on risk in action selection. We define the55

distributional perturbation on return distribution to re-evaluate the estimate of return by distorting the56

learned distribution with perturbation weight. To facilitate deep RL algortihm, we present Perturbed57

Quantile Regression (PQR) algorithm and test in Atari 55 games comparing with other distributional58

RL algorithms that have been verified for reproducibility by official platforms [2, 25].59

In summary, our contributions are as follows.60

• A randomized approach called perturbed quantile regression (PQR) is proposed without61

sacrificing the risk-neutral optimality and improves over naïve optimistic strategies.62

• A sufficient condition for convergence of the proposed Bellman operator is provided without63

satisfying the conventional contraction property.64

2 Backgrounds & Related works65

2.1 Distributional RL66

We consider a Markov decision process (MDP) which is defined as a tuple (S,A, P,R, γ) where S is67

a finite state space, A is a finite action space, P : S ×A× S → [0, 1] is the transition probability, R68

is the random variable of rewards in [−Rmax, Rmax], and γ ∈ [0, 1) is the discount factor. We define a69

stochastic policy π(·|s) which is a conditional distribution over A given state s. For a fixed policy π,70

we denote Zπ(s, a) as a random variable of return distribution of state-action pair (s, a) following71

the policy π. We attain Zπ(s, a) =
∑∞

t=0 γ
tR(St, At), where St+1 ∼ P (·|St, At), At ∼ π(·|St)72

and S0 = s, A0 = a. Then, we define an action-value function as Qπ(s, a) = E[Zπ(s, a)] in73

[−Vmax, Vmax] where Vmax = Rmax/(1 − γ). For regularity, we further notice that the space of74
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action-value distributions Z has the first moment bounded by Vmax:75

Z =
{
Z : S ×A →P(R)

∣∣ E[|Z(s, a)|] ≤ Vmax,∀(s, a)
}
.

In distributional RL, the return distribution for the fixed π can be computed via dynamic programming76

with the distributional Bellman operator defined as,77

τ πZ(s, a)
D
= R(s, a) + γZ(S′, A′), S′ ∼ P (·|s, a), A′ ∼ π(·|S′)

where D
= denotes that both random variables share the same probability distribution. We can compute78

the optimal return distribution by using the distributional Bellman optimality operator defined as,79

τZ(s, a)
D
= R(s, a) + γZ(S′, a∗), S′ ∼ P (·|s, a), a∗ = argmax

a′
EZ [Z(S′, a′)].

Bellemare et al. [1] have shown that τ π is a contraction in a maximal form of the Wasserstein80

metric but τ is not a contraction in any metric. Combining with the expectation operator, Eτ is a81

contraction so that we can guarantee that the expectation of Z converges to the optimal state-action82

value. Another notable difference is that the convergence of a return distribution is not generally83

guaranteed to be unique, unless there is a total ordering ≺ on the set of greedy policies.84

2.2 Exploration on Distributional RL85

To combine with deep RL, a parametric distribution Zθ is used to learn a return distribution by using86

τ . Dabney et al. [11] have employed a quantile regression to approximate the full distribution by87

letting Zθ(s, a) =
1
N

∑N
i=1 δθi(s,a) where θ represents the locations of a mixture of N Dirac delta88

functions. Each θi represents the value where the cumulative probability is τi = i
N . By using89

the quantile representation with the distributional Bellman optimality operator, the problem can be90

formulated as a minimization problem as,91

θ = argmin
θ′

D (Zθ′(st, at), τ Zθ−(st, at)) = argmin
θ′

N∑
i,j=1

ρκτ̂i(rt + γθ−j (st+1, a
′)− θ′i(st, at))

N

where (st, at, rt, st+1) is a given transition pair, τ̂i =
τi−1+τi

2 , a′ := argmaxa′ EZ [Zθ(st+1, a
′)],92

ρκτ̂i(x) := |τ̂i−δ{x<0}|Lκ(x), and Lκ(x) := x2/2 for |x| ≤ κ and Lκ(x) := κ(|x|− 1
2κ), otherwise.93

Based on the quantile regression, Dabney et al. [11] have proposed a quantile regression deep Q94

network (QR-DQN) that shows better empirical performance than the categorical approach [1], since95

the quantile regression does not restrict the bounds for return.96

As deep RL typically did, QR-DQN adjusts ϵ-greedy schedule, which selects the greedy action with97

probability 1− ϵ and otherwise selects random available actions uniformly. The majority of QR-DQN98

variants [10, 34] rely on the same exploration method. However, such approaches do not put aside99

inferior actions from the selection list and thus suffers from a loss [24]. Hence, designing a schedule100

to select a statistically plausible action is crucial for efficient exploration.101

In recent studies, Mavrin et al. [19] modifies the criterion of action selection for efficient exploration102

based on optimism in the face of uncertainty. Using left truncated variance as a bonus term and103

decaying ratio ct to suppress the intrinsic uncertainty, DLTV was proposed as an uncertainty-based104

exploration in DistRL without using ϵ-greedy schedule. The criterion of DLTV is described as:105

a∗ = argmax
a′

(
EP [Z(s′, a′)] + ct

√
σ2
+(s

′, a′)

)
, ct = c

√
log t

t
, σ2

+ =
1

2N

N∑
i=N

2

(θN
2
− θi)

2,

where θi’s are the values of quantile level τi.106

2.3 Risk in Distributional RL107

Instead of an expected value, risk-sensitive RL is to maximize a pre-defined risk measure such as108

Mean-Variance [37], Value-at-Risk (VaR) [7], or Conditional Value-at-Risk (CVaR) [26, 27] and109

results in different classes of optimal policy. Especially, Dabney et al. [10] interprets risk measures110
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as the expected utility function of the return, i.e., EZ [U(Z(s, a))]. If the utility function U is linear,111

the policy obtained under such risk measure is called risk-neutral. If U is concave or convex, the112

resulting policy is termed as risk-averse or risk-seeking, respectively. In general, a distortion risk113

measure is a generalized expression of risk measure which is generated from the distortion function.114

Definition 2.1. Let h : [0, 1] → [0, 1] be a distortion function such that h(0) = 0, h(1) = 1 and115

non-decreasing. Given a probability space (Ω,F ,P) and a random variable Z : Ω→ R, a distortion116

risk measure ρh corresponding to a distortion function h is defined by:117

ρh(Z) := Eh(P)[Z] =

∫ ∞

−∞
z
∂

∂z
(h ◦ FZ)(z)dz,

where FZ is the cumulative distribution function of Z.118

In fact, non-decreasing property of h makes it possible to distort the distribution of Z while satisfying119

the fundamental property of CDF. Note that the concavity or the convexity of distortion function also120

implies risk-averse or seeking behavior, respectively. Dhaene et al. [12] showed that any distorted121

expectation can be expressed as weighted averages of quantiles. In other words, generating a distortion122

risk measure is equivalent to choosing a reweighting distribution.123

Fortunately, DistRL has a suitable configuration for risk-sensitive decision making by using distortion124

risk measure. Chow et al. [6] and Stanko and Macek [30] considered risk-sensitive RL with a CVaR125

objective for robust decision making. Dabney et al. [10] expanded the class of policies on arbitrary126

distortion risk measures and investigated the effects of a distinct distortion risk measures by changing127

the sampling distribution for quantile targets τ . Zhang and Yao [36] have suggested QUOTA which128

derives different policies corresponding to different risk levels and consider them as options.129

3 Perturbation in Distributional RL130

3.1 Perturbed Distributional Bellman Optimality Operator131

To choose statistically plausible actions which may be maximal for certain risk criterion, we will132

generate a distortion risk measure involved in a pre-defined constraint set called an ambiguity set.133

The ambiguity set, originated from distributionally robust optimization (DRO) literature, is a family134

of distribution characterized by a certain statistical distance such as ϕ-divergence or Wasserstein135

distance [13, 28]. In this paper, we will examine the ambiguity set defined by the discrepancy136

between distortion risk measure and expectation. We say the sampled reweighting distribution ξ as137

(distributional) perturbation and define it as follows:138

Definition 3.1. (Perturbation, Perturbation Gap, and Ambiguity Set) Given a proba-139

bility space (Ω,F ,P), let X : Ω → R be a random variable and Ξ =140 {
ξ : 0 ≤ ξ(w) <∞,

∫
w∈Ω

ξ(w)P(dw) = 1
}

be a set of probability density functions. For a given141

constraint set U ⊂ Ξ, we say ξ ∈ U as a (distributional) perturbation from U and denote the142

ξ−weighted expectation of X as follows:143

Eξ[X] :=

∫
w∈Ω

X(w)ξ(w)P(dw),

which can be interpreted as the expectation of X under perturbed probability distribution ξP. We144

further define d(X; ξ) = |E[X]− Eξ[X]| as perturbation gap of X with respect to ξ. Then, for a145

given constant ∆ ≥ 0, the ambiguity set with the bound ∆ is defined as146

U∆(X) =
{
ξ ∈ Ξ : d(X; ξ) ≤ ∆

}
.

