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Abstract

Visual question answering (VQA) has traditionally been treated as a single-step
task where each question receives the same amount of effort, unlike natural human
question-answering strategies. We explore a question decomposition strategy for
VQA to overcome this limitation. We probe the ability of recently developed large
vision-language models to use human-written decompositions and produce their
own decompositions of visual questions, finding they are capable of learning both
tasks from demonstrations alone. However, we show that naive application of
model-written decompositions can hurt performance. We introduce a model-driven
selective decomposition approach for second-guessing predictions and correcting
errors, and validate its effectiveness on eight VQA tasks across three domains,
showing consistent improvements in accuracy, including improvements of > 20%
on medical VQA datasets and boosting the zero-shot performance of BLIP-2 above
chance on a VQA reformulation of the challenging Winoground task. Project Site:
https://zaidkhan.me/decomposition-0shot-vqa/

1 Introduction

On a question-answering test, humans are able to answer some questions in a single step, while
other questions require potential deliberation and second-guessing. Visual question answering (VQA)
[1–3] has traditionally been treated as a single-step task. Models only get one chance for each
question, and each question receives equal amounts of computation. This is incongruent to the natural
human approach to such tasks, where simple perceptual questions are quickly answered, while harder
reasoning questions are allocated more time and computation.

The emergence of task decomposition techniques for large language models (LLMs) [4] is a potential
solution to this incongruency. Task decomposition techniques prompt a LLM to break down an
initial complex task into simpler subtasks that can each be solved independently. However, VQA
has not benefited from advances in task decomposition techniques for two reasons. First, many task
decomposition techniques [5, 6] have only been effective in the regime of very large unimodal LLMs
with parameters in the 30B+ range, while the LLMs underlying vision-language models are typically
much smaller, only recently reaching ⇡ 13b parameters for publicly available models[7–9]. Second,
existing methods for prompting vision-language models (VLMs) during VQA tasks focus on other
use cases, such as providing more examples of the input task [10] or more information about the
image [11]. Given the recent emergence of multi-billion scale VLMs, our main research question is:

Can multi-billion scale vision-language models benefit by approaching reasoning-

heavy VQA as a two-step rather than a single-step problem using decomposition?

To this end, we explore a form of task decomposition called question decomposition as a strategy for
zero-shot visual question answering with large VLMs. Although question decomposition has been
explored for specific unimodal QA[12–14], it has not been explored as a strategy for multimodal
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tasks such as VQA with emerging large VLMs [7–9, 15, 16], and little is known about the in-context
learning ability of emerging large VLMs.

First, we probe the in-context learning ability [17–19] of both LMs and VLMs to exploit oracular
question decompositions written by humans. We design experiments to understand whether models
can learn to use decompositions without explicit training, and whether they are merely exploiting
keywords and surface statistics when they use decompositions. Second, we conduct a series of exper-
iments, again using in-context learning, to understand how well models can produce decompositions
that correct the errors of a fixed VQA model. Last, we propose and study an entirely model-driven
closed-loop approach mimicking a simplified form of a classic human second-guessing strategy:
second-guess answers based on how confident you are about them. We conduct experiments across
three domains (art, natural images, medical), eight datasets, three model families, and model sizes
ranging from 80M to 11B parameters. Our contributions can be listed as follows:

1. We experimentally demonstrate that large VLMs based on instruction-tuned LLMs can
use decompositions to improve their predictions without any training, and are not merely
exploiting changes in word statistics introduced by the decomposition. (Sec. 3)

2. We quantitatively show that generative, instruction-tuned language models are capable of
writing effective decompositions zero-shot, without task-specific training. (Sec. 4)

3. We find that applying decomposition naively to every question instance harms performance
rather than helps (Fig. 4), and propose selective decomposition (Fig. 3), a modular, model-
agnostic, training-free strategy that treats VQA as a two-step task. (Sec. 5)

4. We apply selective decomposition to a testbed of 8 datasets and show that it consistently im-
proves performance (Tabs. 3 and 4), with gains of > 20% on medical VQA datasets[20–22],
and boosts the performance of BLIP-2[7] above chance on the Winoground[23] benchmark
when formulated as a VQA task. (Sec. 5).

