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1 More Detailed Descriptions1

1.1 Dataset Preprocessing2

As we stated paper Section 4.1, PDBBind v2020 dataset [8] contains 19,443 ligand-protein complex3

structures, and we pre-process the structures as follows. First, we only keep complex structures4

whose ligand structure file (in sdf or mol2 format) can be processed by RDKit [6] or TorchDrug [15],5

leaving 19,126 complexes. Then, to address the multiple equally valid binding ligand pose issue for6

symmetric receptor structures, we only keep the protein chains that have an atom within 10 Å radius7

of any atom of the ligand. We further filter out complexes in which the contact (distance is within8

10Å) number between ligand atom and protein amino acid Cα are less than or equal to 5, or the9

number of ligand atom is more than or equal to 100. After applying these filters, 18, 624 complexes10

are left. Finally, we proceed remained complexes with the time split as described in EquiBind [12].11

1.2 Experiment Settings12

Baseline. We compare our model with traditional score-based docking methods and recent geometry-13

based deep learning methods. For traditional docking methods, QVina-W, GNINA [11], SMINA [4],14

GLIDE [2] and AutoDock Vina [13] are included. For deep learning methods, EquiBind [12],15

TankBind [10], E3Bind [14] and DiffDock [1] are included.16

We report corrected results for the deep learning baselines including EquiBind, TankBind, and E3Bind.17

The corrected results adopt post-optimization methods on model outputs, including fast point cloud18

fitting (used in EquiBind) and gradient descent (used in TankBind and E3Bind), which can further19

enforce geometry constraints within ligand. For TankBind, the post-optimization method is used to20

get final ligand coordinates through the predicted distance matrix, which is essential for distance to21

coordinate transformation.22

Training and Evaluation. The training process consists of two stages. In the initial warm-up stage,23

only the native pockets are used for docking. Once the pocket prediction performance reaches a24

certain threshold (specifically, when the center coordinate distance between the predicted center25

and ground truth is less than 4Å), the training progresses to the second stage. During the second26

stage, the predicted pockets are integrated into the docking training process. The sampling protocol27

involves a 25% probability of selecting the ground truth pocket and a 75% probability of selecting28

the predicted pocket. Note that the task of pocket prediction is consistently incorporated into the29

entire training process. Following E3Bind [14], we also apply normalization (divided by 5) and30

unnormalization (multiplied by 5) techniques on the coordinate and distance. Additionally, to improve31

the generalization ability of the model, the pocket is randomly shifted from −5Å to 5Å in all three32

axes during training. FABind models are trained for approximately 500 epochs using the AdamW [9]33

optimizer on 8 NVIDIA V100 16GB GPU with batch size set to 3 on each GPU. The learning rate34

is 5e− 5, which is scheduled to warm up in the first 15 epochs and then decay linearly. To further35
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enforce geometric constraints, we also incorporate local atomic structures (LAS) constraints in the36

training process by ensuring the distance between ligand atoms i and k in the transformed conformer37

(X) by model are consistent with those in the initial low-energy conformer (Z) for atoms that are38

either 2-hop neighbors or in the same ring structure, as proposed in EquiBind [12].39

1.3 Ligand and Protein Feature Encoding40

As we stated in paper Section 3.1, we construct ligand feature by TorchDrug [15] toolkit and protein41

feature with pre-trained ESM-2 model. Here we give a detailed description of the encoding. For42

ligand compound, the node embedding hi is a 56-dimensional vector containing the following43

features: atom number; degree; the number of connected hydrogens; total valence; formal charge;44

whether or not it is in an aromatic ring. For protein target, we directly use the pre-trained 33-layer45

ESM-2 [7] model1, which contains 650M parameters and is trained on UniRef 50M dataset. The46

node feature in the protein graph is derived from the amino acid feature and the hidden size is 1280.47

1.4 Model Architecture Details48

Edge Construction. We now introduce how to construct the edges in our FABind layers. For49

clarity, we use FABind in pocket prediction module for a demonstration. The cut-offs are set to50

the same in both pocket prediction and docking. As defined in the paper, we have three types of51

edges, E := {E l, Ep, E lp}, for ligand, protein, and ligand-protein interface, respectively. E l and52

Ep are constructed from independent context, while E lp is constructed from external interface. For53

independent context of a ligand, we directly refer to chemical bonds as constructed edges E l with54

the biological insight that a molecule keeps its chemical bonds during the process. For independent55

context of a protein, Ep is defined as the edges connecting to nodes when the spatial distance is below56

a cutoff distance cin. We set cin = 8.0 in our work following Kong et al. [5]. Note that independent57

edges for ligands and proteins differ. For external edges E lp, we also add edges with a spatial radius58

threshold cex = 10.0 following TankBind [10].59

Global Nodes. MEAN [5] demonstrates that the global nodes intensify information exchange during60

message passing. Therefore, we insert a global node into each component (ligand or protein) of the61

complex as well. A global node connects to all nodes in the same component and the other global62

node. The coordinates are initialized as zero tensors and can be updated during feed forward.63