For brevity, we omit the input w from a random variable unless confusing. Since ξ is a probability147

density function, Eξ[X] is an induced risk measure with respect to a reference measure P. Intuitively,148

ξ(w) can be viewed as a distortion to generate a different probability measure and vary the risk149

tendency. The aspect of using distortion risk measures looks similar to IQN [10]. However, instead of150

changing the sampling distribution of quantile level τ implicitly, we reweight each quantile from the151

ambiguity set. This allows us to control the maximum allowable distortion with bound ∆, whereas152

the risk measure in IQN does not change throughout learning. In Section 3.3, we suggest a practical153

method to construct the ambiguity set.154
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Now, we characterize perturbed distributional Bellman optimality operator (PDBOO) τ ξ for a fixed155

perturbation ξ ∈ U∆(Z) written as below:156

τ ξZ(s, a)
D
= R(s, a) + γZ(S′, a∗(ξ)), S′ ∼ P (·|s, a) , a∗(ξ) = argmax

a′
Eξ,P [Z(s′, a′)].

Notice that ξ ≡ 1 corresponds to a base expectation, i.e., Eξ,P = EP , which recovers the standard157

distributional Bellman optimality operator τ .158

If we consider the time-varying bound of ambiguity set, scheduling ∆t is a key ingredient to determine159

whether PDBOO will efficiently explore or converge. Intuitively, if an agent continues to sample160

the distortion risk measure from a fixed ambiguity set with a constant ∆, there is a possibility161

of selecting sub-optimal actions after sufficient exploration, which may not guarantee eventual162

convergence. Hence, scheduling a constraint of ambiguity set properly at each action selection is163

crucial to guarantee convergence.164

Based on the quantile model Zθ, our work can be summarized into two parts. First, we aim to165

minimize the expected discrepancy between Zθ and τ ξZθ− where ξ is sampled from ambiguity166

set U∆. To clarify notation, we write Eξ[·] as a ξ−weighted expectation and Eξ∼P(U∆)[·] as an167

expectation with respect to ξ which is sampled from U∆. Then, our goal is to minimize the perturbed168

distributional Bellman objective with sampling procedure P:169

min
θ′

Eξt∼P(U∆t )
[D(Zθ′(s, a), τ ξtZθ−(s, a))] (1)

where we use the Huber quantile loss as a discrepancy on Zθ′ and τ ξZθ− at timestep t. In typical170

risk-sensitive DRL or distributionally robust RL, the Bellman optimality equation is reformulated171

for a pre-defined risk measure [6, 29, 35]. In contrast, PDBOO has a significant distinction in that it172

performs dynamic programming that adheres to the risk-neutral optimal policy while randomizing173

the risk criterion at every step. By using min-expectation instead of min-max operator, we suggest174

unbiased exploration that can avoid leading to overly pessimistic policies. Second, considering a175

sequence ξt which converges to 1 in probability, we derive a sufficient condition of ∆t that the176

expectation of any composition of the operators Eτ ξn:1
:= Eτ ξnτ ξn−1 · · ·τ ξ1 has the same unique177

fixed point as the standard. These results are remarkable that we can apply the diverse variations of178

distributional Bellman operators for learning.179

3.2 Convergence of the perturbed distributional Bellman optimality operator180

Unlike conventional convergence proofs, PDBOO is time-varying and not a contraction, so it covers a181

wider class of Bellman operators than before. Since the infinite composition of time-varying Bellman182

operators does not necessarily converge or have the same unique fixed point, we provide the sufficient183

condition in this section. We denote the iteration as Z(n+1) := τ ξn+1
Z(n), Z(0) = Z for each184

timestep n > 0 , and the intersection of ambiguity set as Ū∆n
(Z(n−1)) :=

⋂
s,a U∆n

(
Z(n−1)(s, a)

)
.185

Assumption 3.2. Suppose that
∑∞

n=1 ∆n <∞ and ξn is uniformly bounded by Bξ.186

Theorem 3.3. (Weaker Contraction Property) Let ξn be sampled from Ū∆n(Z
(n−1)) for every187

iteration. If Assumption 3.2 holds, then the expectation of any composition of operators Eτ ξn:1
188

converges, i.e., Eτ ξn:1
[Z]→ E[Z∗]. Moreover, the following bound holds,189

sup
s,a

∣∣∣E[Z(n)(s, a)]− E[Z∗(s, a)]
∣∣∣ ≤ ∞∑

k=n

(
2γk−1Vmax + 2

k∑
i=1

γi(∆k+2−i +∆k+1−i)

)
.

Practically, satisfying Assumption 3.2 is not strict to characterize the landscape of scheduling.190

Theorem 3.3 states that even without satisfying γ-contraction property, we can show that E[Z∗] is191

the fixed point for the operator Eτ ξn:1 . However, E[Z∗] is not yet guaranteed to be “unique” fixed192

point for any Z ∈ Z . Nevertheless, we can show that E[Z∗] is, in fact, the solution of the standard193

Bellman optimality equation, which is already known to have a unique solution.194

Theorem 3.4. If Assumption 3.2 holds, E[Z∗] is the unique fixed point of Bellman optimality equation195

for any Z ∈ Z .196

As a result, PDBOO generally achieves the unique fixed point of the standard Bellman operator.197

Unlike previous distribution-based or risk-sensitive approaches, PDBOO has the theoretical compati-198

bility to obtain a risk-neutral optimal policy even if the risk measure is randomly sampled during199

training procedure. For proof, see Appendix A.200
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Algorithm 1 Perturbed QR-DQN (PQR)
Input: (s, a, r, s′), γ ∈ [0, 1), timestep t > 0, ϵ > 0, concentration β

Initialize ∆0 > 0.
∆t ← ∆0t

−(1+ϵ).
ξ ← max

(
1N +∆t(Nx− 1N ), 0

)
where x ∼ Dir(β) // Sample ξ ∼ Ū∆t

(Z(t))

ξ ← Nξ/
∑

ξi
a∗ ← argmaxa′ Eξ[Z(s′, a′)] // Select greedy action with distorted expectation
τ θj ← r + γθj(s

′, a∗), ∀j
t← t+ 1

Output:
∑N

i=1 Ej [ρ
κ
τ̂i
(τ θj − θi(s, a))]

3.3 Practical Algorithm with Distributional Perturbation201

In this section, we propose a perturbed quantile regression (PQR) that is a practical algorithm for202

distributional reinforcement learning. Our quantile model is updated by minimizing the objective203

function (1) induced by PDBOO. Since we employ a quantile model, sampling a reweight function ξ204

can be reduced into sampling an N -dimensional weight vector ξ := [ξ1, · · · , ξN ] where
∑N

i=1 ξi =205

N and ξi ≥ 0 for all i ∈ {1, · · · , N}. Based on the QR-DQN setup, note that the condition206 ∫
w∈Ω

ξ(w)P(dw) = 1 turns into
∑N

i=1
1
N ξi = 1, since the quantile level is set as τi = i

N .207

A key issue is how to construct an ambiguity set with bound ∆t and then sample ξ. A natural class208

of distribution for practical use is the symmetric Dirichlet distribution with concentration β, which209

represents distribution over distributions. (i.e. x ∼ Dir(β).) We sample a random vector, x ∼ Dir(β),210

and define the reweight distribution as ξ := 1N +α(Nx− 1N ). From the construction of ξ, we have211

1− α ≤ ξi ≤ 1 + α(N − 1) for all i and it follows that |1− ξi| ≤ α(N − 1). By controlling α, we212

can bound the deviation of ξi from 1 and bound the perturbation gap as213

sup
s,a
|E[Z(s, a)]− Eξ[Z(s, a)]| = sup

s,a

∣∣∣∣∫
w∈Ω

Z(w; s, a)(1− ξ(w))P(dw)
∣∣∣∣

≤ sup
w∈Ω
|1− ξ(w)| sup

s,a
E[|Z(s, a)|] ≤ sup

w∈Ω
|1− ξ(w)|Vmax ≤ α(N − 1)Vmax.