2 Background

2.1 Problem Setting

In zero-shot VQA, a model 5 : E, @ ! 0 is given an image E, a question @, and outputs an answer, 0.
Unlike traditional VQA, the model 5 (·) has never seen E, @, 0 triplets. In practice, such a setting often
occurs when 5 (·) is a foundation model that contains several billion parameters and has undergone
large scale pretraining. It is undesirable to retrain such an 5 (·) on visual question answering pairs
specifically, both for reasons of computational convenience and because finetuning can degrade
robustness[24]. The most common case is that 5 (·) is an autoregressive, generative language model
that can optionally be conditioned on the visual modality. We restrict ourselves to such models, which
approximate ⇧#

:=1?(C:+1 |C1:: , E), where E is an image and C1:: is a sequence of language tokens. In a
zero-shot VQA setting, it is expected that 5 (·) understands that it has been given a question @ and
should produce the correct answer 0 to the question @ in the context of the image E by modeling it as
?(0 |E, @). This setting is common when evaluating very large frozen models, such as in [10, 11], with
the exception that in our case, 5 (·) is a vision-language model rather than a language-only model.

2.2 Question Decomposition

Question decomposition is the task of decomposing a complex main question into one or more simpler
subquestions that are logically related to the main question, answering those simpler subquestion(s),
and then using the answered subquestion(s) to help in composing a final answer to the complex main
question. This is a strategy often used by humans for problem solving. For example, consider a
human being confronted by a wild animal they have never seen before. To answer the main question
“does this animal pose a threat to me?” a human might decompose it into subquestions such as “does

the animal have sharp canine teeth?” and “does the animal have forward facing eyes typical of

a predator?” Knowing the answer to even one of these subquestions makes answering the main
question much easier.

Adopting the terminology of Sec. 2.1, the task of question decomposition consists of decomposing a
main visual question E, @ into one or more subquestions (B1, B2, . . .), answering those subquestions to
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Q: What  count ry 
headquar ters this 
plane company?

Before: Canada
Af ter:   UK

Decomposit ion
what  is the name of  the 
plane company? virgin 

at l ant ic

Q: What  could keep 
this food f rom fall ing 

apar t?

Before: knife
Af ter:   bread

Decomposit ion
what  is holding the 

food together? bread

Q: What  is the woman 
using the umbrell a to 
protect  hersel f  f rom?

Before: rain
Af ter:   the sun

Decomposit ion
what  is the weather l ike 

outside? sunny

Q: What  kind of  show 
is the man on?

Before: cricket
Af ter:   tal k show

Decomposit ion
what  is the man 
wearing? a suit

Q: does the picture 
contain l ungs?

Before: yes
Af ter:   no

Decomposit ion
is there a person in the 

picture? no

Q: is this an x- ray?

Before: no
Af ter:   yes

Decomposit ion
is the picture black and 

white? yes

Q: is this a t ransverse 
sect ion?

Before: no
Af ter:   yes

Decomposit ion
is this a x- ray of  a 

person's brain? no, mri

Q: Does adrenal  show 
gout?

Before: a case repor t
Af ter:   no

Decomposit ion
what  is the cause of  

gout? uric acid crystal s

Q: What  is the second 
shel f  in the f ridge 

used for?

Before: food
Af ter:   drink

Decomposit ion
what  is the f irst  shel f  in 

the f ridge used for?

Q: The t ime of  day 
suggests the man will  

do what  soon?

Before: sleep
Af ter:   wake up

Decomposit ion
what  is the t ime of  

day? morning

Figure 1: Model-produced decompositions and their error correcting effects. The decompositions and be-
fore/after answers shown above were produced by prompting BLIP-2 models based on FLAN-T5 to produce a
subquestion, answering the subquestion with the model and feeding the question and answered subquestion back
to the model: it is correcting itself. Before answers are wrong and After answers are correct.

obtain the decomposition ((@01, 001), (@02, 002) . . .), and then using E, @ together with the decomposition
((@01, 001), (@02, 002) . . .) to obtain the final answer 0.

2.3 What makes a good subquestion?

In Sec. 2.2, we gave a definition of decompositions that is dependent on notions of "simpler" and
"logically related". It is challenging to make these notions precise, and difficult to operationalize
them to measure whether a sequence of text really is a valid subquestion according to these notions.
To sidestep these difficulties, we adopt a consequentialist view of whether a subquestion is “good”,
following a common consequentalist tradition in artificial intelligence as a whole [25]. We evaluate
the “goodness” of a subquestion by measuring the effect of the subquestion. Concretely, let E, @, 0
be a visual question triplet where E is the image, @ is the question, and 0 is the answer. Let
? 5 (0 |E, @) be the probability of the ground-truth answer 0 as assessed by a visual question answering
system 5 (·). We regard a decomposition of E, @ consisting of series of subquestions and their answers
((@01, 001), (@02, 002) . . .) as “good” if ? 5 (0 |E, @) < ? 5 (0 |E, @, ((@01, 001), (@02, 002) . . .)), that is, if seeing
the decomposition increases the probability of the ground-truth answer 0. In practice, we adopt a
simpler criterion that takes the consequentalist definition to the limit. We regard a decomposition as

“good” if seeing the decomposition induces the model to produce the true ground-truth answer 0.

