
A Appendix

A.1 Implementation Details

In this section, we first introduce the dataset. We then provide the network architecture details of
MATTE. The hyperparameter selection criteria and the training details are summarized.

A.1.1 Dataset

We use four domain datasets to train our unsupervised model, i.e., Imdb, Yelp, Amazon and Ya-
hoo, and follow the data split provided by Li et al. [2019]. The datasets can be downloaded via
https://github.com/cookielee77/DAST. The dataset details can be found in Table 1. We set the
sequence length L as 25, which is the 90 percentile of the sentence length of the training dataset.
Therefore, shorter sentences are padded and longer sentences are clipped. The vocabulary size is
set to 10000. For the sentiment transfer, we collect 100 positive sentences in dev set based on their
sentiment labels to derive stransfer to flip the sentiment of the negative sentences in the test set, and
vice versa. For the tense transfer, we use stanfordnlp tool 8 to identify the tense for the main verb,
then collect 100 sentences of present tense in dev set to derive stransfer to flip the past-tense sentences.

A.1.2 Model Architecture

We summarize our network architecture below and describe it in detail in Table 7.

Encoder: According to Xu et al. [2020], the encoder is fed with a text span x[t1 : t1+m] extracted
from the original sentence x, where t1 is a random word position index, m is set to 10 if t1 +m is
smaller than L. Hword is the word embedding dimension, set to 256. Hlstm is the hidden states of
LSTM, set to 1024. Hz is the dimension of the latent variable, set to 80. The output of the encoder
is the µ, σ and z. All of them are in shape [BS,Hz].

Decoder: Decoder is fed with the input sentence span and the generated latent variable. The final
reconstructed sentence span is one timestamp delay compared to the input span, i.e., xt1+1:(t1+1)+m.
This is generated by applying beam search to the sequence of output probability over the vocabulary
V . The Lrecon is to calculate the cross-entropy loss between the output probability and target
sequence span.

Content Flow rc: We apply Deep Dense Sigmoid Flow (DDSF) [Huang et al., 2018] to derive the
content noise term. To incorporate the domain information, we leverage the domain embedding
(after MLP) to parameterize the flow model.

Style Flow rs: We apply spline flow [Durkan et al., 2019] to derive the noise term. Similarly, we
use the conditional flow 9 with extra input. The conditional input is the combination of content
variable and domain embedding. Specially, they are concatenated firstly and the result are fed
into a MLP with Tanh activation to derive a attention score α The conditional input is actually the
doctProdcut.

A.1.3 Training

Training details. The models were implemented in PyTorch 2.0. and Python 3.9. The VAE network
is trained for a maximum of 25 epochs and a mini-batch size of 64 is used. We use early stops if the
validation reconstruction loss does not decrease for three epochs. For the encoder, we use the Adam
optimizer and the learning rate of 0.001. For the decoder, we use SGD with a learning rate of 0.1.
For the content and style flow, we use Adam optimizer and the learning rate is 0.001. We set three
different random seeds and report the average results.

Training objective. The VAE-based model is mainly trained with Lrecon and LVAE. We use a training
trick to better jointly train the other three objectives. The Lsparsity could cram the information of s to
c, while the Lc-mask is used to prevent the ill-posed situation where s have zero influence. Therefore,

8https://stanfordnlp.github.io/stanfordnlp/
9The implementation refers to ConditionedSpline in https://docs.pyro.ai/en/stable/_modules/

pyro/distributions/transforms/spline.html
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Module Description Output

1. Encoder Encoder for Input sentence
Input xt1:t1+m random span of sentence
WordEmb get word embedding BS ×m×Hword

Bi-LSTM Bi-direction, 2layers BS ×m×Hlstm

Average Pooling sentencet-level Rep. BS ×Hlstm

MLP µ and σ BS × (2 ·Hz)

reparameterization Sampling BS ×Hz

2. Domain Embedding Embedding Layer
Input u number of domain → udim BS × udim

3. Content Flow rc

Input: c,u domain as flow conditional input
MLP u → conditional context BS × |Hrc |
DDSF get content noise term c̃ BS × cdim

