A Appendix

A.1 Implementation Details

In this section, we first introduce the dataset. We then provide the network architecture details of
MATTE. The hyperparameter selection criteria and the training details are summarized.

A.1.1 Dataset

We use four domain datasets to train our unsupervised model, i.e., Imdb, Yelp, Amazon and Ya-
hoo, and follow the data split provided by |Li et al,[2019]]. The datasets can be downloaded via
https://github.com/cookielee77/DAST. The dataset details can be found in Table [T, We set the
sequence length L as 25, which is the 90 percentile of the sentence length of the training dataset.
Therefore, shorter sentences are padded and longer sentences are clipped. The vocabulary size is
set to 10000. For the sentiment transfer, we collect 100 positive sentences in dev set based on their
sentiment labels to derive Syanster to flip the sentiment of the negative sentences in the test set, and
vice versa. For the tense transfer, we use stanfordnlp tool E] to identify the tense for the main verb,
then collect 100 sentences of present tense in dev set to derive Syanster to flip the past-tense sentences.

A.1.2 Model Architecture

We summarize our network architecture below and describe it in detail in Table[7]

Encoder: According to [Xu et al.|[2020], the encoder is fed with a text span x[t; : t; +m] extracted
from the original sentence x, where ¢; is a random word position index, m is set to 10 if £; + m is
smaller than L. Hyq is the word embedding dimension, set to 256. Hjyy, is the hidden states of
LSTM, set to 1024. H, is the dimension of the latent variable, set to 80. The output of the encoder
is the p, o and z. All of them are in shape [BS, H,].

Decoder: Decoder is fed with the input sentence span and the generated latent variable. The final
reconstructed sentence span is one timestamp delay compared to the input span, i.€., X¢, 4-1:(; +-1)4-m-
This is generated by applying beam search to the sequence of output probability over the vocabulary
V. The Liecon is to calculate the cross-entropy loss between the output probability and target
sequence span.

Content Flow r.: We apply Deep Dense Sigmoid Flow (DDSF) [Huang et al.,[2018]] to derive the
content noise term. To incorporate the domain information, we leverage the domain embedding
(after MLP) to parameterize the flow model.

Style Flow rs: We apply spline flow [Durkan et al., 2019] to derive the noise term. Similarly, we
use the conditional flow E] with extra input. The conditional input is the combination of content
variable and domain embedding. Specially, they are concatenated firstly and the result are fed
into a MLP with Tanh activation to derive a attention score o The conditional input is actually the
doctProdcut.

A.1.3 Training

Training details. The models were implemented in PyTorch 2.0. and Python 3.9. The VAE network
is trained for a maximum of 25 epochs and a mini-batch size of 64 is used. We use early stops if the
validation reconstruction loss does not decrease for three epochs. For the encoder, we use the Adam
optimizer and the learning rate of 0.001. For the decoder, we use SGD with a learning rate of 0.1.
For the content and style flow, we use Adam optimizer and the learning rate is 0.001. We set three
different random seeds and report the average results.

Training objective. The VAE-based model is mainly trained with Lecon and Lyag. We use a training
trick to better jointly train the other three objectives. The Lgparsity could cram the information of s to
c, while the L. sk is used to prevent the ill-posed situation where s have zero influence. Therefore,

Shttps://stanfordnlp.github.io/stanfordnlp/
°The implementation refers to ConditionedSpline in https://docs.pyro.ai/en/stable/_modules/
pyro/distributions/transforms/spline.html
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Module Description Output

1. Encoder Encoder for Input sentence

Input x¢, .4, +m random span of sentence

WordEmb get word embedding BS x m X Hyo
Bi-LSTM Bi-direction, 2layers BS x m x Hygm
Average Pooling sentencet-level Rep. BS x Higm
MLP wand o BS x (2- H,)
reparameterization Sampling BS x H,

2. Domain Embedding Embedding Layer

Inputu number of domain — ugjp, BS X ugim

3. Content Flow 7.

Input: c,u domain as flow conditional input

MLP u — conditional context BS x |H,,|
DDSF get content noise term ¢ BS X Cgim

4. Style Flow

Input: c,u,s

content and domain as flow context

Concatenate combine ¢ and u BS X (Cdim + Udim)
MLP Tanh activation, get attention score @« BS X cgim
Element-wise Multiplication a ®c BS X Cgim
SplineFlow get style noise term s BS X sdim

5. Decoder 7,

Input: z, X¢, .4, +m
Bi-LSTM
MLP output word probability

generate the next token
BS x m x Higm
BSxmxV

Table 7: MATTE overall architecture. DDSF is deep dense sigmoid flow, and SplineFlow is neural spline flow.
m is the length of randomly extracted text span from input sentence x.