2.4 Scope & Limitations

We only consider in-context learning techniques for zero-shot VQA, and do not explore full model
training in this work. The class of model we are interested in are instruction-following vision-language
models based on large language models [7–9]. This excludes previous-generation vision-language
models that are not based on multi-billion parameter instruction-tuned language models [26–30].
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Image + Text (3B) Image+Text (13B)
Decomposition Overall Boolean Number Other Overall Boolean Number Other

None (Baseline) 79 82.5 6.8 67.4 79.1 81.9 13.7 70.1
Oracle/Oracle 88.6 91.4 40.2 79.4 89.8 92.6 45.3 80.4
� w.r.t Baseline 9.6 8.8 33.3 12.1 10.8 10.7 31.6 10.3
Oracle/Self-Answer 84 87.3 21.4 72.8 83.9 87.1 26.5 73.2
� w.r.t Baseline 5 4.8 14.5 5.4 4.8 5.2 12.8 3.1
Oracle/No Answer 83.3 85.9 27.4 74.9 84.1 86.9 27.4 75.2
� w.r.t Baseline 4.4 3.4 20.5 7.6 5.1 5 13.7 5.1
Oracle/Oracle (Scrambled) 84.9 87.9 37.6 74.8 86 88.9 39.3 76.2
� w.r.t Baseline 5.9 5.4 30.8 7.4 6.9 7 25.6 6

Text (3B) Text (13B)
Decomposition Overall Boolean Number Other Overall Boolean Number Other

None (Baseline) 57.4 64.4 6 32.2 63.8 71.9 6.8 34.3
Oracle/Oracle 72 75.8 37.6 58.4 81.5 85.1 45.3 69
� w.r.t Baseline 14.5 11.4 31.6 26.2 17.8 13.2 38.5 34.7
Oracle/Self-Answer 62.1 65.8 23.1 48.8 68 72.1 20.5 53.7
� w.r.t Baseline 4.6 1.4 17.1 16.7 4.3 0.2 13.7 19.4
Oracle/No Answer 64.8 68.7 21.4 50.9 75.2 79 26.5 62.2
� w.r.t Baseline 7.3 4.3 15.4 18.8 11.4 7.1 19.7 27.9
Oracle/Oracle (Scrambled) 60.5 62.6 28.2 53.3 78.9 83.1 40.2 63.5
� w.r.t Baseline 3.1 -1.8 22.2 21.1 15.1 11.3 33.3 29.2

Table 1: Models are capable of using decompositions written by humans to provide more accurate answers. The
gray rows are the baseline performance with no decomposition, and each � is calculated w.r.t to this baseline.
Oracle/Oracle rows denoting oracle subquestions/oracle answers, have the highest �. “Self-Answer” means
the model answered oracular subquestions itself, and “No Answer” indicates the answer was left out entirely.
Image+Text indicates a vision-language model (BLIP-2) was tested with multimodal inputs, while Text indicates
the corresponding language model inside BLIP-2 (FLAN-T5) was tested with text only inputs. Validation split
of VQA Introspect is the dataset (22k reasoning questions with their associated decompositions).

Not all datasets are suitable for exploring question decomposition, as some primarily test low-level
perception skills rather than high-level reasoning skills that would benefit from a decomposition. We
thus limit our evaluation to datasets that explicitly test for high-level reasoning / knowledge-based
ability. We are few-shot for the task of visual question decomposition but zero-shot for the task of
visual question answering.

3 How well can models use decompositions?

Our goal in this section is to understand the ability of vision-language models based on large language
models to consume decompositions. The hypothesis we test is: When provided with gold-standard
decompositions on a VQA task, a model’s error rate should be lower than without the gold-standard
decompositions. Evaluating this hypothesis presents a number of challenges. First, how can we
obtain a set of decompositions that are apriori “known to be good”? Second, how should the model
be fed the decompositions?