Hence, letting α ≤ ∆
(N−1)Vmax

is sufficient to obtain d(Z; ξ) ≤ ∆ in the quantile setting. We set214

β = 0.05 · 1N to generate a constructive perturbation ξn which gap is close to the bound ∆n. For215

Assumption 3.2, our default schedule is set as ∆t = ∆0t
−(1+ϵ) where ϵ = 0.001.216

4 Experiments217

Our experiments aim to investigate the following questions.218

(1) Does randomizing risk criterion successfully escape from the biased exploration in stochastic219

environments?220

(2) Can PQR accurately estimate a return distribution?221

(3) Can a perturbation-based exploration perform sucessfully as a behavior policy for the full Atari222

benckmark?223

4.1 Learning on Stochastic Environments with High Intrinsic Uncertainty224

For intuitive comparison between optimism and randomized criterion, we design p-DLTV, a per-225

turbed variant of DLTV, where coefficient ct is multiplied by a normal distribution N (0, 12). Every226

experimental setup, pseudocodes, and implementation details can be found in Appendix C.227

N-Chain with high intrinsic uncertainty. We extend N-Chain environment [23] with stochastic228

reward to evaluate action selection methods. A schematic diagram of the stochastic N-Chain environ-229

ment is depicted in Figure 3. The reward is only given in the leftmost and rightmost states and the230
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𝑠𝑠0 𝑠𝑠1 𝑠𝑠2 𝑠𝑠3 𝑠𝑠4

Start
:𝑎𝑎0
: 𝑎𝑎1

no-op :𝑎𝑎2~𝑎𝑎6
:𝑎𝑎∗(optimal) 

Figure 3: Illustration of the N-Chain environment [23] with high uncertainty starting from state s2.
To emphasize the intrinsic uncertainty, the reward of state s4 was set as a mixture model composed
of two Gaussian distributions. Blue arrows indicate the risk-neutral optimal policy in this MDPs.

Figure 4: Empirical return distribution plot in N-Chain environment. Each dot represents an indicator
for choosing action. Since QR-DQN does not depend on other criterion, the dots are omitted.

game terminates when one of the reward states is reached. We set the leftmost reward as N (10, 0.12)231

and the rightmost reward as 1
2N (5, 0.12) + 1

2N (13, 0.12) which has a lower mean as 9 but higher232

variance. The agent always starts from the middle state s2 and should move toward the leftmost state233

s0 to achieve the greatest expected return. For each state, the agent can take one of six available234

actions: left, right, and 4 no-op actions. The optimal policy with respect to mean is to move left twice235

from the start. We set the discount factor γ = 0.9 and the coefficient c = 50.236

Despite the simple configuration, the possibility to obtain higher reward in suboptimal state than the237

optimal state makes it difficult for an agent to determine which policy is optimal until it experiences238

enough to discern the characteristics of each distribution. Thus, the goal of our toy experiment is to239

evaluate how rapidly each algorithm could find a risk-neutral optimal policy. The results of varying240

the size of variance are reported in Appendix D.1.241
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QRDQN
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PQR

Figure 5: Total count of perform-
ing true optimal action. The or-
acle (dashed line) is to perform
the optimal action from start to
end.

Analysis of Experimental Results. As we design the mean242

of each return is intended to be similar, examining the learning243

behavior of the empirical return distribution for each algorithm244

can provide fruitful insights. Figure 4 shows the empirical PDF245

of return distribution by using Gaussian kernel density estimation.246

In Figure 4(b), DLTV fails to estimate the true optimal return247

distribution. While the return of (s2, right) (red line) is correctly248

estimated toward the ground truth, (s2, left) (blue line) does not249

capture the shape and mean due to the lack of experience. At 20K250

timestep, the agent begins to see other actions, but the monotonic251

scheduling already makes the decision like exploitation. Hence,252

decaying schedule of optimism is not a way to solve the underlying253

problem. Notably, p-DLTV made a much better estimate than254

DLTV only by changing from optimism to a randomized scheme.255

In comparison, PQR estimates the ground truth much better than256

other baselines with much closer mean and standard-deviation.257

Figure 5 shows the number of timesteps when the optimal policy was actually performed to see the258

interference of biased criterion. Since the optimal policy consists of the same index a1, we plot the259

total count of performing the optimal action with 10 seeds.260
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From the slope of each line, it is observed that DLTV selects the suboptimal action even if the optimal261

policy was initially performed. In contrast, p-DLTV avoids getting stuck by randomizing criterion262

and eventually finds the true optimal policy. The experimental results demonstrate that randomizing263

the criterion is a simple but effective way for exploration on training process.264

Figure 6: 2-Wasserstein distance between the empirical return distribution and the ground truth
N (8.1, 0.0812). We use QR-DQN with a fixed setting of ϵ-greedy as a reference baseline, because
the hyperparameter of ϵ-greedy is not related to the scale of Q-values.

Hyperparameter Sensitivity. In Figure 6, we compute the 2-Wasserstein distance from the ground265

truth return distribution N (10γ2, (0.1γ2)2). Except for QR-DQN , each initial hyperparameter266

{c,∆0} was implemented with grid search on [1, 5, 10, 50, 100, 500, 1000, 5000] in 5 different seeds.267

As the hyperparameter decreases, each agent is likely to behave as exploitation. One interesting268

aspect is that, while it may be difficult for DLTV and p-DLTV to balance the scale between the return269

and bonus term, PQR shows robust performance to the initial hyperparameter. This is because the270

distorted return is bounded by the support of return distribution, so that PQR implicitly tunes the271

scale of exploration. In practice, we set ∆0 to be sufficiently large. See Table2 in Appendix C.1.272

4.2 Full Atari Results273

Table 1: Mean and median of best scores across 55 Atari
games, measured as percentages of human baseline. Refer-
ence values are from Quan and Ostrovski [25] and Castro
et al. [2].

50M Performance Mean Median > human > DQN
DQN-zoo (no-ops) 314% 55% 18 0
DQN-dopamine (sticky) 401% 51% 15 0

QR-DQN-zoo (no-ops) 559% 118% 29 47
QR-DQN-dopamine (sticky) 562% 93% 27 46

IQN-zoo (no-ops) 902% 131% 21 50
IQN-dopamine (sticky) 940% 124% 32 51

RAINBOW-zoo (no-ops) 1160% 154% 37 52
RAINBOW-dopamine (sticky) 965% 123% 35 53
PQR-zoo (no-ops) 1121% 124% 33 53
PQR-dopamine (sticky) 962% 123% 35 51

We compare our algorithm to various274

DistRL baselines, which have demon-275

strated good performance on RL bench-276

marks. In Table 1, we evaluated 55 Atari277

results, averaging over 5 different seeds278

at 50M frames. We compared with the279

published score of QR-DQN [11], IQN280

[10], and Rainbow [14] via the report of281

DQN-Zoo [25] and Dopamine [2] bench-282

mark for reliability. This comparison283

is particularly noteworthy since our pro-284

posed method only applys perturbation-285

based exploration strategy and outper-286

forms advanced variants of QR-DQN. 1287

No-ops Protocol. First, we follow the evaluation protocol of [20] on full set of Atari games, each of288

which contained intrinsic uncertainty in different ways. Even if it is well known that no-ops protocol289

do not have ‘enough’ stochasticity, intrinsic uncertainty is still prevalent in various manners. While290

PQR cannot enjoy the environmental stochasticity by the deterministic dynamics, PQR achieved291

562% performance gain in the mean of human-normalized score over QR-DQN, which is comparable292

results to Rainbow. From the raw scores of 55 games, PQR wins 39 games against QR-DQN and 34293

games against IQN.294

Sticky actions protocol. To prevent the deterministic dynamics of Atari games, Machado et al. [18]295

proposes injecting stochasticity scheme, called sticky actions, by forcing to repeat the previous action296