Bi-direction, 2layers

we involve both Lgyarsicy and Le.mak at the beginning of the training phrase. For Lpagial, it is used to
sparsify the influence intersection but their separate influences change very frequently in the initial
training stages. So we involve it after 3 epochs.

Computing hardware and running time. We used a machine with the following CPU specifications:
AMD EPYC 7282 CPU. We use NVIDIA GeForce RTX 3090 with 24GB GPU memory. It costs
approximately 190ms to run our model on this machine per epoch.

A.2 Additional Results

This section presents additional results on the hyperparameter sensitivity and the ablation studies on
more datasets.

A.2.1 Hyperparameter Sensitivity

We discuss the effect of the three loss weights Agparsity>Apartial a0d Acmask in the training objective.
We have performed a grid search of Agparsiy € [1E-4,1E-3,1E-2], Aparial € [3E-5,3E-3,3E-1] and
Acmask € [1E-4,1E-3,1E-2]. The best configuration is [Asparisty, Apartials Ac-mask] = [1E-4,3E-3,1E-4].
The model performance is relatively sensitive to Asparsity, SO We plot the sentiment accuracy and BLEU
as a function of Agparsity in Figure @
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Figure 6: The Sentiment Acc (left) and BLEU (right) with different Agparsiy. Among the four datasets, sentiment
acc generally decreases as the Agparsity becomes larger; BLEU increases instead. This observation aligns with our
content identifiability theory. We determine the Asparsity With the best G-score, i.e., 1E-4.

A.2.2 Ablation Results on Amazon and Yahoo Datasets

We show the ablation study of the Amazon and Yahoo datasets in Table[8] The full model achieves
the best G-score and PPL on the two datasets. CausalDep improves the BLEU and PPL. Agpuity
greatly improves the content preservation at the cost of sentiment acc. After incorporating the Lpaiial
and L. _nask, the sentiment acc is recovered.

Amazon Yahoo

Model Ace() BLEU(1) G-score(t) PPL(]) | Ace(t) BLEU(1) G-score(t) PPL(})
Backbone 3260  41.08 30.08 77.61 4392 2544 20.28 76.28

Indep [Kong et al.|2022] 48.80%  39.50 31.76% 7795 | 5170  23.44 21.124 56.954
CausalDep 33504 45254 32544 66.98% | 4150  31.55% 21.394 64.29*
W. / Loparsivy 27.10  62.73° 34732 63374 | 2732 4821  25.16° 60.034
‘W. / Lparsial 33.10 58.545 34.04 64.42 38.12% 4174 28.032 58.042
W. / Lemask (Full) 34504 5225 35732 63.37° | 38.45%  42.40° 29.014 56.12°

Table 8: Ablation results on sentiment transfer on two domains. CausalDep incorporates style flow rs to
model dependency of c on s, while Indep assumes the independence between the two variables. * marks the
improvements overBackbone, while © over the CausalDep.

A.3 Semantic Preservation Measurement by CTC score

As BLEU has limitations in capturing semantic relatedness beyond literal word-level overlap, we
adopt CTC score [Deng et alJ, 2021] as a complementary evaluation for semantics preservation
measurement. For the semantics alignment from a to b, CTC considers the matching embeddings,
i.e., maximum cosine similarity of all the tokens in a with the tokens in b, and vice versa. Then, the
final semantic preservation is in F1-style definition with one direction result as precision, and the
other one as recall. The evaluation results of all the baselines and MATTE are shown in Table
The CTC score still favours Optimus and MATTE, with most inferior results on 3-VAE, which are
similar trends under the BLEU evaluation schema. Admittedly, the CTC score differences are less
discriminative than BLEU - this phoneme is also observed in |Liu et al.| [2022].

A.4 Diversity measurements for generated sentences

To further demonstrate the generation degradation issue—generate oversimplified and repetitious
sentences, we use diversity-2 [Li et al., 2016]], the ratio of distinct two-grams in all the two-grams in
the generated sentences to evaluate the transferred sentences. The diversity-2 for original sentences is
also included for better comparison. The results in Table[I0]show that all the other methods except
for 5-VAE generated sentences with similar diversity-2 as the original sentences, but the sentences
generated by 3-VAE have much lower diversity than the original ones.
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IMDB Yelp Amazon Yahoo
BGST 0.468 0.458 0472  0.458
B-VAE 0.436  0.433 0433 0413
JointTrain ~ 0.456 0.462 0.455 0.437
CPVAE 0.462 0.463 0461 0.443
GPT2-FT  0.459 0.459 0.458  0.448
Optimus 0.465 0.468 0.465  0.446
Matte 0.465 0.464 0.466  0.452

Table 9: CTC score, a complementary evaluation for semantics preservation. [3-VAE displays the least
impressive performance, and Optimus and Matte exhibit the overall best results.