To find a source of apriori “good” decompositions, we turn to the literature on internal consistency in
visual question answering. To probe consistency in question answering systems, several datasets [31–
33] have been proposed. A particularly relevant case of such a dataset is VQA-Introspect [32], which
probes consistency along a reasoning-perception axis. Selvaraju et al. [32] annotate each question in
the VQAv2[1] validation set as a high-level “reasoning” question or a low-level “perception” question.
For each “reasoning“ question, Selvaraju et al. [32] write 1-3 “perceptual” subquestions which are
implied by the reasoning question. For example, given a high-level reasoning question such as “Can
I eat this banana?” a model that says “yes” should also reply “yellow” to the low-level perception
question “what is the color of the banana?” We propose to use the low-level perception questions
and answers written for the high-level reasoning questions as an oracular decomposition for the
high-level reasoning question, on the basis that the low-level perception questions are simpler than
the high-level reasoning question, entail the answer for the high-level reasoning question, and are
written by humans.
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The second challenge lies in using a decomposition consisting of a series of subquestions and
answers ((@01, 001), (@02, 002) . . .) alongside a main visual question (E, @). Recall that we cannot train
the model 5 (·) being used for the visual question answering task, and for any arbitrary model, it is
unknown whether the model has ever seen the exact task of decomposition-aided visual question
answering. Thus, we rely on the in-context learning ability [18, 19] of large language models to learn
to perform the tasks we require from a demonstration of the task. We handcraft a simple prompt to
contain a main visual question E, @ from the VQAv2 validation set, along with one human-written
oracular subquestion and human-written answer @0, 00 for the main question E, @ extracted from
VQA-Introspect. The prompt is simply

exemplar = "Context: is the sky blue? no. are there clouds in the sky?
yes. Question: what weather is likely? Short answer: rain"

prompt = exemplar + "Context: {subquestion }? {subanswer }. Question: {
question }? Short answer:"

Experiments & Discussion We use BLIP-2 [7]models based on the instruction-tuned FLAN-T5[34]
in 3B and 13B sizes. Experiments are run on a combination of A6000s and TPUv3s, on the VQA-
Introspect validation set containing 22K reasoning questions and their associated decompositions.
The results are shown in Tab. 1. Compared to the baseline with no oracular decompositions, both
the 3B/13B vision-language models and their corresponding language models show a clear ability to
benefit from decompositions across a variety of question types, with numerical questions benefiting
the most. Next, we seek to gain insight into the mechanism by which decompositions aid inference.
Is the model merely exploiting changes in surface level statistics? If so, we would expect that
perturbations that leave the statistics largely unchanged but significantly alter the meaning and logical
structure of the oracle decomposition should not result in significantly different performance from
the unaltered oracle decompositions. We remove the answers from the decomposition so that it
only contains the subquestions, and test the effect of only using the subquestions. Compared to the
oracle, there is a significant 50% relative decrease in improvement w.r.t to the baseline. Most of the
subquestion answers are boolean, so removing them should not significantly change content words in
the prompt, though it changes the meaning of the context significantly. Next, we allow the models
to answer the subquestions themselves (Oracle/Self-Answer) rather than using the ground-truth
questions. The accuracy of all models again decreases relative to the oracle answers, suggesting the
answer and question together contribute to the result. Finally, we take the oracle subquestion+answer
and scramble the words before providing them to the models. If the model is merely exploiting
surface level statistics, the performance difference between the scrambled oracular decompositions
and the original decompositions should be minimal, as the words are all the same. Again, we observe
a significant drop compared to the original decompositions, suggesting that the models are not merely

exploiting changes in the surface level statistics. Furthermore, human-written decompositions help in
almost all cases over the no-decomposition baseline. Note: See supplement for complete experimental

details for all experiments.

4 Can models produce effective decompositions?

In this section, we conduct experiments to answer the following research questions:

1. Can language models  13B parameters learn to produce effective decompositions purely
through demonstrations?

2. Is question decomposition mostly a linguistic ability, or is being able to see the image
important?

Recall that a decomposition of a visual question E, @ is a series of one or more subquestions

((@01, 001), (@02, 002) . . .) and their answers, with the constraint that the subquestions and answers
should have the property that ? 5 (0 |E, @) < ? 5 (0 |E, @, ((@01, 001), (@02, 002) . . .)) where ? 5 (·) repre-
sents probability assessed by a given vision-language model 5 (·) of the ground-truth answer 0. We
simplify this task to the task of producing a single subquestion @0 given a main visual question
E, @, and denote the process of decomposition with an arbitrary autoregressive language model 6(·)
as 36 (E, @) ! @0. We hereafter refer to the model 6(·) that generates the decomposition as the
decomposer. The subquestion is then answered by the vision-language model 5 (E, @0) = 00 to
produce the subquestion-answer pair (@0, 00). We call the question answering model the recomposer.
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Reasoning Quest ion: is this 
town in China? Percept ion 

Quest ion:

<exemplar demonstrations>

Decomposer
(optional)

what  l anguage are the signs 
written in?