1In Dopamine framework, IQN was implemented with n−step updates with n = 3, which improves
performance.
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Figure 7: Evaluation curves on 8 Atari games with 3 random seeds for 50 million frames following
sticky actions protocol [18]. Reference values are from Castro et al. [2].

with probability p = 0.25. Sticky actions protocol prevents agents from relying on memorization297

and allows robust evaluation. In Figure 7, PQR shows steeper learning curves, even without any298

support of advanced schemes, such as n-step updates for Rainbow or IQN. In particular, PQR299

dramatically improves over IQN and Rainbow in ASSAULT, BATTLEZONE, BEAMRIDER, BERZERK300

and BOWLING. In Table 1, PQR shows robust median score against the injected stochasticity.301

It should be noted that IQN benefits from the generalized form of distributional outputs, which302

reduces the approximation error from the number of quantiles output. Compare to IQN, PQR does303

not rely on prior distortion risk measure such as CVaR [5], Wang [33] or CPW [32], but instead304

randomly samples the risk measure and evaluates it with a risk-neutral criterion. Another notable305

difference is that PQR shows the better or competitive performance solely through its exploration306

strategies, compared to ϵ-greedy baselines, such as QR-DQN, IQN, and especially Rainbow. Note307

that Rainbow enjoys a combination of several orthogonal improvements such as double Q-learning,308

prioritized replay, dueling networks, and n-step updates.309

5 Related Works310

Randomized or perturbation-based exploration has been focused due to its strong empirical perfor-311

mance and simplicity. In tabular RL, Osband et al. [24] proposed randomized least-squares value312

iteration (RLSVI) using random perturbations for statistically and computationally efficient explo-313

ration. Ishfaq et al. [15] leveraged the idea into optimistic reward sampling by perturbing rewards and314

regularizers. However, existing perturbation-based methods requires tuning of the hyperparameter315

for the variance of injected Gaussian noise and depend on well-crafted feature vectors in advance.316

On the other hand, PDBOO does not rely on the scale of rewards or uncertainties due to the built-in317

scaling mechanism of risk measures. Additionally, we successfully extend PQR to deep RL scenarios318

in distributional lens, where feature vectors are not provided, but learned during training.319

6 Conclusions320

In this paper, we proposed a general framework of perturbation in distributional RL which is based321

on the characteristics of a return distribution. Without resorting to a pre-defined risk criterion,322

we revealed and resolved the underlying problem where one-sided tendency on risk can lead to323

biased action selection under the stochastic environment. To our best knowledge, this paper is the324

first attempt to integrate risk-sensitivity and exploration by using time-varying Bellman objective325

with theoretical analysis. In order to validate the effectiveness of PQR, we evaluate on various326

environments including 55 Atari games with several distributional RL baselines. Without separating327

the two uncertainties, the results show that perturbing the risk criterion is an effective approach to328

resolve the biased exploration. We believe that PQR can be combined with other distributional RL or329

risk-sensitive algorithms as a perturbation-based exploration method without sacrificing their original330

objectives.331
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A Proof428

A.1 Technical Lemma429

Before proving our theoretical results, we present two inequalities for supremum to clear the descrip-430

tion.431

1. sup
x∈X
|f(x) + g(x)| ≤ sup

x∈X
|f(x)|+ sup

x∈X
|g(x)|432

2.
∣∣∣sup
x∈X

f(x)− sup
x′∈X

g(x′)
∣∣∣ ≤ sup

x,x′∈X
|f(x)− g(x′)|433

Proof of 1. Since |f(x) + g(x)| ≤ |f(x)|+ |g(x)| holds for all x ∈ X ,434

sup
x∈X
|f(x) + g(x)| ≤ sup

x∈X
(|f(x)|+ |g(x)|)

≤ sup
x∈X
|f(x)|+ sup

x∈X
|g(x)|

■435

Proof of 2. Since
∣∣∣∥a∥ − ∥b∥∣∣∣ ≤ ∥a− b∥ for any norm ∥ · ∥ and for a large enough M ,436

sup
x,x′∈X

|f(x)− g(x′)| ≥ sup
x∈X
|f(x)− g(x)|

= sup
x∈X
|(f(x) +M)− (g(x) +M)|

≥
∣∣∣ sup
x∈X

(f(x) +M)− sup
x∈X

(g(x) +M)
∣∣∣

=
∣∣∣ sup
x∈X

f(x)− sup
x′∈X

g(x′)
∣∣∣

■437

A.2 Proof of Theorem A.3438

Theorem A.3. If ξt converges to 1 in probability on Ω, then Eτ ξt converges to Eτ uniformly on Z439

for all s ∈ S and a ∈ A.440

Proof. Recall that Z =
{
Z : S ×A →P(R)

∣∣ E[|Z(s, a)|] ≤ Vmax,∀(s, a)
}

. Then for any Z ∈ Z441

and ξ ∈ Ξ,442

E[|τ ξZ|] ≤ Rmax + γ
Rmax

1− γ
=

Rmax

1− γ
= Vmax.

which implies PDBOO is closed in Z , i.e. τ ξZ ∈ Z for all ξ ∈ Ξ. Hence, for any sequence ξt,443

Z(n) = τ ξn:1
Z ∈ Z for any n ≥ 0.444

Since ξt converges to 1 in probability on Ω, there exists T such that for any ϵ, δ > 0 and t > T ,445

P(Ωt) := P
({

w ∈ Ω : sup
w∈Ω
|ξt(w)− 1| ≥ ϵ

})
≤ δ

For any Z ∈ Z , s ∈ S, a ∈ A, and t > T , by using Hölder’s inequality,446

sup
Z∈Z

sup
s,a
|Eξt [Z(s, a)]− E[Z(s, a)]| = sup

Z∈Z
sup
s,a

∣∣∣∣∫
w∈Ω

(1− ξt(w))Z(s, a, w)P(dw)
∣∣∣∣

= sup
Z∈Z

sup
s,a

∣∣∣ ∫
w∈Ωt

(1− ξt(w))Z(s, a, w)P(dw) +
∫
w∈Ω\Ωt

(1− ξt(w))Z(s, a, w)P(dw)
∣∣∣

≤ P(Ωt) sup
w∈Ωt

|ξt(w)− 1| Vmax + P(Ω\Ωt) sup
w∈Ω\Ωt

|ξt(w)− 1| Vmax

≤ δ|Bξ − 1|Vmax + ϵVmax
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which implies that Eξt converges to E uniformly on Z for all s, a.447

By using A.1, we can get the desired result.448

sup
Z∈Z

sup
s,a
|E[τ ξtZ(s, a)]− E[τZ(s, a)]|

≤ sup
Z∈Z

sup
s,a
|E[τ ξtZ(s, a)]− Eξt [τ ξtZ(s, a)]|+ sup

Z∈Z
sup
s,a
|Eξt [τ ξtZ(s, a)]− E[τZ(s, a)]|

≤ (δ|Bξ − 1|Vmax + ϵVmax) + γ sup
Z∈Z

sup
s,a

Es′

[∣∣∣sup
a′

Eξt [Z(s′, a′)]− sup
a′′

E[Z(s′, a′′)]
∣∣∣]

≤ (δ|Bξ − 1|Vmax + ϵVmax) + γ sup
Z∈Z

sup
s′,a′

|Eξt [Z(s′, a′)]− E[Z(s′, a′)]|

≤ (δ|Bξ − 1|Vmax + ϵVmax) + γ(δ|Bξ − 1|Vmax + ϵVmax)

= (1 + γ)(δ|Bξ − 1|Vmax + ϵVmax).

■449

A.3 Proof of Theorem 3.3450

Theorem 3.3. Let ξn be sampled from Ū∆n(Z
(n−1)) for every iteration. If Assumption 3.2 holds,451

then the expectation of any composition of operators Eτ ξn:1 converges, i.e. Eτ ξn:1 [Z]→ E[Z∗]452

Moreover, the following bound holds,453

sup
s,a

∣∣∣E[Z(n)(s, a)]− E[Z∗(s, a)]
∣∣∣ ≤ ∞∑

k=n

(
2γk−1Vmax + 2

k∑
i=1

γi(∆k+2−i +∆k+1−i)

)
.