Dataset IMDB (0.34) Yelp (0.63) Amazon (0.64) Yahoo(0.44)

B-VAE 0.11 0.46 0.37 0.22
JointTrain  0.21 0.59 0.56 0.37
CPVAE 0.32 0.59 0.57 0.45
MATTE 0.32 0.62 0.61 0.45

Table 10: Diversity-2 for the transferred sentences. Diversity for the original sentences is included in the bracket
for comparison. 3-VAE has significantly fewer distinct 2-gram than original datasets. This results are consistent
with evaluation results on BLEU.

A.5 Proof for Theorem[I]

The original Assumption [I]and Theorem|I]are copied below for reference.
Assumption 1 (Content identification).
i. g is smooth and invertible and its inverse g~
ii. For all i € {1,...,d;}, there exist {Z(Z)}Lg:i’l‘l and T € 7T, such that
span({J 4 (z)); . lég:i'l‘l) = Rg:y: and [J,(z)T);. € RZZL B

Lis also smooth.

iii. For every pair (c;,,s;,) with j. € [d.] and js € {d. +1,...,d.}, the influence of s;, is
sparser than that of c;_, i.e., |G. ;. |, > 1G: 4. |lo-
Theorem 1. We assume the data-generating process in Equation |I| with Assumption If for
given dimensions (d., ds), a generative model (pz, ps|¢, ) follows the same generating process and
achieves the following objective:

arg min Z HQAJQ
}

Pe&sPs,9 ja€{dc+1,...,dx

. subject to: px(x) = px(x), Vx € X, 3)

then the estimated variable ¢ is an one-to-one mapping of the true variable c. That is, there exists an
invertible function h.(-) such that ¢ = h.(c).

Proof. We first define the notation z = [c, s] and the indeterminacy function:
hi=g"og,

which is an invertible function & : Z — Z as g is invertible by Assumption According to the
chain rule, we have the following relation among the Jacobian matrices:

J;(2) = J,(2)T, (2). 8)

We define the support notations as follows:

G = supp(J,(z)),
G = supp(J4(2)),
T := supp(J;, ' (2)).



In the following, we will show that (j., js) ¢ T forany j. € {1,...,d.}and js € {d.+1,...,d. +
ds}. Thatis, [J;,(2)];.;, = 0, forany j. € {1,...,d.} and js € {d. +1,...,d. + ds}, which
implies that c is not influenced by S.

Because of Assumption forany ¢ € {1,...,d,, + dy,}, there exists {Z(f) ‘eg:i,l;\, such that
span({J,(z9);.. Igzi,:l) — R .

Since {J,(z9);, }lgl | forms a basis of R * , for any jo € G, ., we can express canonical basis
vector e, € Rdi _as:
=Y - I (z); ©)
Legi.:
where ay € R is a coefficient.

Also, following Assumption there exists a deterministic matrix T where T}, ;, # 0 iff
(j1,j2) € T and

Ty =, T= Y ar-Jy(z9), T eRE (10)
LegG;,. '

where € is because each element in the summation belongs to Rgf .

Therefore,
Vji€g, T, € Rg?:.
Equivalently, we have:
V(i,j) € G, {i}xT,.CG. (11)
As both J, and J; are invertible, Jj,(z) is an invertible matrix and thus has a non-zero determinant.
Expressmg Jn(z ) with the Leibniz formulae gives:

d.

det(Jp(z)) = Z sign(o H z)0(5),; | # 0, (12)

0€Pa, 7j=1

where P, is the set of all d.-permutations.

Equationindicates that there exists o € Pg_, such that H?;l J4(2)0(j),; # 0. Equivalently, we
have

Vi€ ld), (0(5),7) € T (13)
Therefore, for a specific j; € {d. +1,...,d.}, it follows that (c(j;), js) € T. Further, Equation|L1]
X

S) J
shows that for any i, € [d.], s.t., (iz,0(js)) € G, we have {i,} X T5(;,),. C G. Together, it follows
that

(iz,0(j3)) €G = (in,js) €G. (14)

Equation|14|suggests that the column o (j;z) of the true generating function support G is included in
the column j; of the estimated generating function support G. Together with Assumption , it

follows that
> =D DR A (15)

Js€{de+1,....d: } Js€{dc+1,....d:}

g. Js

)

where the permutation o (-) connects the indices of s and those of §. We note that Equatlon.ls a
lower-bound of the objective Equation 3] which can be attained by a minimizer § = g.