Recomposer

Recomposer

engl ish

Quest ion: is this town in 
China? Shor t  Answer:

Context : what  l anguage are 
the signs written in? Engl ish

no

Model  Generated Decomposit ion Recomposit ion 

1
generate subquestion

2 answer subquestion

3 answer main question 
aided by decomposition

Figure 2: The procedure we use to generate a decomposition and use it as additional guidance during zero-shot
VQA. The recomposer can be any question answering model, and the decomposer can be any generative
language model, and some models can perform both roles, leading to self-talk. In experiments, we test if various
decomposer candidates can learn to write effective subquestions purely from seeing a demonstration of the task.

A-OKVQA[35] ArtVQA[36] OK-VQA[37] SLAKE[20]

VQA Model Decomposer E⇠' " E�⇠ # Err E⇠' " E�⇠ # Err E⇠' " E�⇠ # Err E⇠' " E�⇠ # Err Params

BLIP2 (3B)

Text 12.5 28.12 50.31 7.1 42.06 83.15 9.76 31.38 63.56 14.12 35.41 66.73 80.0M
Text 10.42 53.08 - 9.56 59.81 - 9.45 52.47 - 12.15 49.29 - 250.0M
Text 9.2 30.76 - 12.22 41.12 - 8.64 29.58 - 15.25 36.83 - 780.0M
Text 7.99 15.11 - 6.06 21.03 - 7.95 15.01 - 16.38 37.68 - 3.0B

Image+Text 7.81 10.9 - 4.36 13.08 - 7.42 12.29 - 15.96 28.9 - 3.0B
Text 9.9 24.43 - 8.05 30.37 - 9.73 22.46 - 17.09 39.94 - 11.0B

BLIP2 (11B)

Text 11.52 33.44 46.99 9 42.52 83.15 11.3 34.85 60.31 19.12 30.42 77.38 80.0M
Text 8.92 60.63 - 9.94 49.07 - 9.6 58.16 - 18.15 48.75 - 250.0M
Text 10.22 36.57 - 12.12 40.65 - 11.07 35.5 - 15.35 30.83 - 780.0M
Text 10.78 20.59 - 8.33 19.63 - 9.73 15.43 - 19.85 35.42 - 3.0B

Image+Text 14.13 26.36 - 10.61 21.03 - 13.54 25.06 - 20.71 30.42 - 11.0B
Text 12.45 30.64 - 8.05 28.97 - 12.42 27.11 - 18.51 32.5 - 11.0B

Table 2: Models of drastically different sizes and multimodal capability can produce effective subquestions, as
measured by E⇠' in Eq. (1), their ability to correct errors in a VQA Model. However, subquestions produced
by larger models are less likely mislead the consuming VQA model, as measured by E�⇠ in Eq. (2). “Text”
indicates a language-only decomposer, while “Image+Text” indicates a vision-language decomposer. “Params”
refers to the parameters of the decomposer. A pink highlight indicates when the decomposer and vqa model are
the same (the model is talking to itself).

We then measure the effectiveness of the decomposition by measuring the error correction rate:

E⇠' =

Õ#
8=1 1[ 5 (E8 , @8) < 08 ^ 5 (E8 , @8 , (@08 , 008)) = 08]Õ#

8=1 1[ 5 (E8 , @8) < 08]
(1)

where (E8 , @8 , 08) represent the 8-th image, question, and ground-truth answer respectively, and
@08 , 0

0
8 represent a subquestion generated by the decomposer model and the answer predicted for the

subquestion by the recomposer (VQA) model, and 1[2>=3] is an indicator function that is equal to 1
when 2>=3 is true and 0 otherwise. Simply put, E⇠' measures the number of instances on which 5 (·)
initially predicted a wrong answer, but switched to the correct answer after seeing the decomposition
generated by 6(·). Alternatively, this can be understood as the effectiveness of a decomposer model
at correcting the errors of the recomposer model. The error induction rate E�⇠ is the opposite:

E�⇠ =

Õ#
8=1 1[ 5 (E8 , @8) = 08 ^ 5 (E8 , @8 , (@08 , 008)) < 08]Õ#

8=1 1[ 5 (E8 , @8) = 08]
(2)

and measures how often the produced decompositions flipped an answer that was initially correct to
an incorrect answer. The decomposer can be the same as the recomposer if the model can do both
tasks by following different prompts, as in the case of instruction-tuned models [38].