Proof. We denote a∗i (ξn) = argmax
a′

Eξn [Z
(n−1)
i (s′, a′)] as the greedy action of Z

(n−1)
i under454

perturbation ξn. Also, we denote sup
s,a
| · | which is the supremum norm over s and a as ∥ · ∥sa.455

Before we start from the term
∥∥E[Z(k+1)]− E[Z(k)]

∥∥
sa

, for a given (s, a),456 ∣∣∣E[Z(k+1)(s, a)]− E[Z(k)(s, a)]
∣∣∣

≤ γ sup
s′

∣∣∣E[Z(k)(s′, a∗(ξk+1))]− E[Z(k−1)(s′, a∗(ξk))]
∣∣∣

≤ γ sup
s′

( ∣∣∣E[Z(k)(s′, a∗(ξk+1)]−max
a′

E[Z(k)(s′, a′)]
∣∣∣+ ∣∣∣max

a′
E[Z(k)(s′, a′)]−max

a′
E[Z(k−1)(s′, a′)]

∣∣∣
+
∣∣∣max

a′
E[Z(k−1)(s′, a′)]− E[Z(k−1)(s′, a∗(ξk))]

∣∣∣ )
≤ γsup

s′,a′

∣∣∣E[Z(k)(s′, a′)]− E[Z(k−1)(s′, a′)]
∣∣∣+ γ

k∑
i=k−1

sup
s′

∣∣∣E[Z(i)(s′, a∗(ξi+1))]−max
a′

E[Z(i)(s′, a′)]
∣∣∣

≤ γ
∥∥∥E[Z(k)]− E[Z(k−1)]

∥∥∥
sa

+ γ

k∑
i=k−1

[
sup
s′

(∣∣∣E[Z(i)(s′, a∗(ξi+1))]− Eξi+1 [Z
(i)(s′, a∗(ξi+1))]

∣∣∣
+
∣∣∣max

a′
Eξi+1

[Z(i)(s′, a′)]−max
a′′

E[Z(i)(s′, a′′))]
∣∣∣ )]

≤ γ
∥∥∥E[Z(k)]− E[Z(k−1)]

∥∥∥
sa

+ 2γ

k∑
i=k−1

sup
s′,a′

(∣∣∣E[Z(i)(s′, a′)]− Eξi+1
[Z(i)(s′, a′)]

∣∣∣)

≤ γ
∥∥∥E[Z(k)]− E[Z(k−1)]

∥∥∥
sa

+ 2γ

k∑
i=k−1

∆i+1

where we use A.1.1 in third and fifth line and A.1.2 in sixth line.457
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Taking a supremum over s and a, then for all k > 0,458 ∥∥∥E[Z(k+1)]− E[Z(k)]
∥∥∥
sa
≤ γ

∥∥∥E[Z(k)]− E[Z(k−1)]
∥∥∥
sa

+ 2

k∑
i=k−1

γ∆i+1

≤ γ2
∥∥∥E[Z(k−1)]− E[Z(k−2)]

∥∥∥
sa

+ 2

k−1∑
i=k−2

γ2∆i+1 + 2

k∑
i=k−1

γ∆i+1

...

≤ γk
∥∥∥E[Z(1)]− E[Z]

∥∥∥
sa

+ 2

k∑
i=1

γi(∆k+2−i +∆k+1−i)

≤ 2γkVmax + 2

k∑
i=1

γi(∆k+2−i +∆k+1−i)

Since
∑∞

i=1 γ
i = γ

1−γ <∞ and
∑∞

i=1 ∆i <∞ by assumption, we have459

k∑
i=1

γi∆k+1−i → 0

which is resulted from the convergence of Cauchy product of two sequences {γi} and {∆i}. Hence,460

{E[Z(k)]} is a Cauchy sequence and therefore converges for every Z ∈ Z .461

Let E[Z∗] be the limit point of the sequence {E[Z(n)]}. Then,462 ∥∥∥E[Z∗]− E[Z(n)]
∥∥∥
sa

= lim
l→∞

∥∥∥E[Z(n+l)]− E[Z(n)]
∥∥∥
sa

≤
∞∑

k=n

∥∥∥E[Z(k+1)]− E[Z(k)]
∥∥∥
sa

=

∞∑
k=n

(
2γkVmax + 2

k∑
i=1

γi(∆k+2−i +∆k+1−i)
)
.

■463

A.4 Proof of Theorem 3.4464

Theorem 3.4. If {∆n} follows the assumption in Theorem 3.3, then E[Z∗] is the unique solution of465

Bellman optimality equation.466

Proof. The proof follows by linearity of expectation. Denote the Q-value based operator as τ̄ . Note467

that ∆n converges to 0 with regularity of Z implies that ξn converges to 1 in probability on Ω, i.e.,468

lim
n→∞

sup
s,a

∣∣∣∣∫
w∈Ω

Z(n)(w; s, a)(1− ξn(w))P(dw)
∣∣∣∣ = 0

=⇒ lim
n→∞

P ({w ∈ Ω : |1− ξn(w)| ≥ ϵ}) = 0

By Theorem A.3, for a given ϵ > 0, there exists a constant K = max(K1,K2) such that for every469

k ≥ K1,470

sup
Z∈Z
∥τ̄ ξkE[Z]− τ̄E[Z]∥sa ≤

ϵ

2
.

Since τ̄ is continuous, for every k ≥ K2,471

∥τ̄E[Z(k)]− τ̄E[Z∗]∥sa ≤
ϵ

2
.
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Thus, it holds that472

∥τ̄ ξk+1
E[Z(k)]− τ̄E[Z∗]∥sa ≤ ∥τ̄ ξk+1

E[Z(k)]− τ̄E[Z(k)]∥sa + ∥τ̄E[Z(k)]− τ̄E[Z∗]∥sa
≤ sup

Z∈Z
∥τ̄ ξk+1

E[Z]− τ̄E[Z]∥sa + ∥τ̄E[Z(k)]− τ̄E[Z∗]∥sa

≤ ϵ

2
+

ϵ

2
= ϵ.

Therefore, we have473

E[Z∗] = lim
k→∞

E[Z(k)] = lim
k→∞

E[Z(k+1)] = lim
k→∞

E[τ ξk+1
Z(k)] = lim

k→∞
τ̄ ξk+1

E[Z(k)] = τ̄E[Z∗]

Since the standard Bellman optimality operator has a unique solution, we derived the desired474

result. ■475

B Algorithm Pipeline476

Figure 8 shows the pipeline of our algorithm. With the schedule of perturbation bound {∆n},477

the ambiguity set U∆n(Zn−1) can be defined by previous Zn−1. For each step, (distributional)478

perturbation ξn is sampled from U∆n(Zn−1) by the symmetric Dirichlet distribution and then479

PDBOO τ ξn can be performed.480

Figure 8: Pipeline of PDBOO.
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C Implementation details481

Except for each own hyperparameter, our algorithms and DLTV shares the same hyperparameter and482

network architecture with QR-DQN [11] for a fair comparison. Also, we set up p-DLTV by only483

multiplying a gaussian noise N (0, 1) to the coefficient of DLTV. We do not combine any additional484

improvements of Rainbow such as double Q-learning, dueling network, prioritized replay, and n-step485

update. Experiments on LunarLander-v2 and Atari games were performed with 3 random seeds. The486

training process is 0-2% slower than QR-DQN due to the sampling ξ and reweighting procedures.487

C.1 Hyperparameter Setting488

We report the hyperparameters for each environments we used in our experiments.489

Table 2: Table of hyperparameter setting
Hyperparameters N-Chain LunarLander Atari Games

Batch size 64 128 32
Number of quantiles 200 170 200
n−step updates 1

Network optimizer Adam
β Grid search[0.05, 0.1, 0.5, 1] ×1N

κ 1
Memory size 1e6 1e5 1e6
Learning rate 5e-5 1.5e-3 5e-5

γ 0.9 0.99 0.99
Update interval 1 1 4

Target update interval 25 1 1e4
Start steps 5e2 1e4 5e4
ϵ (train) LinearAnnealer(1→ 1e-2)
ϵ (test) 1e-3 1e-3 1e-3