4. Style Flow rs

Input: c,u, s content and domain as flow context
Concatenate combine c and u BS × (cdim + udim)

MLP Tanh activation, get attention score α BS × cdim

Element-wise Multiplication α⊙ c BS × cdim

SplineFlow get style noise term s̃ BS × sdim

5. Decoder rs

Input: z, xt1:t1+m generate the next token
Bi-LSTM Bi-direction, 2layers BS ×m×Hlstm

MLP output word probability BS ×m× V
Table 7: MATTE overall architecture. DDSF is deep dense sigmoid flow, and SplineFlow is neural spline flow.
m is the length of randomly extracted text span from input sentence x.

we involve both Lsparsity and Lc-mask at the beginning of the training phrase. For Lpartial, it is used to
sparsify the influence intersection but their separate influences change very frequently in the initial
training stages. So we involve it after 3 epochs.

Computing hardware and running time. We used a machine with the following CPU specifications:
AMD EPYC 7282 CPU. We use NVIDIA GeForce RTX 3090 with 24GB GPU memory. It costs
approximately 190ms to run our model on this machine per epoch.

A.2 Additional Results

This section presents additional results on the hyperparameter sensitivity and the ablation studies on
more datasets.

A.2.1 Hyperparameter Sensitivity

We discuss the effect of the three loss weights λsparsity,λpartial and λc-mask in the training objective.
We have performed a grid search of λsparsity ∈ [1E-4,1E-3,1E-2], λpartial ∈ [3E-5,3E-3,3E-1] and
λc-mask ∈ [1E-4,1E-3,1E-2]. The best configuration is [λsparisty, λpartial, λc-mask] = [1E-4,3E-3,1E-4].
The model performance is relatively sensitive to λsparsity, so we plot the sentiment accuracy and BLEU
as a function of λsparsity in Figure 6.
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Figure 6: The Sentiment Acc (left) and BLEU (right) with different λsparsity. Among the four datasets, sentiment
acc generally decreases as the λsparsity becomes larger; BLEU increases instead. This observation aligns with our
content identifiability theory. We determine the λsparsity with the best G-score, i.e., 1E-4.

A.2.2 Ablation Results on Amazon and Yahoo Datasets

We show the ablation study of the Amazon and Yahoo datasets in Table 8. The full model achieves
the best G-score and PPL on the two datasets. CausalDep improves the BLEU and PPL. λsparsity
greatly improves the content preservation at the cost of sentiment acc. After incorporating the Lpartial
and Lc-mask, the sentiment acc is recovered.

Amazon Yahoo

Model Acc(↑) BLEU(↑) G-score(↑) PPL(↓) Acc(↑) BLEU(↑) G-score(↑) PPL(↓)

Backbone 32.60 41.08 30.08 77.61 43.92 25.44 20.28 76.28
Indep [Kong et al., 2022] 48.80▲ 39.50 31.76▲ 77.95 51.70 23.44 21.12▲ 56.95▲

CausalDep 33.50▲ 45.25▲ 32.54▲ 66.98▲ 41.50 31.55▲ 21.39▲ 64.29▲

:w. / Lsparsity 27.10 62.73△ 34.73△ 63.37△ 27.32 48.21△ 25.16△ 60.03△

:w. / Lpartial 33.10 58.54△ 34.04 64.42 38.12△ 41.74 28.03△ 58.04△

:w. / Lc-mask(Full) 34.50△ 52.25 35.73△ 63.37△ 38.45△ 42.40△ 29.01△ 56.12△

Table 8: Ablation results on sentiment transfer on two domains. CausalDep incorporates style flow rs to
model dependency of c on s, while Indep assumes the independence between the two variables. ▲ marks the
improvements overBackbone, while △ over the CausalDep.