Experiments & Discussion We use BLIP-2 [7] based on the FLAN-T5[34] as the question answering
model (recomposer). For the decomposers, we use FLAN-T5[34] models ranging in size from
80M parameters to 11B parameters, as well as the BLIP-2 models themselves. We use four VQA
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datasets from three domains: ArtVQA[36] (art), SLAKE[20] (medical), and A-OKVQA[35] and
OKVQA [37] (external knowledge VQA on natural images). We then carry out the procedure
illustrated in Fig. 2 for each combination of decomposer, recomposer, and dataset. We handcraft
three demonstrations of writing a subquestion for a question, in the form “Reasoning Question:

<question>? Perception Question: <subquestion>?” For each E, @ pair in a dataset, we prompt the
decomposer with the demonstration, followed by the question @ as in Fig. 2, and measure E⇠' as
in Eq. (1) and E�⇠ as in Eq. (2) for each dataset. We show the results in Tab. 2. We find that yes,
language models  13B parameters can learn to produce effective decompositions just by viewing
examples. Decomposer size correlates positively with E⇠' ('2 = 0.344), and negatively with E�⇠
('2 = .273) and the correlations are significant at U = 0.05 across a larger collection of eight datasets
used in Sec. 5. A human examination of the “subquestions” produced by smaller models shows that
many of them are gibberish and not properly formed questions at all. Despite this, they surprisingly
manage to maintain an ⇢⇠' that is sometimes higher than larger models. Finally, the ability to
decompose questions in the evaluated datasets may be a primarily linguistic ability in that it
is possible to ask effective subquestions about an image without being able to see the image, and
the difference in effectiveness between the Image+Text BLIP-2 models and the text-only FLAN-T5
models of a similar size is on average ⇡ 10% of the base error rate (but this may not be true of other
VQA datasets).

5 Selective Decomposition Works Better Than Naive Decomposition

One problem shows up in Sec. 4, which is that applying decompostions to every question can hurt
performance, by flipping answers that were initially correct to be incorrect. If we were able to
decompose only wrong answers, we would always see a net gain in performance due to the error
correction of decompositions. However, in a realistic setting, we do not know apriori that our answers
are wrong, and thus run the risk of flipping an answer that was initially correct to be incorrect by
applying a decomposition that is misleading. We call this the second-guessing problem.

E: Image
@: Question
g: Confidence Threshold

Attempt an initial answer.
0̂, ?(0̂) = recomposer(E, @)
Selectively decompose @ if
answer 0̂ is uncertain.
if ?(0̂) <= g:

@0 = decomposer(E,@)
00 = recomposer(E, @0)
Answer again.
0̂ = recomposer(E,@,@0, 00)

Figure 3: Pseudocode for selective decom-
position.

To deal with the second-guessing problem, we propose
following an intuitive human strategy: stick with your ini-
tial answer on questions you are confident about, and only
second-guess (apply a decomposition) for questions you
are not confident about. Language models can be surpris-
ingly well calibrated[39], meaning that the probability they
assess to an output sequence they produce is often well-
correlated with the probability that the produced output
sequence is the “correct” one for a given task. We make
use of this property to treat visual question answering as a
selective prediction [40] task, using the language models’s
confidence as a decision score to determine whether we
should apply a decomposition to a instance or stick with
the original answer.

We describe the algorithm in pseudocode in Fig. 3. The
selective decomposition procedure transforms VQA from

a single-step task to a two-step task given a decomposer model, a recomposer model, a confidence
threshold g, and a visual question pair E, @. An initial answer 0̂ and confidence ?(0̂) is solicited from
the recomposer model. If ?(0̂) < g, the decomposition procedure is invoked, and a subquestion
and answer pair (@0, 00) are generated by the decomposer and recomposer working together. The
recomposer model is then allowed to “second-guess” the inital answer 0̂ with the decomposition
(@0, 00) as additional context. The decomposer and recomposer can be the same model or different
models. We experiment with both scenarios. This introduces an extra hyperparameter g into the
inference procedure.