In the following, we show by contradiction that the support of J; ' (z) does not contain (j., 5s), for
any j. € [d.] and any j; € {d. + 1,...,d.},i.e., (Je,j5) ¢ T.
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We suppose that a specific (5., j%) € T, where j. € [d.] and any j; € {d.+1,...,d.}. We note that
the argument for Equation|14|also applies to (j1,j2) € T for any j1, j2 € [d,]. Thus, we would have

(JerJs) €T = (ix,J2) € G, Vi€ {i € [ds] : (iz,J.) € G}. (16)
It would follow that
> ng,j.g .t ng,j; e > 1905 llo + ng,jé 0
Js€{de+1,...,d }\{jt} js€{de+1,....d- 1\ {45}

= Z ||g:7f7(j§)

Js€{de+1,.,dz 1\ {44}

z > G-t llo + 1G-321l0

js€{de+1,...,d- 1\ {45}

Z 2 e

(1) js€{dc+1,....d-}

0 + Hg,a(jg) U g,g; o

:1j5H07

a7
where the inequality (1) is due to Assumption that the influence of ¢ on x is denser than that of
S.

However, as discussed above, there exists an optimizer that attains the lower-bound Equation [T3]
Equatlon contradicts the minimization objective Equation l Therefore, (j.,4) & T, for any
ji. € |do] and any ji € {d. +1,...,d.}.

As discussed above, this implies that c is not influenced by $. Further, it follows from the invertibility
of h(-) that [Jj(2)];, ;. =0, forany j: € {1,...,d.} and js € {d.+1,...,d.+ds}, which implies
that ¢ is not influenced by s. These two conditions and the invertibility of h(-) imply that ¢ and ¢
form a one-to-one mapping.

O

A.6 Proof for Theorem 2]

The original Assumption [iii.] and Theorem 2] are copied below for reference.

Assumption 2 (Partially intersecting influence supports). For every pair (c;,, $;,), the supports of
their influences on x do not fully intersect, i.e., ||G. ;. N G.; ||, < min{[|G. ;. |l, 1G..5.1lo}-

Theorem 2. We follow the data-generating process Equation[I|and Assumption[Ijand Assumption 2]
We optimize the objective function in Equation|3|together with

min E HgA Je g: Ja
sJC WJ S :
(]C;]S)e{17adc}><{dc 17---;dz}

The estimated style variable § is a one-to-one mapping to the true variable s. That is, there exists an
invertible mapping hs(-) between s and §, i.e., § = hs(s).

“

Proof. As shown in Section[A.5] there exists a d.-permutation o (-) such that Vj € [d.], ( (4),7) €
Also, we have shown in Theorem|[I]that (jc, js) ¢ T for jc € [dc] and js € {dc + 1,...,d.}, wh1ch
implies that o(j;) € {d. + 1,...,d.}. Thus, it follows that for any j: € [d.], o(j ) [dc]

In the following, we show by contradiction that (js,j2) ¢ T for any js € {d. + 1,...,d,} and
je € |dc]. We suppose that (57, j%) € T. Analogous to Equation [T6] we would have that

(1, 4) €T = (ix,§2) €G, Vip € {i € [dy] : (ia, 51) € G} (18)
It would follow that gﬁ,jé D g:7,,(jé) U g%. Also, to attain the objective Equationin Theorem
we have ji =07 1(jl) € {d. + 1,...,d.}, s.t, QA:,jg = G. ;.. It would follow that QA:,jé 2 QA:J»;.
Further, we would have

ng NG, = |G-

19)

-6
0 H “sllo

0 > Hg,a'(_]'f)mg,
(2)
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where (2) is due to Assumption 2]
We note that the lower-bound for Equation [4]is

> s, 2 > 1G-10(Ge) NV Ge0se)

(jévjé)e{ly--~7dc}X{dc+17-~7dz} (jévj§)€{17~~-adc}X{dc+17~--7dz}

0
(20)
- > 1G:.5. N G.,j.,

(Jesds)€{L,..ide} x{dc+1,....d2}

0°
2n

which can be achieved by G = G. Note that the lower-bounds for both Equation [3{and Equation E| can

be attained simultaneously by G = G. Hence, optimizing the sum of the two objectives does not alter
the optimal value of either.

Applying a similar argument as that in Equation[T3] we would have that

S fewnal,

(ja,jg)é{l,...,dc}x{dc-i-l,.“,dz}

S e i,
(Je,ds) €41, de} x{de+1,...,dz \{(45.95)}

= > 19:.0e) N Geotinllo + ng,jg NGeitl, (22)
e i) €L de b Lt e NG90}

> ) 1.0y NGt g + 906 N G|

@) (i) {1,de} x {det1,mmnde N{(2,50)}

= > 1G:,5. N G..;.

(Jerds)E{L, . de} x{de+1,....d2 }

0>

where (3) is due to Equation[T9] Hence, this was not the minimizer of Equation[d] By contradiction,
we have that (js,j2) ¢ T for any j; € {d. + 1,...,d.} and jo € [d.]. This implies that s is
not influenced by ¢. Further, it follows from the invertibility of h(-) that [J(2z)];, ;. = O, for any
js € {de+1,...,d.} and j. € [d.], which implies that § is not influenced by c. These two conditions
and the invertibility of h(-) imply that § and s form a one-to-one mapping.

O
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