Iterative Refinement. Iterative structure refinement has been proved as a critical design in structure64

prediction task [3]. It allows the network to go deeper without adding much computational overhead.65

Specifically, we update coordinates during all iterations, and update hidden representations only in66

the last iteration. To stabilize the training process and save memories, we stop the gradients except67

for the last iteration. In our implementation, we also accelerate training speed by randomly sampling68

an iteration number less than or equal to the configuration N for each batch, while always refining N69

iterations during inference.70

2 Apo-Structure Docking71

As stated in DiffDock [1], the PDBBind benchmark primarily focuses on evaluating the ability of72

docking methods to dock ligand to its corresponding receptor holo-structure, which is a simplified73

and less realistic scenario. However, in real-world applications, docking is often performed on apo or74

holo-structures that are bound to different ligands. To address this limitation, DiffDock proposed a75

new benchmark that combines the crystal complex structures of PDBBind with protein structures76

predicted by ESMFold [7]. In order to validate the efficacy of our FABind in the apo-structure77

docking scenario, we also evaluated its performance under the same settings with DiffDock. In78

order to validate the efficacy of our FABind in the apo-structure docking scenario, we implement the79

same experimental setup as DiffDock. For 363 test samples, we firstly extract their sequences from80

PDBBind and use esmfold_v1 to predict their structures, from which process we assume that the81

apo protein structures are obtained. One sample (PDB: 6OTT) is filtered out due to out-of-memory82

error. Then we align the rest of samples with PDBBind, where 12 samples are further excluded83

due to memory limitations, the same as DiffDock. The results in Table 1 demonstrate that FABind84

1The pre-trained ESM-2 checkpoint can be found at https://dl.fbaipublicfiles.com/fair-esm/
models/esm2_t33_650M_UR50D.pt
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outperforms DiffDock, achieving an RMSD of less than 2Å on 24.9% of the complexes generated by85

ESMFold. This demonstrates the strong predictive capacity of FABind for apo-structure predictions.86

Table 1: PDBBind blind docking on apo proteins. The top half contains results from traditional
docking software; the bottom half contains results from recent deep learning based docking methods.
The last line shows the results of our FABind. No method received further training on ESMFold
generated structures.

Apo ESMFold proteins
Top-1 RMSD

Method %<2 Med.

GNINA 2.0 22.3
SMINA 3.4 15.4

EQUIBIND 1.7 7.1
TANKBIND 10.4 5.4
P2RANK+SMINA 4.6 10.0
P2RANK+GNINA 8.6 11.2
EQUIBIND+SMINA 4.3 8.3
EQUIBIND+GNINA 10.2 8.8
DIFFDOCK (10) 21.7 5.0
DIFFDOCK (40) 20.3 5.1

FABIND 24.9 4.2

3 Study87

3.1 Full Ablation88

The comprehensive ablations are listed in Table 2. We can observe that each of the components89

contribute to the good performance. Firstly, the scheduled training strategy, when removed, leads90

to a slight decrease in performance for challenging cases (e.g., RMSD 75%). This indicates that91

the scheduled training strategy contributes positively to handling difficult scenarios. Regarding92

loss construction, the inclusion of the distance map loss is crucial, and solely utilizing the first93

term of distance map loss (i.e., the distance loss between Dij and D̃ij in Ldist, which we call94

“coord loss + dist. loss (1)” in Table 2) does not yield optimal results. The architecture design also95

has a substantial impact. The removal of cross-attention update severely impairs the model’s ability96

to handle favorable cases (e.g., RMSD 25%). This suggests that cross-attention update is vital97

for capturing important structural dependencies. Furthermore, iterative refinement is found to be98

indispensable for most structure prediction models, including ours. In terms of feature representation,99

the utilization of ESM-2 features for residues proves to be most beneficial for challenging cases. It100

enhances the model’s capability to handle difficult scenarios effectively. Lastly, post optimization101

does not significantly affect the overall performance.102

3.2 Iterative Refinement103

In this section, we investigate the impact of iterative refinement on our model. We utilize our104

best-performing model and evaluate its performance using different iterations during inference. The105

results are reported in Table 3. From the table, we can find that (denote the number of iterations as i,106

1 ≤ i ≤ 12): (1) the performance improves as i increases. (2) The results tend to be stable when i107

increases to some extent. (3) When i = 8, the results are generally optimal. However, the results are108

similar when 4 ≤ i ≤ 12. Thus, a smaller value of i can be used for better efficiency.109