Experiments & Discussion In Fig. 4, we show the effect of different values of g on the accuracy of
selective decomposition with several decomposers. Across all datasets and all models, there is a wide
range of g (expressed as percentiles) for which selective decomposition improves predictive accuracy.
At the same time, we clearly demonstrate the second guessing problem in Fig. 4. Decomposing every

question often eventually leads to lower accuracy than decomposing no questions at all, because hal-
lucinations and misleading decompositions can flip an initially correct answer to an incorrect answer.
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Figure 4: Selective decomposition mitigates the problem of misleading decompositions. We decompose
questions based on model confidence in the initial answer, and show how accuracy initial rises past the baseline
as the model mostly second guesses wrong answers, and then drops below the baseline with no decompositions
(horizontal line) if too many questions initially answered correctly are second-guessed.

Figure 5: Decomposition is more effective
on non-natural image domains, and models
are also less confident in these domains. Size
of circles is proportional to parameter count.

In Tabs. 3 and 4, we show the highest possible net gain
achieved by selective question decomposition on three do-
mains by different decomposers. Selective decomposition
consistently improves predictive accuracy regardless of the
decomposer and domain. Net gains are larger on datasets
(passes t-test with U = 0.05) containing non-naturalistic
images and specialized domains (e.g. medical) than they
are on domains containing natural images. The mean op-
timal surprisal � (g) for second-guessing answers is lower
for non-natural domains (`� (g ) = 13.2 for the natural im-
age datasets vs `� (g ) = 9.0 for the medical and art datasets,
confirmed by t-test at U = 0.5). We further visualize this in
Fig. 5. This matches our expectations: you should second

guess yourself on domains you understand poorly more

than on domains you understand well. A linear regression
fit shows that larger decomposers correlate with larger net
gains ('2=0.365, '2=0.342 for natural image domains and
medical / art domains respectively, t-test with U=0.05).

We reformulate Winoground as a VQA task by turning each caption into a question with a boolean
yes / no answer (does “<caption>” describe the image?) on which chance accuracy is 50%. As visible
in Tab. 3, all BLIP-2 models perform below random chance, in agreement with previous results on
Winoground showing that it is extremely difficult for vision-language models. Surprisingly, after
decompositions produced by the relatively FLAN-T5-small/base models (80M/200M parameters),
the performance of BLIP-2 (13B) rises to significantly above chance (+18%). Upon inspection, many
of the decompositions produced by the model appear to be gibberish, yet remarkably, induce the
much larger 13B BLIP-2 model to correct over 30% of its initially wrong answers.

6 Literature Review

Task decomposition [5, 6, 41, 42] improves the performance of large language models on zero-shot
reasoning tasks. The only work so far to apply similar techniques for VQA is MM-CoT [43], but
it does not explore task decomposition with large vision-language models, choosing to finetune a
smaller model instead. The ability to use zero-shot task decompositions may be a property of model
scale, emerging at 60-200B parameters [44], or may be a property of large-scale pretraining on code
[45]. Such large vision-language models have only been developed recently due to advances in
vision-language alignment. The prevailing paradigm in vision-language pretraining was to build
vision-language models atop (relatively) small language models [26–29, 46] below 1B parameters.
Meanwhile, language models were being scaled from 3B-175B parameters [34, 47–50], with each
model family having at least one representative with > 10B parameters. Because vision-language
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Decomposer AokVQA[35] OkVQA[37] VQA Introspect[32] WinogroundVQA[23]

VQA Type Params Acc % " [ � (g) Acc % " [ � (g) Acc % " [ � (g) Acc % " [ � (g)

3B

T 80M

49.69

0.79 16 13.57

36.54

0.59 15 16.69

78.64

3.23 8 10.64

45.81

5.94 94 0.41
T 250M 0.44 11 17.58 0.46 13 18.05 3.1 7 13.24 22 99 0.19
T 780M 0.87 18 12.42 0.67 26 11.02 3.18 8 10.64 0 1 8.59
T 3B 1.14 31 8.13 0.97 23 12.09 3.5 16 5.87 0 1 8.59
I+T 3B 1.22 33 7.71 1.29 27 10.7 3.75 20 5.24 0 1 8.59
T¢ 7B 1.75 31 8.13 0.73 15 16.69 3.37 8 10.64 0.06 2 7.4
T 11B 0.7 11 17.58 1.03 22 12.47 3.6 14 6.27 0 1 8.59