A.3 Semantic Preservation Measurement by CTC score

As BLEU has limitations in capturing semantic relatedness beyond literal word-level overlap, we
adopt CTC score [Deng et al., 2021] as a complementary evaluation for semantics preservation
measurement. For the semantics alignment from a to b, CTC considers the matching embeddings,
i.e., maximum cosine similarity of all the tokens in a with the tokens in b, and vice versa. Then, the
final semantic preservation is in F1 -style definition with one direction result as precision, and the
other one as recall. The evaluation results of all the baselines and MATTE are shown in Table 9.
The CTC score still favours Optimus and MATTE, with most inferior results on β-VAE, which are
similar trends under the BLEU evaluation schema. Admittedly, the CTC score differences are less
discriminative than BLEU – this phoneme is also observed in Liu et al. [2022].

A.4 Diversity measurements for generated sentences

To further demonstrate the generation degradation issue–generate oversimplified and repetitious
sentences, we use diversity-2 [Li et al., 2016], the ratio of distinct two-grams in all the two-grams in
the generated sentences to evaluate the transferred sentences. The diversity-2 for original sentences is
also included for better comparison. The results in Table 10 show that all the other methods except
for β-VAE generated sentences with similar diversity-2 as the original sentences, but the sentences
generated by β-VAE have much lower diversity than the original ones.
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IMDB Yelp Amazon Yahoo
BGST 0.468 0.458 0.472 0.458
β-VAE 0.436 0.433 0.433 0.413
JointTrain 0.456 0.462 0.455 0.437
CPVAE 0.462 0.463 0.461 0.443
GPT2-FT 0.459 0.459 0.458 0.448
Optimus 0.465 0.468 0.465 0.446
Matte 0.465 0.464 0.466 0.452

Table 9: CTC score, a complementary evaluation for semantics preservation. β-VAE displays the least
impressive performance, and Optimus and Matte exhibit the overall best results.

Dataset IMDB (0.34) Yelp (0.63) Amazon (0.64) Yahoo(0.44)
β-VAE 0.11 0.46 0.37 0.22
JointTrain 0.21 0.59 0.56 0.37
CPVAE 0.32 0.59 0.57 0.45
MATTE 0.32 0.62 0.61 0.45

Table 10: Diversity-2 for the transferred sentences. Diversity for the original sentences is included in the bracket
for comparison. β-VAE has significantly fewer distinct 2-gram than original datasets. This results are consistent
with evaluation results on BLEU.

A.5 Proof for Theorem 1

The original Assumption 1 and Theorem 1 are copied below for reference.
Assumption 1 (Content identification).

i. g is smooth and invertible and its inverse g−1 is also smooth.

ii. For all i ∈ {1, . . . , dx}, there exist {z(ℓ)}|Gi,:|
ℓ=1 and T ∈ T , such that

span({Jg(z
(ℓ))i,:}

|Gi,:|
ℓ=1 ) = Rdz

Gi,:
and [Jg(z

(ℓ))T]i,: ∈ Rdz

Ĝi,:
.

iii. For every pair (cjc , sjs) with jc ∈ [dc] and js ∈ {dc + 1, . . . , dz}, the influence of sjs is
sparser than that of cjc , i.e., ∥G:,jc∥0 > ∥G:,js∥0.

Theorem 1. We assume the data-generating process in Equation 1 with Assumption 1. If for
given dimensions (dc, ds), a generative model (pĉ, pŝ|ĉ, ĝ) follows the same generating process and
achieves the following objective:

argmin
pĉ,pŝ,ĝ

∑
jŝ∈{dc+1,...,dz}

∥∥∥Ĝ:,jŝ

∥∥∥
0

subject to: px̂(x) = px(x), ∀x ∈ X , (3)

then the estimated variable ĉ is an one-to-one mapping of the true variable c. That is, there exists an
invertible function hc(·) such that ĉ = hc(c).