3.3 More Cases110

Here we show more cases on test sets to further verify the ability of FABind in finding the correct111

pocket for unseen protein and docking at atom level. From Fig. 1(a), in PDB 6N93, the protein is112

unseen in the training set, and only the predictions of FABind, E3Bind and TankBind are in the right113

pocket, among which FABind predict the most accurate binding pose (RMSD 2.7Å). From Fig. 1(b),114
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Ligand RMSD Centroid Distance
Percentiles ↓ % Below ↑ Percentiles ↓ % Below ↑

Methods 25% 50% 75% Mean 2Å 5Å 25% 50% 75% Mean 2Å 5Å

FABIND 1.7 3.1 6.7 6.4 33.1 64.2 0.7 1.3 3.6 4.7 60.3 80.2

NO SCHEDULED SAMPLING 1.7 3.5 7.0 6.4 28.7 63.4 0.7 1.5 3.5 4.5 60.3 82.6
COORD LOSS ONLY 2.6 4.1 7.3 6.9 16.3 60.9 1.0 1.7 4.5 4.7 53.9 77.4
COORD LOSS + DIST. LOSS (1) 1.9 3.5 7.4 6.5 26.2 63.4 0.7 1.5 4.1 4.5 56.7 80.0
NO CROSS-ATTENTION 2.2 4.2 7.0 6.4 21.4 59.9 0.9 1.9 4.1 4.5 52.3 80.4
NO ITERATIVE 2.2 4.1 7.2 6.6 22.5 58.5 0.9 1.9 4.7 4.7 52.3 80.4
NO ESM-2 1.9 3.6 8.0 6.3 27.5 61.2 0.8 1.6 3.8 4.4 56.2 79.1
WITH POST OPTIMIZATION 1.8 3.5 7.2 6.6 30.9 61.4 0.7 1.4 3.5 4.7 59.8 80.7

Table 2: Results of full ablation study.

Ligand RMSD Centroid Distance
Percentiles ↓ % Below ↑ Percentiles ↓ % Below ↑ Average

Iteration 25% 50% 75% Mean 2Å 5Å 25% 50% 75% Mean 2Å 5Å Runtime (s)
ITERATION=1 3.1 4.8 7.9 7.3 5.2 51.8 1.2 2.0 5.3 5.3 49.9 74.1 0.03
ITERATION=2 2.4 3.8 7.7 6.8 20.1 60.1 0.9 1.5 4.6 4.9 56.5 77.1 0.05
ITERATION=4 1.8 3.3 7.2 6.5 28.4 63.6 0.7 1.4 3.8 4.8 59.5 78.8 0.07
ITERATION=6 1.8 3.2 7.0 6.4 30.9 64.5 0.7 1.3 3.7 4.7 60.6 79.6 0.10
ITERATION=8 1.7 3.1 6.7 6.4 33.1 64.2 0.7 1.3 3.6 4.7 60.3 80.2 0.12
ITERATION=10 1.7 3.1 6.6 6.4 32.5 65.3 0.7 1.3 3.5 4.7 60.6 80.4 0.16
ITERATION=12 1.7 3.1 6.6 6.4 32.5 65.6 0.7 1.4 3.6 4.7 61.7 80.4 0.19

Table 3: Inference on different iterations.

RMSD from 
ground truth  (Å)
▶FABind:    2.7
▶DiffDock:  55.7
▶E3Bind:    6.8
▶TankBind: 7.4
▶EquiBind: 34.0

RMSD from 
ground truth  (Å)
▶FABind:    2.4
▶DiffDock:  3.9
▶E3Bind: 4.3
▶TankBind: 4.8
▶EquiBind: 6.3(a) PDB: 6N93 (b) PDB: 6EFK

Figure 1: Additional case studies. Pose prediction by FABind (green), DiffDock (wheat), E3Bind
(magenta), TankBind (cyan), and EquiBind (orange) are placed together with protein target structure,
and RMSD to ground truth (red) are reported. (a) For unseen protein (PDB 6N93), FABind, E3Bind,
and TankBind successfully identifies the pocket, among which FABind predicts the most precise
binding pose with lowest RMSD 2.7Å, while the other methods are all off-site. (b) For PDB 6EFK,
all deep learning models find the right pocket, among which FABind predicts the most precise binding
pose with lowest RMSD 2.4Å.

in PDB 6EFK, though every method correctly finds the native pocket, FABind predicts the most115

accurate ligand conformation (RMSD 2.4Å).116

4 Broader Impacts and Limitations117

Broader Impacts. Developing and maintaining the computational resources necessary to conduct118

AI-based molecular docking requires considerable resources, which may lead to a waste of resources.119

Limitations. In FABind, we represent the protein structure at the residue level, assuming rigidity120

of the protein. While many existing molecular docking methods adopt a similar protein modeling121

strategy, we believe that employing atom-level protein modeling and incorporating protein flexibility122

into the modeling process could yield improved results. However, due to the scope and limitations of123

our current work, we have decided to defer these aspects to future research.124
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