13B

T 80M

53.36

1.14 18 14.91

39.79

1.15 18 15.68

78.93

3.46 8 11.81

46.5

6.94 95 0.22
T 250M 0.35 9 22.96 0.81 11 22.13 3.31 7 15.81 22.12 99 0.09
T 780M 0.52 14 17.93 1.15 18 15.68 3.46 8 11.81 0.06 2 3.83
T 3B 1.05 14 17.93 1.51 18 15.68 3.73 8 11.81 0.69 92 0.29
T¢ 7B 1.48 18 14.91 1.37 24 12.54 3.69 8 11.61 4.06 99 0.09
T 11B 1.66 25 10.95 1.66 21 13.98 3.68 8 11.81 0.06 14 1.64
I+T 11B 1.92 25 10.95 1.68 24 12.54 3.81 8 11.81 0 1 5.49

Table 3: Increases in accuracy produced by selective decomposition at the optimal second-guessing confidence
threshold g, on external knowledge QA and visual reasoning across several decomposers. � (g) = ;>62 ( 1

g )
is the surprisal of g, and [ is the percent of the questions in the dataset above � (g), or equivalently, below g.
T=FLAN-T5, I+T=BLIP-2 (based on FLAN-T5) and T¢=Galactica.

Decomposer ArtVQA[36] PathVQA[22] SLAKE[20] VQA Rad[21]

VQA Type Params Acc % " [ � (g) Acc % " [ � (g) Acc % " [ � (g) Acc % " [ � (g)

3B

T 80M

17.17

2.36 50 10.37

12.45

15.89 98 2.42

33.27

3.86 24 22.12

11.7

18.73 97 2.88
T 250M 2.68 50 10.37 11.93 69 14.79 4.05 26 16.62 17.57 69 16.57
T 780M 5.28 55 8.91 12.61 99 1.91 4.15 25 19.65 15.66 69 16.57
T 3B 2.44 50 10.37 11.56 98 2.42 3.96 38 7.33 18.82 89 5.76
I+T 3B 2.13 29 17.84 11.34 69 14.79 5.84 61 4.71 18.06 98 1.6
T¢ 7B 2.91 30 17.47 13.9 99 1.91 6.13 50 5.71 19.62 94 4.44
T 11B 3.15 55 8.91 14.08 98 2.42 5.18 31 10.83 19.17 98 1.6

13B

T 80M

16.85

4.33 63 12.09

5.56

23.4 99 1.39

22.62

8.95 45 14.45

5.12

23.89 99 2.95
T 250M 4.41 41 19.4 18.46 99 1.39 7.54 39 19.48 23.67 99 2.95
T 780M 5.91 84 6.67 22.62 99 1.39 6.03 41 17.08 24.02 99 2.95
T 3B 4.57 37 20.79 21.33 99 1.39 8.67 44 14.8 23.84 99 2.95
T¢ 7B 5.12 60 13.12 21.07 99 1.39 8.29 39 19.48 24.47 99 2.95
T 11B 3.94 39 20.05 21.56 99 1.39 9.52 44 14.8 26.25 99 2.95
I+T 11B 5.98 86 6.35 20.85 99 1.39 10.37 42 16.08 25.13 99 2.95

Table 4: Increases in accuracy produced by selective decomposition at the optimal second-guessing confidence
threshold g, across two domains (medical/art) and several decomposers. � (g) = ;>62 ( 1

g ) is the surprisal of g, and
[ is the percent of the questions in the dataset above � (g), or equivalently, below g. T=FLAN-T5, I+T=BLIP-2
(based on FLAN-T5) and T¢=Galactica.

pretraining typically requires full model training, aligning these multi-billion parameter models to the
visual modality was prohibitively computationally expensive. However, recent discoveries [51, 52]
motivated by earlier work with frozen models [53] have shown that the representation spaces of
vision models and large-language models are surprisingly close, and rough alignment can be achieved
with adapters [15] or linear mapping layers while keeping the language model frozen, and more
advanced techniques have given rise to vision-LLMs [7–9]. Our work is closely related to the visual
question generation paradigm of [11, 54, 55]. However, we direct our question generation to focus
on decompositions rather than general questions.

7 Conclusion
We show that question decomposition is already a viable strategy that can be used to implement a more
natural approach to VQA. Without any training, instruction-tuned VLMs can learn to produce and
use decompositions from a few demonstrations of the task. This approach has many possible future
directions. For example, we only consider two-step approaches for visual question answering, where
we “hardcode” the depth of the decomposition. A natural next step would be to extend the two-step
approach to a multi-step approach, which remains unexplored for large vision-language models in an
open-world visual question answering setting. Second, in-context learning has limitations. Would
models benefit from being trained to produce and consume decompositions?
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