Proof. We first define the notation z = [c, s] and the indeterminacy function:

h := ĝ−1 ◦ g,

which is an invertible function h : Z → Ẑ as g is invertible by Assumption 1-i.. According to the
chain rule, we have the following relation among the Jacobian matrices:

Jĝ(ẑ) = Jg(z)J
−1
h (z). (8)

We define the support notations as follows:

G := supp(Jg(z)),

Ĝ := supp(Jĝ(ẑ)),

T := supp(J−1
h (z)).
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In the following, we will show that (jc, jŝ) /∈ T for any jc ∈ {1, . . . , dc} and jŝ ∈ {dc +1, . . . , dc +
ds}. That is, [J−1

h (z)]jc,jŝ = 0, for any jc ∈ {1, . . . , dc} and jŝ ∈ {dc + 1, . . . , dc + ds}, which
implies that c is not influenced by ŝ.

Because of Assumption 1-ii., for any i ∈ {1, . . . , dv1 + dv2}, there exists {z(ℓ)}|Gi,:|
ℓ=1 , such that

span({Jg(z
(ℓ))i,:}

|Gi,:|
ℓ=1 ) = Rdz

Gi,:
.

Since {Jg(z
(ℓ))i,:}

|Gi,:|
ℓ=1 forms a basis of Rdz

Gi,:
, for any j0 ∈ Gi,:, we can express canonical basis

vector ej0 ∈ Rdz

Gi,:
as:

ej0 =
∑
ℓ∈Gi,:

αℓ · Jg(z
(ℓ))i,:, (9)

where αℓ ∈ R is a coefficient.

Also, following Assumption 1-ii., there exists a deterministic matrix T where Tj1,j2 ̸= 0 iff
(j1, j2) ∈ T and

Tj0,: = e⊤j0T =
∑
ℓ∈Gi,:

αℓ · Jg(z
(ℓ))i,:T ∈ Rdz

Ĝi,:
, (10)

where ∈ is because each element in the summation belongs to Rdz

Ĝi,:
.

Therefore,

∀j ∈ Gi,:,Tj,: ∈ Rdz

Ĝi,:
.

Equivalently, we have:

∀(i, j) ∈ G, {i} × Tj,: ⊂ Ĝ. (11)

As both Jg and Jĝ are invertible, Jh(z) is an invertible matrix and thus has a non-zero determinant.
Expressing Jh(z) with the Leibniz formulae gives:

det(Jh(z)) =
∑

σ∈Pdz

sign(σ)
dz∏
j=1

Jg(z)σ(j),j

 ̸= 0, (12)

where Pdz is the set of all dz-permutations.

Equation 12 indicates that there exists σ ∈ Pdz
, such that

∏dz

j=1 Jg(z)σ(j),j ̸= 0. Equivalently, we
have

∀j ∈ [dz], (σ(j), j) ∈ T . (13)

Therefore, for a specific jŝ ∈ {dc + 1, . . . , dz}, it follows that (σ(jŝ), jŝ) ∈ T . Further, Equation 11
shows that for any ix ∈ [dx], s.t., (ix, σ(jŝ)) ∈ G, we have {ix} × Tσ(jŝ),: ⊆ Ĝ. Together, it follows
that

(ix, σ(jŝ)) ∈ G =⇒ (ix, jŝ) ∈ Ĝ. (14)

Equation 14 suggests that the column σ(jŝ) of the true generating function support G is included in
the column jŝ of the estimated generating function support Ĝ. Together with Assumption 1-iii., it
follows that ∑

jŝ∈{dc+1,...,dz}

∥∥∥Ĝ:,jŝ

∥∥∥
0
≥

∑
js∈{dc+1,...,dz}

∥G:,js∥0 , (15)

where the permutation σ(·) connects the indices of s and those of ŝ. We note that Equation 15 is a
lower-bound of the objective Equation 3, which can be attained by a minimizer ĝ = g.