ϵ decay steps 2.5e3 1e5 2.5e5
Coefficient c Grid search[1e0, 5e0, 1e1, 5e1, 1e2, 5e2, 1e3, 5e3]

∆0 5e2 5e4 1e6
Number of seeds 10 3 3

C.2 Pseuodocode of p-DLTV490

Algorithm 2 Perturbed DLTV (p-DLTV)

Input: transition (s, a, r, s′), discount γ ∈ [0, 1)
Q(s′, a′) = 1

N

∑
j θj(s

′, a′)

ct ∼ c N (0, ln t
t ) // Randomize the coefficient

a∗ ← argmaxa′(Q(s′, a′) + ct

√
σ2
+(s

′, a′))

τ θj ← r + γθj(s
′, a∗), ∀j

Output:
∑N

i=1 Ej [ρ
κ
τ̂i
(τ θj − θi(s, a))]

D Further experimental results & Discussion491

D.1 N-Chain492

To explore the effect of intrinsic uncertainty, we run multiple experiments with various reward493

settings for the rightmost state as keeping their mean at 9. As the distance between two Gaussians494

was increased, the performance of DLTV decrease gradually, while other algorithms show consistent495

results. The result implies the interference of one-sided tendency on risk is proportional to the496

magnitude of the intrinsic uncertainty and the randomized criterion is effective in escaping from the497

issue.498
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Table 3: Total counts of performing true optimal action with 4 different seeds.
Total Count (8,10) (7,11) (6,12) (5,13) (4,14) (3,15) (2,16) (1,17)
QR-DQN 12293 11381 11827 12108 10041 11419 9696 11619

DLTV 9997 9172 9646 9251 7941 6964 7896 7257
p-DLTV 14344 14497 13769 15507 14469 14034 14068 13404

PQR 14546 15018 14693 15142 15361 13859 14602 14354

D.2 LunarLander-v2499
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Figure 9: (Left) Three main environmental factors causing high intrinsic uncertainty on LunarLander-
v2. (Right) Performance on LunarLander-v2

To verify the effectiveness of the proposed algorithm in the complex environment with high intrinsic500

uncertainty, we conduct the experiment on LunarLander-v2. We have focused on three main factors501

that increase the intrinsic uncertainty from the structural design of LunarLander environment:502

• Random initial force: The lander starts at the top center with an random initial force.503

• Action stochasticity: The noise of engines causes different transitions with same action.504

• Extreme reward system: If the lander crashes, it receives -100 points. If the lander comes505

to rest, it receives +100 points.506

Therefore, several returns with a fixed policy have a high variance. As previously discussed about the507

fixedness from N-Chain environment, we can demonstrate that randomized approaches, PQR and508

p-DLTV, outperform other baselines in LunarLander-v2.509

D.3 Atari games510
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Figure 10: Evaluation curves on Atari games. All curves are smoothed over 10 consecutive steps with
three random seeds. In case of Pong-v4, we resize the x-axis, since it can easily obtain the optimal
policy with few interactions due to its environmental simplicity.

We test our algorithm under 30 no-op settings to align with previous works. We compare our baseline511

results with results from the DQN Zoo framework [25], which provides the full benchmark results on512

55 Atari games at 50M and 200M frames. We report the average of the best scores over 5 seeds for513

each baseline algorithms up to 50M frames.514
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However, recent studies tried to follow the setting proposed by Machado et al. [18] for reproducibility,515

where they recommended using sticky actions. Hence, we provide all human normalized scores516

results across 55 Atari games for 50M frames including previous report of Dopamine and DQN Zoo517

framework to help the follow-up researchers as a reference. We exclude Defender and Surround518

which is not reported on Yang et al. [34] because of relialbility issues in the Dopamine framework. In519

summary,520

• DQN Zoo framework corresponds to 30 no-op settings (version v4).521

• Dopamine framework corresponds to sticky actions protocol (version v0).522

523

Comparison with QUOTA Zhang and Yao [36] have proposed Quantile Option Architec-524

ture(QUOTA) which derives different policies corresponding to different risk levels and consider them525

as options. By using an option-based framework, the agent learns a high-level policy that adaptively526

selects a pessimistic or optimistic exploration strategy. While QUOTA has a similar approach in527

high-level idea, PQR gives a lot of improvements in both theoretical analysis and experimental results.528

529

• Theoretical guarantees of convergence toward risk-neutrality.530

Since the agent selects via randomized risk criterion, the natural question is “How should we531

control the injected randomness without sacrificing the original purpose of risk-neutrality?”.532

In this work, we provide the sufficient condition for convergence without sacrificing risk-533

neutral perspective. Although QUOTA explores by using optimism or pessimism of a534

value distribution, there is no discussion whether the convergence is guaranteed toward a535

risk-neutral objective.536

• Explaining the effectiveness of randomized strategy.537

QUOTA tested on two Markov chains to illustrate the inefficiency of expectation-based RL. It538

assumed that each task has an inherent, but unknown, preferred risk strategy, so agents should539

learn hidden preference. In contrast, we point out that the amount of inherent (intrinsic)540

uncertainty causes the inefficiency of fixed optimism or pessimism based exploration.541

• Significant performance difference in experimental results.542

QUOTA is based on option-based learning which requires an additional option-value net-543

work. While QUOTA aims to control risk-sensitivity by transforming into an option O,544

the introduction of an option-value network requires the agent to explore an action space545

|O| × |A|. This opposes the idea of efficient exploration as a factor that increases the546

complexity of learning. In contrast, PQR does not require a additional network and explores547

over the original action space. In addition, PQR does not artificially discretize the ambiguity548

set of risk measurement. Another main reason is that PQR does not depend on an greedy549

schedule which is well-known for inefficient exploration strategies in tabular episodic MDP550

[16]. PQR solely explores its own strategies which is a simple yet effective approach.551

However, QUOTA depends on a greedy schedule in both quantile and option networks.552

Reproducibility issues on DLTV For the expected concerns about the comparison with DLTV, we553

address some technical issues to correct misconceptions of their performance. Before we reproduce554

the empirical results of DLTV, Mavrin et al. [19] did not report each raw scores of Atari games, but555

only the relative performance with cumulative rewards comparing with QR-DQN. While DLTV was556

reported to have a cumulative reward 4.8 times greater than QR-DQN, such gain mainly comes from557

VENTURE which is evaluated as 22,700% from their metric (i.e., 463% performance gain solely).558

However, the approximate raw score of VENTURE was 900 which is lower than our score of 993.3.559

Hence, the report with cumulative rewards causes a severe misconception that can be overestimated560

where the human-normalized score is commonly used for evaluation metrics. For a fair comparison,561

we computed based on mean and median of human-normalized scores and obtained results of 603.66%562

and 109.90%. Due to the absence of public results, however, DLTV was inevitably excluded from563

the comparison with human-normalized score in the main paper for reliability. In Table 4 and 7, we564

report our raw scores and human-normalized score of DLTV based on QR-DQN_zoo performance.565
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Table 4: Performance comparison on QUOTA, DLTV, and PQR.

QUOTA >QR-DQN_Zhang QR-DQN_zoo >QR-DQN_Zhang PQR >QUOTA PQR >QR-DQN_Zhang PQR >DLTV

30 34 42 42 39

Avg HN Score(QR-DQN_zoo) Avg HN Score(QR-DQN_Zhang) Avg HN Score(QUOTA) Avg HN Score(DLTV) Avg HN Score(PQR)

505.02 463.47 383.70 603.66 1078.00

Med HN Score(QR-DQN_zoo) Med HN Score(QR-DQN_Zhang) Med HN Score(QUOTA) Med HN Score(DLTV) Med HN Score(PQR)

120.74 78.07 91.08 109.90 129.25

Table 5: Raw scores across all 55 games, starting with 30 no-op actions. We report the best scores
for DQN, QR-DQN, IQN and Rainbow on 50M frames, averaged by 5 seeds. Reference values
were provided by DQN Zoo framework [25]. Bold are wins against DQN, QR-DQN and IQN, and
*asterisk are wins over Rainbow.