In the following, we show by contradiction that the support of J−1
h (z) does not contain (jc, jŝ), for

any jc ∈ [dc] and any jŝ ∈ {dc + 1, . . . , dc}, i.e., (jc, jŝ) /∈ T .
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We suppose that a specific (j′c, j
′
ŝ) ∈ T , where j′c ∈ [dc] and any j′ŝ ∈ {dc +1, . . . , dc}. We note that

the argument for Equation 14 also applies to (j1, j2) ∈ T for any j1, j2 ∈ [dz]. Thus, we would have

(j′c, j
′
ŝ) ∈ T =⇒ (ix, j

′
ŝ) ∈ Ĝ, ∀ix ∈ {i ∈ [dx] : (ix, j

′
c) ∈ G}. (16)

It would follow that∑
jŝ∈{dc+1,...,dz}\{j′ŝ}

∥∥∥Ĝ:,jŝ

∥∥∥
0
+
∥∥∥Ĝ:,j′ŝ

∥∥∥
0
≥

∑
jŝ∈{dc+1,...,dz}\{j′ŝ}

∥∥G:,σ(jŝ)

∥∥
0
+
∥∥∥Ĝ:,j′ŝ

∥∥∥
0

≥
∑

jŝ∈{dc+1,...,dz}\{j′ŝ}

∥∥G:,σ(jŝ)

∥∥
0
+
∥∥∥G:,σ(j′ŝ)

∪ G:,j′c

∥∥∥
0

≥
∑

jŝ∈{dc+1,...,dz}\{j′ŝ}

∥∥G:,σ(jŝ)

∥∥
0
+
∥∥G:,j′c

∥∥
0

>︸︷︷︸
(1)

∑
js∈{dc+1,...,dz}

∥G:,js∥0 ,

(17)

where the inequality (1) is due to Assumption 1-iii. that the influence of c on x is denser than that of
s.

However, as discussed above, there exists an optimizer that attains the lower-bound Equation 15.
Equation 17 contradicts the minimization objective Equation 3. Therefore, (j′c, j

′
ŝ) ̸∈ T , for any

j′c ∈ [dc] and any j′ŝ ∈ {dc + 1, . . . , dc}.

As discussed above, this implies that c is not influenced by ŝ. Further, it follows from the invertibility
of h(·) that [Jh(z)]jĉ,js = 0, for any jĉ ∈ {1, . . . , dc} and js ∈ {dc+1, . . . , dc+ds}, which implies
that ĉ is not influenced by s. These two conditions and the invertibility of h(·) imply that ĉ and c
form a one-to-one mapping.

A.6 Proof for Theorem 2

The original Assumption iii. and Theorem 2 are copied below for reference.
Assumption 2 (Partially intersecting influence supports). For every pair (cjc , sjs), the supports of
their influences on x do not fully intersect, i.e., ∥G:,jc ∩ G:,js∥0 < min{∥G:,jc∥0 , ∥G:,js∥0}.
Theorem 2. We follow the data-generating process Equation 1 and Assumption 1 and Assumption 2.
We optimize the objective function in Equation 3 together with

min
∑

(jĉ,jŝ)∈{1,...,dc}×{dc+1,...,dz}

∥∥∥Ĝ:,jĉ ∩ Ĝ:,jŝ

∥∥∥
0
. (4)

The estimated style variable ŝ is a one-to-one mapping to the true variable s. That is, there exists an
invertible mapping hs(·) between s and ŝ, i.e., ŝ = hs(s).

Proof. As shown in Section A.5, there exists a dz-permutation σ(·) such that ∀j ∈ [dz], (σ(j), j) ∈ T .
Also, we have shown in Theorem 1 that (jc, jŝ) /∈ T for jc ∈ [dc] and jŝ ∈ {dc + 1, . . . , dz}, which
implies that σ(jŝ) ∈ {dc + 1, . . . , dz}. Thus, it follows that for any jĉ ∈ [dc], σ(jĉ) ∈ [dc].

In the following, we show by contradiction that (js, jĉ) ̸∈ T for any js ∈ {dc + 1, . . . , dz} and
jĉ ∈ [dc]. We suppose that (j′s, j

′
ĉ) ∈ T . Analogous to Equation 16, we would have that

(j′s, j
′
ĉ) ∈ T =⇒ (ix, j

′
ĉ) ∈ Ĝ, ∀ix ∈ {i ∈ [dx] : (ix, j

′
s) ∈ G}. (18)

It would follow that Ĝ:,j′ĉ
⊇ G:,σ(j′ĉ)

∪ G:,j′s
. Also, to attain the objective Equation 3 in Theorem 1,

we have j′ŝ := σ−1(j′s) ∈ {dc + 1, . . . , dz}, s.t., Ĝ:,j′ŝ
= G:,j′s

. It would follow that Ĝ:,j′ĉ
⊇ Ĝ:,j′ŝ

.

Further, we would have∥∥∥Ĝ:,j′ĉ
∩ Ĝ:,j′ŝ

∥∥∥
0
=

∥∥∥Ĝ:,j′ŝ

∥∥∥
0
=

∥∥G:,j′s

∥∥
0

>︸︷︷︸
(2)

∥∥∥G:,σ(j′ĉ)
∩ G:,σ(j′ŝ)

∥∥∥
0
, (19)
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where (2) is due to Assumption 2.

We note that the lower-bound for Equation 4 is∑
(jĉ,jŝ)∈{1,...,dc}×{dc+1,...,dz}

∥∥∥Ĝ:,jĉ ∩ Ĝ:,jŝ

∥∥∥
0
≥

∑
(jĉ,jŝ)∈{1,...,dc}×{dc+1,...,dz}

∥∥G:,σ(jĉ) ∩ G:,σ(jŝ)

∥∥
0

(20)

=
∑

(jc,js)∈{1,...,dc}×{dc+1,...,dz}

∥G:,jc ∩ G:,js∥0 ,

(21)

which can be achieved by G = Ĝ. Note that the lower-bounds for both Equation 3 and Equation 4 can
be attained simultaneously by G = Ĝ. Hence, optimizing the sum of the two objectives does not alter
the optimal value of either.

Applying a similar argument as that in Equation 15, we would have that∑
(jĉ,jŝ)∈{1,...,dc}×{dc+1,...,dz}

∥∥∥Ĝ:,jĉ ∩ Ĝ:,jŝ

∥∥∥
0

=
∑

(jĉ,jŝ)∈{1,...,dc}×{dc+1,...,dz}\{(j′ĉ,j
′
ŝ)}

∥∥∥Ĝ:,jĉ ∩ Ĝ:,jŝ

∥∥∥
0
+

∥∥∥Ĝ:,j′ĉ
∩ Ĝ:,j′ŝ

∥∥∥
0

≥
∑

(jĉ,jŝ)∈{1,...,dc}×{dc+1,...,dz}\{(j′ĉ,j
′
ŝ)}

∥∥G:,σ(jĉ) ∩ G:,σ(jŝ)

∥∥
0
+

∥∥∥Ĝ:,j′ĉ
∩ Ĝ:,j′ŝ

∥∥∥
0

>︸︷︷︸
(3)

∑
(jĉ,jŝ)∈{1,...,dc}×{dc+1,...,dz}\{(j′ĉ,j

′
ŝ)}

∥∥G:,σ(jĉ) ∩ G:,σ(jŝ)

∥∥
0
+
∥∥∥G:,σ(j′ĉ)

∩ G:,σ(j′ŝ)

∥∥∥
0

=
∑

(jc,js)∈{1,...,dc}×{dc+1,...,dz}

∥G:,jc ∩ G:,js∥0 ,

(22)

where (3) is due to Equation 19. Hence, this was not the minimizer of Equation 4. By contradiction,
we have that (js, jĉ) /∈ T for any js ∈ {dc + 1, . . . , dz} and jĉ ∈ [dc]. This implies that s is
not influenced by ĉ. Further, it follows from the invertibility of h(·) that [Jh(z)]jŝ,jc = 0, for any
jŝ ∈ {dc+1, . . . , dz} and jc ∈ [dc], which implies that ŝ is not influenced by c. These two conditions
and the invertibility of h(·) imply that ŝ and s form a one-to-one mapping.
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