GAMES RANDOM HUMAN DQN(50M) QR-DQN(50M) IQN(50M) RAINBOW(50M) PQR(50M)
Alien 227.8 7127.7 1541.5 1645.7 1769.2 4356.9 2455.8
Amidar 5.8 1719.5 324.2 683.4 799.2 2549.2 938.4
Assault 222.4 742.0 2387.8 11684.2 15152.4 9737.0 10759.2
Asterix 210.0 8503.3 5249.5 18373.4 32598.2 33378.6 10490.5
Asteroids 719.1 47388.7 1106.3 1503.9 1972.6 1825.4 1662.0
Atlantis 12850.0 29028.1 283392.2 937275.0 865360.0 941740.0 897640.0
BankHeist 14.2 753.1 389.0 1223.9 1266.8 1081.7 1038.8
BattleZone 2360.0 37187.5 19092.4 26325.0 30253.9 35467.1 28470.5
BeamRider 363.9 16926.5 7133.1 12912.0 19251.4 15421.9 10224.9
Berzerk 123.7 2630.4 577.4 826.5 918.9 2061.6 *137873.1
Bowling 23.1 160.7 34.4 45.4 41.5 54.7 *86.9
Boxing 0.1 12.1 87.2 99.6 99.2 99.8 97.1
Breakout 1.7 30.5 316.8 426.5 468.0 335.3 380.3
Centipede 2090.9 12017.0 4935.7 7124.0 7008.3 5691.4 *7291.2
ChopperCommand 811.0 7387.8 974.2 1187.8 1549.0 5525.1 1300.0
CrazyClimber 10780.5 35829.4 96939.0 93499.1 127156.5 160757.7 84390.9
DemonAttack 152.1 1971.0 8325.6 106401.8 110773.1 85776.5 73794.0
DoubleDunk -18.6 -16.4 -15.7 -10.5 -12.1 -0.3 -7.5
Enduro 0.0 860.5 750.6 2105.7 2280.6 2318.3 *2341.2
FishingDerby -91.7 -38.7 8.2 25.7 23.4 35.5 31.7
Freeway 0.0 29.6 24.4 33.3 33.7 34.0 34.0
Frostbite 65.2 4334.7 408.2 3859.2 5650.8 9672.6 4148.2
Gopher 257.6 2412.5 3439.4 6561.9 26768.9 32081.3 *47054.5
Gravitar 173.0 3351.4 180.9 548.1 470.2 2236.8 635.8
Hero 1027.0 30826.4 9948.3 9909.8 12491.1 38017.9 12579.2
IceHockey -11.2 0.9 -11.4 -2.1 -4.2 1.9 -1.4
Jamesbond 29.0 302.8 486.4 1163.8 1058.0 14415.5 2121.8
Kangaroo 52.0 3035.0 6720.7 14558.2 14256.0 14383.6 *14617.1
Krull 1598.0 2665.5 7130.5 9612.5 9616.7 8328.5 *9746.1
KungFuMaster 258.5 22736.3 21330.9 27764.3 39450.1 30506.9 *43258.6
MontezumaRevenge 0.0 4753.3 0.3 0.0 0.2 80.0 0.0
MsPacman 307.3 6951.6 2362.9 2877.5 2737.4 3703.4 2928.9
NameThisGame 2292.3 8049.0 6328.0 11843.3 11582.2 11341.5 10298.2
Phoenix 761.4 7242.6 10153.6 35128.6 29138.9 49138.8 20453.8
Pitfall -229.4 6463.7 -9.5 0.0 0.0 0.0 0.0
Pong -20.7 14.6 18.7 20.9 20.9 21.0 21.0
PrivateEye 24.9 69571.3 266.6 100.0 100.0 160.0 *372.4
Qbert 163.9 13455.0 5567.9 12808.4 15101.8 24484.9 15267.4
Riverraid 1338.5 17118.0 6782.8 9721.9 13555.9 17522.9 11175.3
RoadRunner 11.5 7845.0 29137.5 54276.3 53850.9 52222.6 50854.7
Robotank 2.2 11.9 31.4 54.5 53.8 64.5 60.3
Seaquest 68.4 42054.7 2525.8 7608.2 17085.6 3048.9 *19652.5
Skiing -17098.1 -4336.9 -13930.8 -14589.7 -19191.1 -15232.3 *-9299.3
Solaris 1236.3 12326.7 2031.5 1857.3 1301.5 2522.6 *2640.0
SpaceInvaders 148.0 1668.7 1179.1 1753.2 2906.7 2715.3 1749.4
StarGunner 664.0 10250.0 24532.5 63717.3 78503.4 107177.8 62920.6
Tennis -23.8 -8.3 -0.9 0.0 0.0 0.0 -1.0
TimePilot 3568.0 5229.2 2091.8 6266.8 6379.1 12082.1 6506.4
Tutankham 11.4 167.6 138.7 210.2 204.4 194.3 *231.3
UpNDown 533.4 11693.2 6724.5 27311.3 35797.6 65174.2 36008.1
Venture 0.0 1187.5 53.3 12.5 17.4 1.1 *993.3
VideoPinball 16256.9 17667.9 140528.4 104405.8 341767.5 465636.5 465578.3
WizardOfWor 563.5 4756.5 3459.9 14370.2 10612.1 12056.1 6132.8
YarsRevenge 3092.9 54576.9 16433.7 21641.4 21645.0 67893.3 27674.4
Zaxxon 32.5 9173.3 3244.9 9172.1 8205.2 22045.8 10806.6
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Table 6: Raw scores across 55 games. We report the best scores for DQN, QR-DQN, IQN*, and
Rainbow on 50M frames, averaged by 5 seeds. Reference values were provided by Dopamine
framework [2]. Bolds are wins against DQN, QR-DQN, and *asterisk are wins over IQN* and
Rainbow. Note that IQN* and Rainbow implemented in Dopamine framework applied n-step
updates with n = 3 which improves performance.

GAMES RANDOM HUMAN DQN(50M) QR-DQN(50M) IQN*(50M) RAINBOW(50M) PQR(50M)
Alien 227.8 7127.7 1688.1 2754.2 4016.3 2076.2 3173.9
Amidar 5.8 1719.5 888.2 841.6 1642.8 1669.6 *2814.7
Assault 222.4 742.0 1615.9 2233.1 4305.6 2535.9 *8456.5
Asterix 210.0 8503.3 3326.1 3540.1 7038.4 5862.3 *19004.6
Asteroids 719.1 47388.7 828.2 1333.4 1336.3 1345.1 851.8
Atlantis 12850.0 29028.1 388466.7 879022.0 897558.0 870896.0 880303.7
BankHeist 14.2 753.1 720.2 964.1 1082.8 1104.9 1050.1
BattleZone 2360.0 37187.5 15110.3 25845.6 29959.7 32862.1 *61494.4
BeamRider 343.9 16926.5 4771.3 7143.0 7113.7 6331.9 *12217.6
Berzerk 123.7 2630.4 529.2 603.2 627.3 697.8 *2707.2
Bowling 23.1 160.7 38.5 55.3 33.6 55.0 *174.1
Boxing 0.1 12.1 80.0 96.6 97.8 96.3 96.7
Breakout 1.7 30.5 113.5 40.7 164.4 69.8 48.5
Centipede 2090.9 12017.0 3403.7 3562.5 3746.1 5087.6 *31079.8
ChopperCommand 811.0 7387.8 1615.3 1600.3 6654.1 5982.0 4653.9
CrazyClimber 10780.5 35829.4 111493.8 108493.9 131645.8 135786.1 105526.0
DemonAttack 152.1 1971.0 4396.7 3182.6 7715.5 6346.4 *19530.2
DoubleDunk -18.6 -16.4 -16.7 7.4 20.2 17.4 15.0
Enduro 0.0 860.5 2268.1 2062.5 766.5 2255.6 1765.5
FishingDerby -91.7 -38.7 12.3 48.4 41.9 37.6 46.8
Freeway 0.0 29.6 25.8 33.5 33.5 33.2 33.0
Frostbite 65.2 4334.7 760.2 8022.8 7824.9 5697.2 *8401.5
Gopher 257.6 2412.5 3495.8 3917.1 11192.6 7102.1 *12252.9
Gravitar 173.0 3351.4 250.7 821.3 1083.5 926.2 703.5
Hero 1027.0 30826.4 12316.4 14980.0 18754.0 31254.8 15655.8
IceHockey -11.2 0.9 -6.7 -4.5 0.0 2.3 0.0
Jamesbond 29.0 302.8 500.0 802.3 1118.8 656.7 *1454.9
Kangaroo 52.0 3035.0 6768.2 4727.3 11385.4 13133.1 *13894.0
Krull 1598 2665.5 6181.1 8073.9 8661.7 6292.5 *31927.4
KungFuMaster 258.5 22736.3 20418.8 20988.3 33099.9 26707.0 22040.4
MontezumaRevenge 0.0 4753.3 2.6 300.5 0.7 501.2 0.0
MsPacman 307.3 6951.6 2727.2 3313.9 4714.4 3406.4 *5426.5
NameThisGame 2292.3 8049.0 5697.3 7307.9 9432.8 9389.5 *9891.3
Phoenix 761.4 7245.6 5833.7 4641.1 5147.2 8272.9 5260
Pitfall -229.4 6463.7 -16.8 -3.4 -0.4 0.0 *0.0
Pong -20.7 14.6 13.2 19.2 19.9 19.4 19.7
PrivateEye 24.9 69571.3 1884.6 680.7 1287.3 4298.8 *12806.1
Qbert 163.9 13455.0 8216.2 17228.0 15045.5 17121.4 15806.9
Riverraid 1338.5 17118.0 9077.8 13389.4 14868.6 15748.9 14101.3
RoadRunner 11.5 7845.0 39703.1 44619.2 50534.1 51442.4 48339.7
Robotank 2.2 11.9 25.8 53.6 65.9 63.6 48.7
Seaquest 68.4 42054.7 1585.9 4667.9 20081.3 3916.2 5038.1
Skiing -17098.1 -4336.9 -17038.2 -14401.6 -13755.6 -17960.1 *-9021.2
Solaris 1236.3 12326.7 2029.5 2361.7 2234.5 2922.2 *7145.3
SpaceInvaders 148.0 1668.7 1361.1 940.2 3115.0 1908.0 1602.4
StarGunner 664.0 10250.0 1676.5 23593.3 60090.0 39456.3 59404.6
Tennis -23.8 -9.3 -0.1 19.2 3.5 0.0 *15.4
TimePilot 3568.0 5229.2 3200.9 6622.8 9820.6 9324.4 5597.0
Tutankham 11.4 167.6 138.8 209.9 250.4 252.2 147.3
UpNDown 533.4 11693.2 10405.6 29890.1 44327.6 18790.7 32155.5
Venture 0.0 1187.5 50.8 1099.6 1134.5 1488.9 1000.0
VideoPinball 16256.9 17667.9 216042.7 250650.0 486111.5 536364.4 460860.9
WizardOfWor 563.5 4756.5 2664.9 2841.8 6791.4 7562.7 5738.2
YarsRevenge 3092.9 54576.9 20375.7 66055.9 57960.3 31864.4 *67545.8
Zaxxon 32.5 9173.3 1928.6 8177.2 12048.6 14117.5 9531.8
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Table 7: Raw scores across all 49 games, starting with 30 no-op actions. We report the best
scores for QR-DQN_zoo[25], QR-DQN_Zhang[36](implemented by QUOTA to evaluate the relative
improvement) for a fair comparison and QUOTA[36], DLTV[19] on 40M frames, averaged by 3
seeds. Bold are wins against QUOTA and DLTV.

Games Random Human QR-DQN_zoo(40M) QR-DQN_Zhang(40M) QUOTA(40M) DLTV(40M) PQR(40M)
Alien 227.8 7127.7 1645.7 1760.0 1821.9 2280.9 2406.9
Amidar 5.8 1719.5 552.9 567.9 571.4 1042.7 644.1
Assault 222.4 742 9880.4 3308.7 3511.1 5896.2 10759.2
Asterix 210 8503.3 13157.2 6176.0 6112.1 6336.6 8431.0
Asteroids 719.1 47388.7 1503.9 1305.3 1497.6 1268.7 1416.00
Atlantis 12850 29028.1 750190.1 978385.3 965193.0 845324.9 897640.0
BankHeist 14.2 753.1 1146.1 644.7 735.2 1183.7 1038.8
BattleZone 2360 37187.5 17788.4 22725.0 25321.6 23315.8 28470.5
BeamRider 363.9 16926.5 10684.2 5007.8 5522.6 6490.1 10224.9
Bowling 23.1 160.7 44.3 27.6 34.0 29.8 86.9
Boxing 0.1 12.1 98.2 95.0 96.1 112.8 97.1
Breakout 1.7 30.5 401.5 322.1 316.7 260.9 357.7
Centipede 2090.9 12017.0 6633.0 4330.3 3537.9 4676.7 6803.6
ChopperCommand 811.0 7387.8 1133.1 3421.1 3793.0 2586.3 1500.0
CrazyClimber 10780.5 35829.4 93499.1 107371.6 113051.7 92769.1 83900.0
DemonAttack 152.1 1971.0 98063.6 80026.6 61005.1 146928.9 73794.0
DoubleDunk -18.6 -16.4 -10.5 -21.6 -21.5 -23.3 -10.5
Enduro 0.0 860.5 2105.7 1220.0 1162.3 5665.9 2252.8
FishingDerby -91.7 -38.7 25.7 -9.6 -59.0 -8.2 31.7
Freeway 0.0 29.6 30.9 30.6 31.0 34.0 34.0
Frostbite 65.2 4334.7 3822.7 2046.3 2208.5 3867.6 4051.2
Gopher 257.6 2412.5 4191.2 9443.8 6824.3 10199.4 47054.5
Gravitar 173.0 3351.4 477.4 414.3 457.6 357.9 583.6
IceHockey -11.2 0.9 -2.4 -9.8 -9.9 -14.3 -2.1
Jamesbond 29.0 302.8 907.1 601.7 495.5 779.8 1747.1
Kangaroo 52.0 3035 14171 2364.6 2555.8 4596.7 14385.1
Krull 1598.0 2665.5 9618.2 7725.4 7747.5 10012.21 9537.0
KungFuMaster 258.5 22736.3 27576.5 17807.4 20992.5 23078.4 38074.1
MontezumaRevenge 0.0 4753.3 0.0 0.0 0.0 0.0 0.0
MsPacman 307.3 6951.6 2561.0 2273.3 2423.5 3191.7 2895.6
NameThisGame 2292.3 8049.0 11770.0 7748.2 7327.5 8368.1 10298.2
Pitfall -229.4 6463.7 0.0 -32.9 -30.7 - 0.0
Pong -20.7 14.6 20.9 19.6 20.0 21.0 21.0
PrivateEye 24.9 69571.3 100.0 419.3 114.1 1358.6 372.4
Qbert 163.9 13455.0 8348.2 10875.3 11790.2 15856.2 14593.0
Riverraid 1338.5 17118.0 8814.1 9710.4 10169.8 10487.3 9374.7
RoadRunner 11.5 7845.0 52575.7 27640.7 27872.2 49255.7 44341.0
Robotank 2.2 11.9 50.4 45.1 37.6 58.4 53.9
Seaquest 68.4 42054.7 5854.6 1690.5 2628.6 3103.8 16011.2
SpaceInvaders 148.0 1668.7 1281.8 1387.6 1553.8 1498.6 1562.6
StarGunner 664.0 10250.0 53624.7 49286.6 52920.0 53229.5 55475.0
Tennis -23.8 -8.3 0.0 -22.7 -23.7 -18.4 -1.0
TimePilot 3568.0 5229.2 6243.4 6417.7 5125.1 6931.1 6506.4
Tutankham 11.4 167.6 200.0 173.2 195.4 130.9 213.3
UpNDown 533.4 11693.2 22248.8 30443.6 24912.7 44386.7 33786.3
Venture 0.0 1187.5 12.5 5.3 26.5 1305.0 0.0
VideoPinball 16256.9 17667.9 104227.2 123425.4 44919.1 93309.6 443870.0
WizardOfWor 563.5 4756.5 13133.8 5219.0 4582.0 9582.0 6132.8
Zaxxon 32.5 9173.3 7222.7 6855.1 8252.8 6293.0 10250.0
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